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Based on the generalized operators, Hamilton equation, Noether symmetry, and perturbation to Noether symmetry are
studied. The main contents are divided into four parts, and every part includes two generalized operators. Firstly,
Hamilton equations within generalized operators are established. Secondly, the Noether symmetry method and conserved
quantity are studied. Thirdly, perturbation to the Noether symmetry and adiabatic invariant are presented. And finally, two
applications are presented to illustrate the methods and results.

1. Introduction

With the development of discipline and the progress of tech-
nology, the dynamics of the constrained mechanical systems
was put forward, so Analytical Mechanics appears. Lagrange
is the founder of Analytical Mechanics. Lagrange further
studied the motion of the constrained particles after d’Alem-
bert. The Lagrange equation and the d’Alembert-Lagrange
principle are the core of Lagrangian mechanics.

Hamilton developed Analytical Mechanics. In his two
long papers, “On a General Method in Dynamics” (1834)
and “Second Essay on a General Method in Dynamics”
(1835), he proposed an integral variational principle and a
dynamic equation with generalized coordinate and general-
ized momentum as independent variables. This principle is
called the Hamilton principle. The dynamic equation given
by Hamilton is called the canonical equation. The Hamilton
principle and the Hamilton canonical equation are the core
of Hamiltonian mechanics.

Hamilton’s principle is highly general, which can repre-
sent the motion law of a holonomic and conservative system
by only one functional extreme value. The principle is not
only simple and beautiful in form but also rich and profound
in connotation. It can be applied to mechanics, optics, elec-
tromagnetism, and other fields and can also be applied to

approximate calculation [1, 2]. In Ref. [3], the Hamilton
principle is applied to the dynamics of the flexible multibody
and rigid flexible coupling systems. Hamilton’s principle is
extended to the holonomic nonconservative system [4], the
high-order system [5], and the nonholonomic system [4].
In addition, the Pfaft-Birkhoft principle [6, 7], generalized
Pfaff-Birkhoff principle [8], and Vujanovi¢’s variational
principle of nonconservative system [9] are also the general-
ization of Hamilton’s principle.

The Hamilton equation is also of great significance.
Firstly, the canonical equation is simpler in form and more
symmetrical in structure than the Lagrange equation. It is
more convenient for general discussion when solving many
complex mechanical problems, such as celestial mechanics
and vibration theory. Secondly, the new concepts related to
the canonical equations, such as the canonical variables,
have many applications in mechanics and physics, such as
statistical physics and quantum mechanics. Thirdly, a com-
plete set of integration methods are established for the
canonical equations, such as the Poisson theorem, Jacobi
method, canonical transformation, and integral invariants
[4]. Fourthly, geometric mechanics has been developed due
to the symplectic structure of the canonical equations.
Besides, Hamiltonian mechanics has also contributed to
the formation and the development of the generalized
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Hamiltonian mechanics [10] and the Birkhoffian mechanics
[11]. Finally, considering the perturbation of the Hamilton
equation, the KAM theorem appears. The KAM theorem
became the beginning of the chaos theory [4].

In 1918, the famous paper “Invariante Variations Pro-
bleme” by German mathematician Noether revealed the
relationship between the conserved quantity of the mechan-
ics system and its internal dynamical symmetry [12]. Refer-
ence [13] points out that the application of the mechanics
variational principle and its physical significance are based
on two theorems: the Hilbert independence theorem and
the Noether theorem. The first theorem gives the mathemat-
ical argument of the variational principle, and the second
theorem reveals its physical significance.

The Noether symmetry method is one of the modern
integration methods of the Hamiltonian mechanics. For
the Hamiltonian system, Noether symmetry is the invari-
ance of the Hamilton action under the infinitesimal transfor-
mations. The Noether symmetry method points out that if
the infinitesimal generators and the gauge function satisfy
the Noether identity, then the conserved quantity of the sys-
tem can be found [14-20]. The advantage of the Noether
theory is that if there is a Noether symmetry, a correspond-
ing conserved quantity can be found and vice versa. The
Noether theory can also be used to solve general ordinary
differential equations as long as they are expressed as equa-
tions of mechanics systems [21].

Recent developments in the fields of science, engineer-
ing, economics, bioengineering, and applied mathematics
have demonstrated that many phenomena in nature are
modelled more accurately using fractional derivatives [22,
23]. Fractional Hamiltonian mechanics [24-32] and Noether
theorems for them have also been established and investi-
gated [33-36]. The fractional operators mainly referred to
the left and right fractional Riemann-Liouville integrals,
the left and right fractional Riemann-Liouville differential
operators, the left and right fractional Caputo differential
operators, the Riesz-Riemann-Liouville differential operator,
and the Riesz-Caputo differential operator. However, Agra-
wal [37] pointed out that the fractional power kernel need
not be the only kernel to describe the phenomena of the
nature. He defined three new operators which in special
cases reduce to the fractional operators listed above. Then,
the entire theories of the Hamiltonian mechanics and the
corresponding Noether theorem can be redeveloped. And
in such a case, the theories of the integer order and the frac-
tional order Hamiltonian mechanics and other results
resulted from them would be special cases of the more gen-
eral new operators.

The structure of this paper is organized as follows. Sec-
tion 2 lists the definitions and properties of the generalized
operators briefly. Fractional calculus of variations for the
Hamiltonian system within generalized operators is studied
in Section 3. Based on the generalized operators, Noether
symmetry, and conserved quantities, perturbation to
Noether symmetry and adiabatic invariants are investigated
in Section 4 and Section 5, respectively. Section 6 presents
two applications to illustrate the methods and results
obtained in this paper. A conclusion is given in Section 7.
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2. Preliminaries

The definitions and properties of the generalized operators
K, A, and B were studied in detail by Agrawal [37]. Here,
we only list their definitions and integration by part
formulae.

The operators K, A, and B have the forms

b

Ko (t, T)f (T)dT + wJ Kk, (7, t)f (T)dr,

t

KS f(t) :mJt a>0,

a

ALf () =D"Ky°f(t), n—-1<a<n, (2)
By f(t) =Ky “D'f(t), n-1l<a<n, (3)

where f(t) is continuous and integrable, a <t < b, M = <a,
t,b,m,w > is a parameter set, m and w are two real num-
bers, «,(t, ) is a kernel which may depend on a parameter
a, and 7 is an integer.

Remark 1. Let x,(t,7)=(t—7)*"/I'(a), then different
results will be obtained under different conditions. For
example, when M =M, =<a,t,b,1,0 >, we have

a

a0 =DK1 0) = s () |-

=Dl (1),
Bl 0= K0 0= ot o () o
= <o)

i.e., the operator A and the operator B reduce to the left
Riemann-Liouville fractional operator and the left Caputo
fractional operator, respectively. When M =M, =<a, t, 5,0,
1>, we have

a0 =050 = 1 (5) [ e e

= (-1)"{ D (8),

B (0) =K D)= 1 [ (-0 () e

= (-1)"FDyf (1),

i.e., the operator A and the operator B reduce to the right
Riemann-Liouville fractional operator and the right Caputo
fractional operator, respectively. When M =M, =<a,t, b,1/
2,1/2 >, we have
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n b
M () =DK%= 50— () [ e

=2Dif (1)

B0 =KD 0)= 3o [ -7 (§) e

=2Dyf(t),

(6)

i.e., the operator A and the operator B reduce to the Riesz-
Riemann-Liouville fractional operator and the Riesz-Caputo
fractional operator, respectively.

The generalized operators K, A, and B satisfy the follow-
ing integration by part formulae:

b

jbg<t>1<7wf<t>dt=jf(t)Kwt)dt, (7)

a a

b

b
j G(DALF(1)dt = (-1)" j (0B g(t)dt

a a
n-1

+ Y (-D)" g Ay (1)

j=0

b b
J g(t)Byf(t)dt = (-U”J f(H)Ay-g(t)d

a a

n-1

+ Y (-1 AN (D ()

j=0

where M*=<a,t,b,wo,m>, n—1<a<n, and n is an
integer.

In this text, we set n=1, so 0 <« < 1. The variational
problems within generalized operators A and B are to be
studied first.

3. Hamilton Equations within
Generalized Operators

3.1. Hamilton Equation within Generalized Operator A. Let
Ly=L,(t,q,,A%q,) be the Lagrangian within generalized
operator A, 4, = (qa1> 4a2>+an)> and Afyq, = (Afq,4;, Aly
Gy A3 4a,)> then the generalized momentum p, = (p,;;
PaprPan) is defined as p,,=0L,/0A%,q,; i=1,2,--n,
and the Hamiltonian H, = H,(t,q4,p,) can be expressed
as Hy=p,; Ay q4; — Ls. Therefore, the Hamilton action
within generalized operator A is

b
Sala () j par A%y~ Ha(b gl (10)

3
Then,
88, =0, (11)
with the commutative conditions [38].
0A3Gai = ANOdsp  i=1,2,-m, (12)
and the boundary conditions
4(@) = 940 44 (0) = Qa1 (13)

is called Hamilton principle within generalized operator A,
where § means the isochronous variation.
Using Equations (1), (8), and (12), we have

3H,,

b N o 0H
88, = J <8PA1' “ANdai + Pai OAN D — ) E

8q,, — —268p,. |dt
qpi ai 0P PAI)

b o aHA
=j ~(Bipa 5t ma(bs-o(b,1) -0 (00

a Ai
ai) 8pA,} dt=o.

8+ <Ag/Iin - N

(14)

Then, from the Hamiltonian H, =p,; - A};q4; — L4, the
independence of 8q,;, and the arbitrariness of the interval
[a, D], we get

" 0H, _, 0H
Ay = ﬁ’BM*pAi = _WAA' +mp,; (D), _o(bs 1) (15)

— wpai(a)Ky o (1> a)-

Equation (15) is called the Hamilton equation within
generalized operator A.

Remark 2. Let «,(t,7) = (t — 7)*"'/T'(«); from Equation (15),
we can get the Hamilton equations in terms of the left
Riemann-Liouville fractional operator, the right Riemann-
Liouville fractional operator, and the Riesz-Riemann-
Liouville fractional operator by letting M =M,, M =M,,
and M = M, respectively.

3.2. Hamilton Equation within Generalized Operator B. Let
Ly =Lg(t, q5, B} q5) be the Lagrangian within the general-
ized operator B, qp = (qp,> qpy>-*qp,)> and Bjyqy = (Bydp,»
B4y -BYqs,)> then the generalized momentum pg =
(Pp1>Pra» - +Ppy,) is defined as py, = 0Lg/0BY qp» i=1,2,--n,
and the Hamiltonian Hjy = Hy(t, g5, pp) can be expressed as
Hp = pg,; - By/qp; — Lp. Therefore, the Hamilton action within
the generalized operator B is

b
sl ()] = J o By~ Hy(t-qppp)ldt.  (16)

Then,

8S5 =0, (17)



with the commutative conditions [38]
8B} qp; = B304 (18)
and the boundary conditions

q95(a) = dpa q5() = gy (19)
are called the Hamilton principle within generalized operator
B, where § means the isochronous variation.

Using Equations (9), (17), and (19), we have

b 0H o0H
58 :J (6 By + Py OBy — B 8qy — OB )
57 Ppi " Pydpi + Ppi - 0Py s 345, dgi ~ s, P

b . oH . 0H
= J |:(BMQB1' - W;) Opp;i — (AM*pBi + W;) 6‘131} dt.

(20)

Then, from the Hamiltonian Hy = py, - Byqp; — Lp, the
independence of dqy;, and the arbitrariness of the interval
[a, ], we get

. oH, oH
Byqp = ﬁ’AM*PBi = _W]j (21)

Equation (21) is called the Hamilton equation within
generalized operator B.

Remark 3. Equation (21) is consistent with the result
obtained in Ref. [39]. However, the method in Ref. [39] is
different.

Remark 4. Let ,(t,7) = (t — 1) /T («); from Equation (21),
we can get the Hamilton equations in terms of the left
Caputo fractional operator, the right Caputo fractional
operator, and the Riesz-Caputo fractional operator by letting
M =M,, M =M,, and M = M, respectively.

Remark 5. In Remark 2 and Remark 4, there are six cases in
total. If we let « — 1, then all of them reduce to the classical
Hamilton equation, which can be found in Ref. [14].

4. Noether Theorems within
Generalized Operators

Noether symmetry means the invariance of the Hamilton
action. Noether symmetry leads to conserved quantity.
Therefore, the change of the Hamilton action under the
infinitesimal transformations will be studied. There are also
two parts: one is the Noether symmetry and conserved
quantity in terms of operator A, and the other is in terms
of operator B. We begin with the definition of conserved

quantity.

Definition 6. A quantity I is called a conserved quantity if
and only if the condition dI/dt =0 holds.

Advances in Mathematical Physics

4.1. Noether Theorem within Generalized Operator A. First,
we give the infinitesimal transformations within generalized
operator A as

E=1t+ A qu(F) = (1) + Aqup Pai(F) = pai(t) + APy
i=1,2,--,n(ort=t+Atq,(t) =q,(t) + Aq,, p, ()
=pa(t) +4p,).

(22)
Expanding Equation (22), we have

t=t +6A§0A0<t Q4> Pa) +0(64): 4u;(F)
=qu(t )+6AEA1(t Q> Pa) +0(04), pyi(t) (23)
=pai(t) +0410,(t 0 p4) +0(0,),

i= 1)2,...);1’

where 0, is an infinitesimal parameter and &}, £, and 73,
are called infinitesimal generators within the generalized
operator A.

Then, let AS, be the linear part of S, — S, and neglecting
the higher order of 6,, we get

b
ASy = J [Pai - Ajai = Ha(t Gy pa)]dE
b

- J (Pai" AMdai —Ha(t: qupa)]dt
b d

= J {(pAi +Apy;) - l:AX/Iin +Ay0q,; + At - aAX/[in

d
b, (8) 5105, 0) = g 0) o (6)
—Hu(t+ At gy + Aqu py + Apy) — PaiAMai
b

+Hy(t,qy,pa) dt = BAJ [PA;‘ Ay (Egi - ‘?Aifgo)

d , oH Ao L0
+ (pAi : EAMin A>£A0 + (Pai - AM9ai — Ha)b a0

_0H,
0q,;

Ai

EOA:‘ +wp ;- qa(b) - ggo(h q4(b):pa(b))
d
: &"pu(b’ t)=mp ;- qa;(a) 'E(/)ao(a’ q4(a):pa(a))

. %xl,a(t, a)|dt

where
o — o o d 04
AfGai = Aa; + AN0qy; + At - aAMin +wq,;(b) - Ab
d d
'a’cl—a(b’ t) —mqy;(a)-Aa- ar Ki_o(t> @),
M=<atbmw>.
(25)
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It follows from Noether symmetry (AS, = 0) that
Pai An (fgxi - QAiE,%o) + (PAi' %A?\‘Mm - %) &0
(o A~ )~ 5B+ 0 (D)
(b0 (0,24 (0) r1o(b 1)~ a4(a)

d .
Ea0(a:4,(). pa(a)) - &Kl—a(t’ a)=0, i=12n.

(26)

Equation (26) is called the Noether identity within the
generalized operator A.

Finally, the conserved quantities within generalized
operators deduced by the Noether symmetry are presented.

Theorem 7. For the Hamiltonian system within generalized
operator A (Equation (15)), if the infinitesimal generators

Efw, Egi, and 1, satisfy the Noether identity (Equation
(26)), then there exists a conserved quantity

t
+ (Egi - inESXO)' [Bar-Pai = P4 (0)%;_o (b, T)

+wpy;(a)K;_o(7, a)] }dT +w-q(b)

Lyo=(Pai- AMai — HA)EB\O + J {pAi Ay (Egi - QAifgo>

E0(br 0,6 40) | pal®): ks o[

- qua) - (e qA<a>,pA<a>>j Pai(?)

« —K;_o(T, a)dT = const.

dr
(27)

Proof. From Equations (15) and (26), we have dI,,/dt =0. [J

If we let AS,=—["(d/dt)(AGY)dt, AGS =0,G(tq,,
p4)> and G, be called the gauge function, then from Equation
(24), we have

) _ d . oH
Pai- A (Egi - QAiESXO> + (PAi' EAMin - a—tA) 5210
o .0 0H
+ (Pai " Avdai —Ha)uo — W:Egi +wpy; - 4a(b)
d
'Ego(b’ qa(b),pa(b))- a’(lﬂx(b’ ) —mp,; - qu(a)

d -0 .
Eoo(@:04(0) P4 (@) pra(t@) + G =0, i=120m
(28)
Equation (28) is called the Noether quasi-identity within

the generalized operator A.
In this case, we have the following theorem.

Theorem 8. For the Hamiltonian system within the general-
ized operator A (Equation (15)), if there exists a gauge func-

tion G such that the infinitesimal generators £, &, and
1Y, satisfy the Noether quasi-identity (Equation (28)), then
there exists a conserved quantity

+ (Egi - inEZO)' [Bi-Pai = mPai(b)K;_o (b, T)
+wp (@)K o1, )] [+ - g,(b)

t d
Eolb. 030 22(0) | Pa@)- o ra(b )

+ Gl = m-gy(a) - Ela qA<a>,pA<a>>j Pai()

Ino= (Pai- AMai — HA)EE\O + J {pAi Ay (Egi - inEZO)

- —K,_o(T, a)dT = const.

dr
(29)

Proof. From Equations (15) and (28), we have dI 4,/dt =0.
O

Remark 9. Let «, (t, 7) = (t — 7)* " /I'(«); from Equations (26)
and (28), Theorem 7, and Theorem 8, we can get Noether
identities, Noether quasi-identities, and Noether theorems
in terms of the left Riemann-Liouville fractional operator,
the right Riemann-Liouville fractional operator, and the
Riesz-Riemann-Liouville fractional operator by letting M =
M,, M =M,, and M = M, respectively.

4.2. Noether Theorem within Generalized Operator B. The
infinitesimal transformations are

~|
1]
~
+
>
o+
[~y

pi(t) = 4pi(t) + Ay Ppi () = ppi(t) + App;
- (ort =1+ At, qg(t) = q5(t) + Aqp, p(t) = pg(t) + App)s
(30)

and the expanded forms of the infinitesimal transformations
are

T=t+0,83(t, qp> pg) + 0(05), i (F) = 4 (1) + OpEp:(t s P)
+0(0p), ppi(t) = ppi(t) + 93’7%1@) g Pp) + 0(0p)s
(31)

where 0 is an infinitesimal parameter and &y, &y, and %),
are called infinitesimal generators within the generalized
operator B.



Similarly, let AS; be the linear part of Sy;—S; and
neglecting the higher order of 0, we get

b
ASp=8p—Sg= [7 [Pg; - B‘IXVIQBi - HB(Z’ ‘73’?3)]&
) .
- J [Ppi - Bydp — Hg(t, 9p, pp)]dt
b d
= J {(PBi +Apg;) - |:B?(4QB1‘ + By 0gy; + At - aB?(/I‘ZBi
by (b, )y () - oo,

— Hg(t + At, qp + Ay, py + Apg) — PiBydsi

b
+ Hp(t, qp. py) }dt = GBJ |:sz‘ - By, (E?}i - 5131‘5%0)
d ., oH o 20
+ (pBi : 5BM‘131' - a_;s) 5%0 + (Pg; - Bydp — Hp)&po
_ 3H,

5031‘ + WKy _o (b, 1)qp(b) 'sz‘E%O(b’ q5(b), py(b))
04y,

= i, @) (0)P3 0 (@ 45(a), () ] .
(32)

where

X — o o d 1v4
Bqp; = Byqp; + ByOgp; + At - aBMqBi
+ wky_o (b, 1)qp;(b)Ab — mi,_ (1, a)qp;(a)Aa.

(33)
Letting ASg =0, we have

) , d . 9H
Ppi* By (Egi - ‘13;‘5%0) + <PBi' aBMQBi - a—tB> fgo

o0H )
a—B sgi + WKy _o (b, 1)qp;(b)
qp;

'pBiE%O(b’ qp(b), p5(b)) — mxy_o (1, a)qp;
: (a)PBifgo(a’ qgp(a), pp(a)) =0,

104 .0
+ (Ppi - Bydp — Hp)Epo —

i=1,2,-n.
(34)

Equation (34) is called the Noether identity within the
generalized operator B.

Let AS = — [*(d/dt)(AGS)dt, AGS = 0,GY(t, qp, pp), and

G, be called the gauge function, then from Equation (32), we
have

. . d _, 0H
Ppi* By (E%i - ‘131“?%0) + (PBi' aBMQBi - a—tB) Ego
. -0 0H .
+ (Ppi Bydpi — Hp)po — #Egi + wky_o (b, 1)qp,(b)
Bi

‘PBiggo(b’ qgp(b), p(b)) — mrc,_o(t, a)qp(a)
Pho(@ 4(a). py(a)) + Gy =0, i=1,2,m,
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Equation (35) is called the Noether quasi-identity within
the generalized operator B.
Therefore, we have the following theorem.

Theorem 10. For the Hamiltonian system within the general-
ized operator B (Equation (21)), if the infinitesimal genera-
tors £y, &%, and 1Y, satisfy the Noether identity (Equation
(34)), then there exists a conserved quantity

t
+ (fgi - éIBiE?m) AX/[*sz} dr +w - qg(b)

&b, q3<b>,p3<b>>j Pai(F) o, T)dT — - ()

Igg = (Ppi Bydpi — HB)Ego + J [PB;‘ “ By (Egi - QBiEgo)

t

' fgo(a) ‘IB(“)’PB(‘I))J Pyi(T)K1_o (T, a)dT = const.

(36)

Proof. From Equations (21) and (34), we have dIz,/dt =0. [J

Theorem 11. For the Hamiltonian system within the general-
ized operator B (Equation (21)), if there exists a gauge
function GY such that the infinitesimal generators &), &%,
and #; satisfy the Noether quasi-identity (Equation (35)),
then there exists a conserved quantity

t
Ipgo = (P  Budpi — HB)Ego + J [PB:’ - By (Egi - "1315%0>
+ (Egi - QBiEgO)A%I*pBi} dt + w - gp;(b)
t
: Ego(b’ QB(b)’PB(b))J Pyi(T)61_o (b T)dT — M - Gp(a)

& (a, q3<a>,p3<a>>J Pui(T)K1_a (T a)dT + GY = const.

(37)

Proof. From Equations (21) and (35), we have dI,/dt =0.
O

Remark 12. Let x,(t,7) = (t —7)*'/I'(a); from Equations
(34) and (35), Theorem 10, and Theorem 11, we can get
Noether identities, Noether quasi-identities, and Noether
theorems in terms of the left Caputo fractional operator,
the right Caputo fractional operator, and the Riesz-Caputo
fractional operator by letting M =M,, M=M,, and M =
M, respectively. Particularly, the results obtained when M
= M, are consistent with the results presented in Ref. [33].

Remark 13. In Remark 9 and Remark 12, there are six cases
in total. If we let « — 1, then all of them reduce to the clas-
sical Noether identity, the classical Noether quasi-identity,
and the classical Noether theorem, which can be found in
Ref. [14].
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5. Adiabatic Invariants within
Generalized Operators

This section begins with the definition of the adiabatic
invariant.

Definition 14. A quantity I, is called an adiabatic invariant if
I, contains a parameter &, whose highest power is z, and also
satisfies that dI,/dt is in proportion to £°*!.

When the systems (Equations (15) and (21)) are dis-
turbed by small forces, the conserved quantities may also
change.

Assuming that the Hamiltonian system within the gener-
alized operator A (Equation (15)), the gauge function G,
and the infinitesimal generators &,,, &,;, and #,, are dis-
turbed as

N 0H
Byppai=-— W: +mp;(b)ey_o(bs 1) — wpy;(a)k,_o (1 a)

i

oH, .
— e, Wit qu Pa)s ANGu; = T i=1,2,n,
Ai
(38)
GA = Gg‘ + SAG.}& + 8124G124+ = sf’&G;" EAO = E?‘;O + SAE};()

&+ el +EaEa
:g;rl;i, 5:0, 1,2’...)
(39)

=380 8ai =

0 1, 2.2
Hai ¥ €allai T EaMait "

L.

R ) —
=&3&un M=

then we have the following theorem.

Theorem 15. For the disturbed Hamiltonian system within
the generalized operator A (Equation (38)), if there exists
a gauge function G such that the infinitesimal generators

620) Efqi; and 7/,21 Satisfy

o d o0H
Pai - Ay (&4 = duiio) + (pAi' EAMin A)EAO

. . 0H,
+(Pai AGai — Ha)uo — #fm‘ +wpy; (D)

Ai

d
(b 44(0) pa() - (b1
WAz( —qu ixol) —mpy; - u(a)

s d .
“&a0(a>94(a); pa(a)) - aKI—oc(t’ a)+G, =0,

(40)

where &' =&,) =0 when s=0, then there exists an adia-
batic invariant

z

IAGZ = Z

s=0

t
€4 { (Pai* Avai = Ha)Sho + J {Pai

A (&ai = qaibio) + (Ei\i - inEZO)
“[BirPai = mPa;i (D)Ko (b T) + wpy(a)k)_o (7, a) | T

@ qu(b) - Elb qA<b>,pA<b>>j Pai()
S alb T+ Gy a)

Bl 0400 24@) | 24(6)- (e .

(41)

Proof. From Equations (38) and (40), we have (d/dt)I,g,
==& W i85 — 4ai€ho)- 0

If the Hamiltonian system within the generalized opera-
tor B (Equation (21)), the gauge function Gy and the infini-
tesimal generators &g, &g, and 75, are disturbed as

OH,
Mdp = BT M+ P
pBl 42)
aHB (
= ErM —egWpi(t qp. pp)s  i=1,2,-m,
Bi
0 1
Gp =Gy +&3Gp + €3Gyt = €3Gy, Epy = Epo + €580 (43)
+ 5123%0‘*' -+ =gy,
0 1, 242 0
Epi = Ep; + epp + ep8piteer = €€ g = 1p; + 53771131' (44)
+ G = €l
§=0,1,2,, (45)

then we have the following theorem.

Theorem 16. For the disturbed Hamiltonian system within
the generalized operator B (Equation (42)), if there exists a

gauge function Gy such that the infinitesimal generators &),
3 and 1y, satisfy

o d . 0H
Pgi* By (fsi - qBiEBO) + (pB". EBMqBi B) 0

0Hy .
a—Bgsi +wi;_o (b, 1)qp;(b)
qpi

Pri&ro(b> (), py(b)) - WB:( —qp; ;01)

= mK;_o(t, a)4p,(@)PpiEh(a q5(a), py(a)) + Gja =0,
(46)

o 5
+ (Ppi - By — Hp)Epo —

where &'
abatic invariant

=& = 0 when s =0, then there exists an adi-



z

IBGz = Z

s=0

+< qu BO) Ax/l PBz}dT-Fw qu(b)
“&Eho(bs QB(b)’PB(b))J Pyi(T)1_o (b, T)dT—M - G5 (a)

t

a

E5o(0:(0). 2y (@) | P (F)01 5 01 + G;}-
(47)

Proof. From Equations (42) and (46), we have (d/dt)Ig, =
—e5" Wigi(85; — pifo)- O

Remark 17. Letting x,(t, 7) = (t = 7)*'/I'(a), we can get the
adiabatic invariants in terms of the left Riemann-Liouville
fractional operator, the right Riemann-Liouville fractional
operator, and the Riesz-Riemann-Liouville fractional oper-
ator from Theorem 15 by letting M =M,, M =M,, and
M = M, respectively. Similarly, we can get the adiabatic
invariants in terms of the left Caputo fractional operator,
the right Caputo fractional operator, and the Riesz-Caputo
fractional operator by letting M =M,, M=M,, and M =
M, respectively. Particularly, the adiabatic invariant within
the Riesz-Caputo fractional operator is consistent with the
result obtained in Ref. [33].

Remark 18. In Remark 17, there are six cases in total. If we
let « — 1, then all of them reduce to the classical adiabatic
invariant, which can be found in Ref. [33].

Remark 19. The adiabatic invariants of Theorem 15 and
Theorem 16 reduce to conserved quantities of Theorem 8
and Theorem 11 when z = 0, respectively.

In the following text, we give two applications to illus-
trate the results and methods.

6. Applications

6.1. Application 1. We try to find the conserved quantity and
adiabatic invariant for the two-dimensional isotropic har-
monic oscillator within the generalized operator A, whose
Lagrangian has the form

1 o . 1
Ly= EaA (AMqA1)2 + (AMqAZ)Z} - iﬁA [(qu)z + (%2)2]’
(48)
where a, and 3, are constants.
From Equation (48), we have
Par = %aAN a1 Par = %Al a2 Hy
2 (49)
= Pa + Pia + = ﬁA[(qu) (‘IAz)Z]

20040 20y

SSB{ (Pgi * Bdpi = Hp)Epo + J [pBi By (ESBi - QBiEEO)
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Then, Equation (15) gives

pAl Alx

4y = pAZ Ba

AMn = Par =—Padm

Wp a1 (a)Ki_o(t @), Byy-Pay

wp 5 (@)ky_o(t a).
(50)

+ mpAl( )Kl—(x(b’ t) -
=—Baday + MP iy (b)Ky_o(bs 1) =

And under the condition (d/dt)«(¢,7) =
we can verify that

—(d/dr)x(t, 1),
E?AOZLEOAl:ggz:O’Gg:O’ (51)

satisfy the Noether quasi-identity (Equation (28)). There-
fore, from Theorem 8, we have
! d
J {pAl AX/Iqu

mp 41 (b)x,_o (b, T)

Lygo=Par AvGar +Par  Adar —

+qa1 - [ByPar ~

b Py (@81 (0)] P e Ay
+q,5[BiyPaz = MPar (b) Ky (b, T)
+wp,(a)K,_o (T, a)] }dr = const.

(52)

When the system is disturbed by —e, W, (¢, g, p,) =

—€4q 4, and —e, W, (t, g4, P4) = —€49,,> then we can find
that

EAO IEAI EAZ OGI 411942 (53)

is a solution to Equation (40). Therefore, from Theorem
15, we obtain

Lygi =Lago +€a(Lago =~ 4a1942)- (54)
Specially, let x,(t,7) = (t - 7)*/I'(«) and M =M, (or
M =M, or M =Ms,); further, letting « — 1, we have

Ingoc =—Ha=const, Iygc=—Hy —€4(Hy +q419,,)-
(55)

6.2. Application 2. The Lotka biochemical oscillator
model’s Hamiltonian has the form

Hp = g pyy — gydp; + By eXp Py — By €xp qp- (56)
We try to find its conserved quantity and adiabatic
invariant based on generalized operator B.



Advances in Mathematical Physics

Equation (21) gives the Hamilton equation within the
generalized operator B

Bidp, = &1 + Py €Xp Ppy> Bydp, = 0, Ay Py (57)
=gy + Py exXp qpy, Ajy Py =0.
Then, under the condition (d/d¢)«x(t, T) = —(d/dr)«(t, 7),
it is easy to verify that

§p0=1,85 =0,G3 =0, (58)

is a solution to the Noether quasi-identity (Equation (35)).
Therefore, from Theorem 11, we have

IgGo =Pp1  Bydp — Hp

t ) d
- J (‘JBlA?A*PBl +Pp1 - EB?qu) dr = const.

a

(59)

When the system is disturbed by —ez Wy, (t, g, p) =
—e5(2qp, +1) and —ez W, (1, q5, pp) =0, then we can find
that

Etlzo =1 51131 =0, G%a = _‘11231 ~ 41> (60)

is a solution to Equation (46). Therefore, from Theorem
16, we have

t d
IpG =Pp - Budm — Hp _J (quA?\t/l*pBl +Ppi- EB%‘Jm)dT
t

+ &g(pp * Bydp —Hp — {

'dT_‘hzn — qp, -

p o d o
<‘131AM*P31 +Ppi- EBMQM)

a

(61)

Specially, let x,(t,7) = (t —7)*/I'(&) and M =M, (or
M =M, or M =M,); further, letting « — 1, we have

Iggoc =—Hp =const, Ip;c=-Hp — & (HB + g5 + ‘131)-
(62)

7. Results and Discussion

Hamilton equations, Noether theorems, and adiabatic
invariants are obtained for the Hamiltonian systems on the
basis of the generalized operators. The Hamilton equation
in terms of the generalized operator A (Equation (15)), the
Hamilton equation in terms of the generalized operator B
(Equation (21)), the Noether symmetries and conserved
quantities in terms of the generalized operator A (Theorem
7 and Theorem 8), the Noether symmetries and conserved
quantities in terms of the generalized operator B (Theorem
10 and Theorem 11), the perturbation to Noether symme-
tries and adiabatic invariants in terms of the generalized

fractional operators (Theorem 15 and Theorem 16) are all
new work.

However, we still need to make efforts to finish the
follow-up work successfully. For example, MATLAB is a
useful tool to simulate the results of the applications to
directly illustrate the achievements obtained in this paper.
Therefore, the appliance of MATLAB is necessary. Besides,
except for the Noether symmetry method, the Lie symmetry
method, and the Mei symmetry method are also significant
methods to be studied for the Hamiltonian systems within
generalized operators. Time scale calculus is recently pro-
posed with tremendous potential for applications. The Ham-
iltonian mechanics within mixed time scale and generalized
operators is a new research direction, which also deserves to
be done.
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