
Communications and Network, 2017, 9, 192-206
http://www.scirp.org/journal/cn

ISSN Online: 1947-3826
ISSN Print: 1949-2421

DOI: 10.4236/cn.2017.93014 Aug. 29, 2017 192 Communications and Network

DroidData: Tracking and Monitoring Data
Transmission in the Android Operating System

Hani Alshahrani1,2, Abdulrahman Alzahrani1, Alexandra Hanton3, Ali Alshehri1, Huirong Fu1,
Ye Zhu4

1Oakland University, Rochester, MI, USA
2Najran University, Najran, KSA
3Loyola University Chicago, Chicago, IL, USA
4Cleveland State University, Cleveland, OH, USA

Abstract
Most of the millions of Android users worldwide use applications from the
official Android market (Google Play store) and unregulated alternative mar-
kets to get more functionality from their devices. Many of these applications
transmit sensitive data stored on the device, either maliciously or accidentally,
to outside networks. In this paper, we will study the ways that Android appli-
cations transmit data to outside servers and propose a user-friendly applica-
tion, DroidData, to inform and protect the user from these security risks. We
will use tools such as TaintDroid, AppIntent, and Securacy to propose an ap-
plication that reveals what types of data are being transmitted from apps, the
location to which the data is being transmitted, whether the data is being
transmitted through a secure channel (such as HTTPS) and whether the user
is aware that the information is being transmitted. The application will gener-
ate a report that allows the user to block the application that leaks sensitive
information. In doing so, we will examine the importance, relevance, and
prevalence of these Android Data security issues.

Keywords
Android, Security, Privacy, Tracking Data, Malware

1. Introduction

Smartphones continue to become increasingly ubiquitous, and Android leads
the way in the field with over 75 percent of the market share [1]. As smartphones
gain popularity and functionality, an increasing number of people use their de-

How to cite this paper: Alshahrani, H.,
Alzahrani, A., Hanton, A., Alshehri, A., Fu,
H. and Zhu, Y. (2017) DroidData: Tracking
and Monitoring Data Transmission in the
Android Operating System. Communica-
tions and Network, 9, 192-206.
https://doi.org/10.4236/cn.2017.93014

Received: July 29, 2017
Accepted: August 26, 2017
Published: August 29, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/cn
https://doi.org/10.4236/cn.2017.93014
http://www.scirp.org
https://doi.org/10.4236/cn.2017.93014
http://creativecommons.org/licenses/by/4.0/

H. Alshahrani et al.

DOI: 10.4236/cn.2017.93014 193 Communications and Network

vices for privacy-sensitive activities, such as banking, health-monitoring, and
business. This exposes users to privacy risks that may not be present outside of a
mobile environment.

Though we know that many applications transfer privacy-sensitive informa-
tion to outside servers, it is difficult to determine when the transmissions are le-
gitimately required for the functionality of the application, versus when it con-
stitutes a data leakage or theft. Users typically understand and accept transmis-
sions that allow them to receive a service, such as sending location information
to a maps application [2]. Many common applications also perform their com-
puting in the cloud, which is generally an acceptable use of data when security
measures are in place [3]. While this can be a useful feature, it makes it difficult
to determine when data transmissions to the cloud are essential for application
functionality.

Regardless of the nature of the transmission, it is almost impossible to know
when data transmissions occur. Even the most technically-aware users have very
little way to determine how applications are using the data on their devices, as
almost 70 percent of a device’s network traffic is invisible to the user [4]. Addi-
tionally, most Android applications do not provide a term of Use or End-User
License Agreement, meaning even those who bother to read it do not have access
to documentation that explains how the application handles sensitive informa-
tion [3]. This lack of transparency makes it easy for an application to send data
in ways that are not required for the functionality of the application, whether
that be to steal data or to provide customized advertisements. The user has no
way to know what data is being transmitted and when.

Though work has been done to create a method that tracks data transmission
in Android applications, many require root access or modification of the An-
droid source code. While these methods are effective for experts to monitor data,
average users do not have the technical knowledge required to use these tools.
This leaves users vulnerable to unintended data transmission. Also, existing tools
use either static or dynamic analysis to search for code paths that allow data
transmission. Neither of these methods is sufficient on its own to catch all pri-
vacy leaks without high false positives [5]. This indicates that existing works do
not accurately report enough data transmissions to protect against data loss, es-
pecially for the average user.

In this paper, we propose a user-friendly tool that will run as a downloadable
application on Android smartphones and use a combination of static and dy-
namic analysis to detect transmissions of privacy-sensitive data out of the device.
Our contributions include:
• The novel method of combining two types of analyses, which allows Droid-

Data to catch more data transmissions than existing works.
• A well-developed and easy-to-use user-interface that allows users to under-

stand data transmissions and block applications that transmit their personal
information inappropriately.

https://doi.org/10.4236/cn.2017.93014

H. Alshahrani et al.

DOI: 10.4236/cn.2017.93014 194 Communications and Network

• More informative results about the transmissions than other tools, providing
information such as the security of the data transmission.

The paper is organized as follows. Sections 2 and 3 present our problem
statement and an overview of Android’s architecture respectively. Section 4 pro-
vides an example of code that leaks sensitive data. Section 5 explains how static
and dynamic analysis will cooperate in DroidData in order to track and monitor
data. Section 6 explains how we use symbolic execution to identify which GUI
events caused a data leak. Section 7 explains the related works. Section 8 men-
tions some limitations of our tool and how we will work on them in the future,
and section 9 contains the conclusion.

2. Statement of the Problem

Studying the ways that Android applications transmit data to outside servers and
propose a user-friendly application, DroidData, to inform and protect the user
from these security risks.

3. Android Overview

We begin by presenting an overview of Android in order to explain how Droid-
Data will function and protect users. Android is an open-source platform devel-
oped by Google and the Open-Handset Alliance [6]. Initially released in 2007,
Android has gone through many updates and changes to improve its security
and user experience. At the time of this writing, the latest version is Marshmal-
low. We will discuss some of the updated features in this section.

3.1. Android Architecture

Android is built in a traditional Unix paradigm [7] as shown in Figure 1. At the
bottom of Android architecture is a modified Linux Kernel, customized with
features that enhance security and improve mobile performance, in addition to
the traditional drivers, process management, and file-system access [7]. An im-
portant and unique feature of the Kernel that is specific to Android is the Binder,
which allows IPC/ICC (Inter-Parcel/Inter-Component Communication). This al-
lows applications to share data and services and is crucial to the Android securi-
ty model [8].

The next level above is the libraries, which include native libraries and Java
Runtime Libraries. These are frequently accessed by applications via system ser-
vices and provide many device functionalities [7]. Also at this layer is the Dalvik
Virtual Machine. The DVM is a Java Virtual Machine designed specifically for
mobile computing. It runs .dex files that are packaged in Java libraries and APK
files, which are the folders used to download Android applications [7].

The next layer provides the application framework, which is responsible for
distributing system services to applications and providing the crucial features of
mobile devices. This layer also manages the data from device sensors and distri-
butes it to the appropriate applications. For example, in this section we find the

https://doi.org/10.4236/cn.2017.93014

H. Alshahrani et al.

DOI: 10.4236/cn.2017.93014 195 Communications and Network

Figure 1. Android architecture.

telephony manager to provide calling abilities to the device [7]. Most of these are
written in Java, like most of the Android applications they serve [7].

Android applications, which may come with the system or be downloaded by
the user, are contained in an APK file, which contains a variety of items besides
the source code. It also might contain XML layout files, unique libraries, the
META-INF directory, which contains the signature for the package, the assets
directory of application assets, and the XML manifest [8]. This manifest is one of
the most important pieces of the application and contains key information, such
as the name, components, permissions, and API of the application [9]. The
components are key parts of the app and include activities, services, broadcast
receivers, and content providers. Each activity represents a single screen in the
user interface of an application. Services provide long-running functions in the

https://doi.org/10.4236/cn.2017.93014

H. Alshahrani et al.

DOI: 10.4236/cn.2017.93014 196 Communications and Network

background, such as a download. Broadcast receivers receive messages from the
system and other apps while the user has the application open. For example, a
broadcast receiver would allow the user to receive a warning about low battery
while using the app. Content providers manage and protect data within an ap-
plication, sharing it where appropriate [8].

3.2. Android Security Model and Threats

Sandboxing is the central feature of the Android security model, and focuses on
keeping applications separate to protect user and device data. Each application
has a user ID (UID) and is given its own piece of memory that it cannot share
with other applications [7]. Each application also runs in its own process, leaving
it isolated, or sandboxed, from other applications [7].

When an application is downloaded, the user must then approve or disap-
prove a list of permissions that have been declared in the manifest [8]. These al-
low the application to access the Internet, device sensors or identifiers, and other
services. Not all applications can request all permissions. Some are considered
Signature or SignatureOrSystem, meaning that only applications with the same
certificate as the declaring application can be granted the permission [8]. The
latest version of Android at the time of this writing, Marshmallow, introduced
fine-grained permissions management, removing the all-or-nothing permissions
approval seen in earlier versions and allowing users to revoke permissions after
the application had downloaded [10]. This allows the users to have more control
of the access their applications have, but many users still do not take the time to
consider the permissions they are granting. This is especially problematic be-
cause 70 percent of malicious applications over-request permissions [8]. As we
will see in the example below, many malicious applications pose as harmless
ones and fool the user into downloading them when the permissions may serve
as a red flag that something is wrong. This becomes a dangerous situation that
can lead to information leakage, which DroidData would prevent.

Even when users are paying attention to the permissions they grant, collusion
presents a threat to their security [8]. Applications with the same certificate,
usually meaning they have the same developer, can be downloaded with the
same UID [7]. This allows them to run in the same process and share services
and data. For example, a user might download two applications and grant one
location information permission and another internet permission, not realize the
two are connected, and have his or her location information leaked to an un-
known server. This presents an instance in which data transmission is occurring
completely unbeknownst to the user, a situation DroidData seeks to catch and
prevent.

Another threat is the repackaging of applications. Malicious code, such as
Trojans Gemini and KungFu, can decompile an APK file and inject it with mali-
cious code, then disguise it as a normal application without the user’s knowledge
[8]. These seemingly legitimate applications can then leak personal data. Droid-

https://doi.org/10.4236/cn.2017.93014

H. Alshahrani et al.

DOI: 10.4236/cn.2017.93014 197 Communications and Network

Data would also protect against this type of threat.

4. Example

We begin by giving an example of how a malicious application disguised as a
normal one can transmit a user’s privacy-sensitive data without his or her
knowledge.

The example code in Figure 2 is taken from an actual malicious application
that poses as a kitchen timer. One of its malicious activities involves stealing the
user’s account information, such as usernames and passwords, and transmitting
them to an outside URI.

Figure 2 illustrates both sources and sinks, all of which are underlined in the
code snippets. A source is the origin of privacy-sensitive information, which we
see here with the method GetAccounts(). Privacy-sensitive constitutes anything
that is unique to the user. It is not limited to items such as account information
or location information, which are typically seen as vulnerable. For example, a
less obvious source of privacy-sensitive information is device identifiers, which
can be misused by malicious applications. A sink is the part of the code where
sensitive data is transmitted from the device. In this case, we see that occur at
Main. this. DoPost, followed by the URL of the malicious site. This shows that it

Figure 2. Example of malicious app.

https://doi.org/10.4236/cn.2017.93014

H. Alshahrani et al.

DOI: 10.4236/cn.2017.93014 198 Communications and Network

is easy for an application to transmit data without a user’s knowledge, as what
the user thinks is a kitchen timer is actually stealing their personal information.

It is fairly obvious, even to a person without an extensive background in pro-
gramming, that the example above is malicious. The following code in Figure 3
shows that it is not always easy to identify malicious code in a program.

Figure 3 comes from a malicious application that parades, ironically, as anti-
virus software, then routes the user to malicious web pages and encourages him
or her to click on additional malicious links. This program was significantly
longer and more complex than the previous kitchen timer malware, showing the
importance of our tool to perform this process automatically. The code shows
sources in each line of code as the program seeks to obtain information about
the device, such as “device_country” and “device_android _id_hash.” Not
only is this code more difficult to read, but the data it is obtaining seems less
sensitive. These pieces of device information still expose the user to security risks
if they are leaked. DroidData will protect this vulnerable information that other
tools may overlook.

Attack model: These are examples of overtly malicious applications; however,
DroidData can also be used to detect accidental or benign data leaks. When
looking at applications that are maliciously attempting to steal data, the tool
stands up to current available malware. Most malware are able to function be-
cause of excessive permissions granted by unknowing users, and our application
tracks the resulting data leaks [11]. This remains true even if the attacker
changes the installation environment of the application inputs [12]. DroidData
is based on the assumption that the malware operates within the Android secu-
rity framework without exploiting it, which is consistent with current malware
[12]. We also assume that the attacker does not use implicit flows to transmit
data, which we discuss further in section VII. The first code snippet presents a
scenario where these attack conditions are met. The user has granted too many
permissions to an application that poses as a simple kitchen timer, but requests
permissions such as network connectivity, access to device and account infor-
mation, and location details. It works within the Android framework because it
does request these permissions in the manifest and they are legitimately granted

Figure 3. Example of malicious app.

https://doi.org/10.4236/cn.2017.93014

H. Alshahrani et al.

DOI: 10.4236/cn.2017.93014 199 Communications and Network

by the user. It exploits the user, but not the Android security model.

5. Implementation

DroidData will use both static and dynamic analysis to track and monitor data
transmissions. In order to accomplish this type of analysis, our application will
sit below the application frameworks and above the libraries, Dalvik Virtual
Machine, and core libraries, as illustrated in Figure 4. This is similar to the posi-
tion that a traditional desktop antivirus has. This will provide our application
with the access to the ICC components, device sensors and resources it needs to
accurately track data as it moves through the system. Static and dynamic analysis
will cooperate by each generating a separate report when a threat is found. In
this way, the two will not necessarily work together; rather, they will each look
for data leaks independently to increase security by ensuring that no potential
leaks are missed.

Taint analysis is a widely accepted method for tracking data transmission in
the Android OS. It can be performed either dynamically or statically, and both
our static and dynamic analysis will use taint tracking [13]. Taint analysis in-
volves tagging data of interest at sources, in this case privacy-sensitive data, with
a “taint tag” and tracking the propagation of the taint through the rest of the
code [3]. Taint tags are stored in adjacent memory and logs are used to deter-
mine when the tainted data leaves the system [14]. Taint propagation must be
performed carefully in order to prevent taint explosion, when almost everything
in the system accidentally becomes tainted [3].

5.1. Static Analysis

The first step our application will perform in analyzing applications is static
analysis, as illustrated in Figure 5. This provides the best code coverage because
it examines all possible data paths, enabling it to detect around 85 percent of
flaws in the code [15]. It is also safer because potentially malicious code

Figure 4. DroidData implementation.

https://doi.org/10.4236/cn.2017.93014

H. Alshahrani et al.

DOI: 10.4236/cn.2017.93014 200 Communications and Network

Figure 5. Data droid workflow.

does not actually execute [5]. For this reason, it was crucial that we include static
analysis in our tool, so that users did not lose sensitive information, then be no-
tified when it was already too late. Static analysis begins by converting the Dalvik
bytecode from an APK file back into Java code so that it can be analyzed [12].
We did this manually with tools such as JD-GUI, apktool, and dex-2-jar [16]
[17] [18]. We plan to automate this process in DroidData.

Once we have extracted the bytecode, we must analyze it in order to identify
the sources and sinks. This must be comprehensive in order to identify all possi-
ble places of origin and loss of sensitive data. To do make it so, we must look not
only at the Java classes, but also at the XML manifest and layouts, any files and
libraries associated with the application, and any other items that may be in
the .apk file [12]. We will implement a modified version of the open-source tool
SuSi, which uses supervised machine learning to generate a categorized list of
sources and sinks in an Android application [19]. Using the sources and sinks
that we identify, we can identify all of the potential paths that connect sources to
sinks using static taint analysis, which we discussed earlier. These potential paths
are then reported to the user in a report that details the types of data that may be
transmitted and other known information about the paths.

There are some potential flaws in static analysis, and these must be noted to
the user in the initial report. It will be made clear that these are only potential
transmissions, and that use of the application does not guarantee that the specif-
ic code path will ever be executed and data transmitted as such [5]. It may also
be the case that not all information about the transmission will be known

https://doi.org/10.4236/cn.2017.93014

H. Alshahrani et al.

DOI: 10.4236/cn.2017.93014 201 Communications and Network

through static analysis. It is difficult to tell what type of channel the data will be
transmitted through via static analysis, and code paths that interact with other
parts of the system, such as libraries, may not be uncovered [5]. These are all
reasons that we also implement dynamic analysis, but we will make clear to the
user in this initial report that the results of static analysis may not reflect actual
data transmissions that will occur. As an initial method of analysis, we went
through the code of known malicious applications to determine potential sources
and sinks of sensitive information. This is the same process that will be per-
formed automatically in our application during static analysis. We found a wide
variety of sources and sinks during our manual analysis, including several in-
stances of location and account information being sent to outside sources.

Our application will also run an additional type of static analysis, the extrac-
tion of event-space constraints. We will discuss this in the next section where we
explain symbolic execution.

5.2. Dynamic Analysis

DroidData begins to perform dynamic analysis as soon as the subject application
is run, again illustrated in Figure 5. Running dynamic analysis addresses many
of the concerns present when only running static analysis and provides the user
feedback about the way the application uses data at runtime. This allows the user
to know how the application actually uses data, not just how it might use data.
Dynamic analysis also better shows how the application interacts with other files
and libraries, and may detect some code paths that are too complicated for static
analysis to catch [5]. As a downfall, it can be avoided by truly malicious applica-
tions [5]. This makes it important that we are using it in combination with static
analysis.

When dynamic taint analysis runs, we notify the user of each transmission
that it finds. This notification will include the type of data transmitted, the IP
address and approximate geographic location of the server to which it was sent,
and whether the data was sent through a secure channel, such as HTTPS. This
will give the user another opportunity to block the application if data has been
transmitted inappropriately. The application also dynamically analyzes the re-
sults of symbolic execution, which we discuss next.

6. Determining User Intention

Similar to the related work AppIntent [20], DroidData will provide the sequence
of GUI manipulations that lead to the data transmission in order to determine
the origin of the leak. A close-up of our implementation of this process is shown
in Figure 5. The origins and paths of data transmissions are determined using
guided symbolic execution, a process pioneered by AppIntent [20]. This starts by
extracting the event-space constraints during static analysis [20]. To do this, we
must identify the critical and essential events, where critical events are those ne-
cessary for the transmission and essential events are prerequisites to critical

https://doi.org/10.4236/cn.2017.93014

H. Alshahrani et al.

DOI: 10.4236/cn.2017.93014 202 Communications and Network

events [20]. These are then used to create the event constraint graph, which
shows all possible data transmission paths and the GUI events related to each
one [20]. It is made carefully so as to not violate the Android lifecycle, which is
the set up methods that are used in Android instead of a main method to start
and stop the application [21]. Symbolic execution then runs and is used to de-
termine the possible event sequences that lead to data transmission [20]. This
involves narrowing the search space of event sequences by traversing the graph
to find the minimal chains of events that lead to a transmission [20]. The result
is the event inputs and data constraints that must be present to transmit the da-
ta, thus providing the preconditions of data transmission [20]. These are not in
an easily understandable form, so a dynamic analysis platform identifies which
function of the application is used when each GUI manipulation occurs to de-
termine which caused the transmission.

AppIntent uses a human analyst to look at the results of the dynamic analysis
and determine whether or not a transmission was user-intended or not, which is
not something we are able to implement in a downloadable mobile application
[20]. For this reason, DroidData will provide the sequence of events that lead to
the data transmission so that a technologically-aware user can use them to de-
termine whether the transmission was intentional. For users who may not be
able to understand the sequence of GUI manipulations, the static and dynamic
taint analysis and their resulting reports will provide a clear enough picture for
them to understand the transmission, even if they do not know whether it was
intentional or not.

7. Related Works

A variety of tools have used taint analysis to analyze Android applications for
data loss are listed in Table 1.

TaintDroid [3] uses dynamic taint analysis to track sensitive data as it moves
through the Android operating system and provides the user with a notification
when data leaves the system. It uses dynamic taint analysis to track sensitive data
as it moves through the Android operating system and provides the user with a
notification when data leaves the system. Widely used in the field, it tracks taint

Table 1. Applications comparison.

Applications

Features

Static Analysis
Dynamic
Analysis

Creates
Report

Requires Tech
Knowledge

User Can
Block App

DroidData X X X X

Taint-Droid [3] X X

Securacy [22] X X X

Flow-Droid [12] X X X

AppIntent [20] X X X

DroidScope [13] X X

https://doi.org/10.4236/cn.2017.93014

H. Alshahrani et al.

DOI: 10.4236/cn.2017.93014 203 Communications and Network

at five levels in the device: variable-level, message-level, file-level, and me-
thod-level. A disadvantage of TaintDroid is that it requires root access and mod-
ifications to the Android source code, which is difficult for a non-technical user.
DroidData would be downloaded like a regular application and provide more
information for users without a technical background.

Securacy [22] uses TaintDroid’s functionality and combines it with a
crowd-sourcing tool where users can share information about security issues
they experienced with an application and provide a rating for other users to con-
sider before downloading the application. This has the disadvantage that ac-
cording to their own investigation, only five out of one hundred of their partici-
pants rated an app. Rating an application is often considered inconvenient by
users and is not always accurate, based on varying opinions and understandings
of privacy by different users. In DroidData, we prefer to provide the user with a
comprehensive report of our own creation that gives an accurate description of
the type of data being sent out and the location to which it is sent, instead of re-
lying on other to share their experiences with the application.

FlowDroid [12] performs static taint analysis after analyzing an application’s
manifest, XML files, and .dex files to generate a “dummy” main method that
considers Android lifecycle and callback methods in determining the potential
data paths. This context, flow, field and object sensitivity increases precision.
Like other taint analysis tools, FlowDroid falls short by using only static analysis.
In addition, when testing FlowDroid ourselves, we had a difficult time under-
standing the results of the analysis. For a non-technical user, using the tool and
understanding the results would be impossible.

AppIntent [20], as discussed earlier in the paper, uses symbolic execution to
determine the GUI manipulations that lead up to a data transmission to allow an
expert to determine whether is intended by the user or not. This draws a distinc-
tion between true data leaks and transmissions that are necessary for application
functionality. It pioneers a technique called “Event-space Constraint Guided
Symbolic Execution” that identifies all possible execution paths using static
analysis, then identifies critical events to the transmission using an event con-
straint graph. It then uses dynamic analysis to determine what UI manipulations
led to the data transmission. While this tool is unique in seeking to determine
whether data transmission is a privacy leak, it requires that a human analyst be
presented with the results of the dynamic analysis to determine user intention,
and they note that it is probably impossible for that process to be completely
automated.

DroidScope [13] takes their dynamic analysis tool off-device by virtualizing
the device’s semantics and mirroring the Android hardware, operating system,
and virtual machine. It also provides analysis tools, one of which is a taint track-
er that detects data leakage. The virtualization prevents malicious applications
from evading the anti-malware tools, which increases user safety. The emulated
environment, however, has many important differences from an actual device,

https://doi.org/10.4236/cn.2017.93014

H. Alshahrani et al.

DOI: 10.4236/cn.2017.93014 204 Communications and Network

such as sensors that are difficult to emulate. This makes it difficult to protect all
sensitive data.

8. Future Work

We are currently in the process of implementing DroidData as it is explained in
this paper. We will continue to test and improve it moving forward. In the fu-
ture, we would like to continue to deal with some of the following issues that ex-
ist in the proposed version. DroidData, like most other current analysis tools for
Android, is unable to track implicit, or control, data flows. Some malicious code
uses implicit flows to exploit security mechanisms and avoid detection, so this is
something to protect against in the future [23]. Tools such as Flow Caml support
implicit data flow monitoring in specific languages, and we are interested in ex-
ploring such an implementation in a mobile software in the future [24].

The symbolic execution features of our tool that are meant to determine the
origin of data leaks are of little use to users who are not technologically know-
ledgeable. The results of the dynamic analysis produce the event that was the
origin of the data leak, but it is difficult for someone without an understanding
of the steps of the process to interpret that information and determine whether
the data transmission was intentional or not. A potential future work is to put
that GUI event into a description that the average user can understand in order
to be better able to decide whether the transmission was something he or she
requested.

9. Conclusion

We have proposed DroidData, our novel tool that uses both static and dynamic
analysis to track and monitor data transmission in Android applications. This
approach minimizes false positives and increases code coverage to catch the
maximum number of data leaks. We also implement symbolic execution in or-
der to determine the origin of the data leak, and we provide a clear user interface
that allows users without a technological background to understand where ap-
plications send their data and whether it is being sent through secure channels,
and the opportunity to block those that transmit sensitive information inappro-
priately.

Acknowledgements

This work was supported in part by NSF under grants CNS-1460897,
DGE-1623713. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily re-
flect the views of the NSF.

References
[1] Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M.S., Conti, M. and Rajara-

jan, M. (2015) Android Security: A Survey of Issues, Malware Penetration, and De-

https://doi.org/10.4236/cn.2017.93014

H. Alshahrani et al.

DOI: 10.4236/cn.2017.93014 205 Communications and Network

fenses. IEEE Communications Surveys & Tutorials, 17, 998-1022.
http://ieeexplore.ieee.org/abstract/document/6999911/?section=abstract
https://doi.org/10.1109/COMST.2014.2386139

[2] Gibler, C., Crussell, J., Erickson, J. and Chen, H. (2012) Androidleaks: Automatical-
ly Detecting Potential Privacy Leaks in Android Applications on a Large Scale. Pro-
ceedings of the 5th International Conference on Trust and Trustworthy Computing,
Vienna, 13-15 June 2012, 291-307. https://doi.org/10.1007/978-3-642-30921-2_17

[3] Enck, W., Gilbert, P., Chun, B.G., Cox, L.P., Jung, J., McDaniel, P. and Sheth, A.N.
(2010) Taint Droid: An Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones. Proceedings of the 9th USENIX Conference on Oper-
ating Systems Design and Implementation, Vancouver, 4-6 October 2010, 393-407.

[4] Tu, G.H., Peng, C.Y., Li, C.Y., Ma, X.Y., Wang, H.Y., Wang, T. and Lu, S.W. (2013)
Accounting for Roaming Users on Mobile Data Access: Issues and Root Causes.
Proceeding of the 11th Annual International Conference on Mobile Systems, Ap-
plications, and Services, Taipei, 25-28 June 2013, 305-318.
https://doi.org/10.1145/2462456.2464439

[5] Institute for System Programming of the Russian Academy of Sciences (2016) Static
Analysis vs. Dynamic Analysis. http://linuxtesting.org/static-vs-dynamic

[6] Alliance FAQ (2017) http://www.openhandsetalliance.com/oha_faq.html

[7] Elenkov, N. (2014) Android Security Internals: An In-Depth Guide to Android’s
Security Architecture. No Starch Press, San Francisco.

[8] Rashidi, B. and Fung, C. (2015) A Survey of Android Security Threats and Defenses.
Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Ap-
plications, 6, 2015.

[9] Android Developer (2016) App Manifest.
https://developer.android.com/guide/topics/manifest/manifest-intro.html

[10] Carlon, K. (2016) Android 6.0 Marshmallow: All the Key Features Explained.
https://www.androidpit.com/android-m-release-date-news-features-name

[11] Bartel, A., Klein, J., Le Traon, Y. and Monperrus, M. (2012) Automatically Securing
Permission-Based Software by Reducing the Attack Surface: An Application to An-
droid. Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering, Essen, 3-7 September 2012, 274-277.
https://doi.org/10.1145/2351676.2351722

[12] Arzt, S., Rasthofer, S., Fritz, C., Bodden, E., Bartel, A., Klein, J., Le Traon, Y., Octeau,
D. and McDaniel, P. (2014) Flowdroid: Precise Context, Ow, Eld, Object-Sensitive and
Lifecycle-Aware Taint Analysis for Android Apps. SIGPLAN Notices, 49, 259-269.
https://doi.org/10.1145/2666356.2594299

[13] Kwong, L.Y. and Yin, H. (2012) Droidscope: Seamlessly Reconstructing the Os and
Dalvik Semantic Views for Dynamic Android Malware Analysis. Proceedings of the
21st USENIX Conference on Security Symposium, Bellevue, 8-10 August 2012, 29.

[14] McClurg, J., Friedman, J. and Ng, W. (2013) Android Privacy Leak Detection via
Dynamic Taint Analysis. Northwestern University, Evanston, IL.
http://www.jrmcclurg.com/papers/internet_security_final_report.pdf

[15] Brain, R. (2010) Dynamic Code Analysis vs. Static Analysis Source Code Testing.
http://www.computerweekly.com/answer/Dynamic-code-analysis-vs-static-analysis
-source-code-testing

[16] Java Decompiler (2017) Download. http://jd.benow.ca/

[17] Apktool (2016) A Tool for Reverse Engineering Android Apk Files.

https://doi.org/10.4236/cn.2017.93014
http://ieeexplore.ieee.org/abstract/document/6999911/?section=abstract
https://doi.org/10.1109/COMST.2014.2386139
https://doi.org/10.1007/978-3-642-30921-2_17
https://doi.org/10.1145/2462456.2464439
http://linuxtesting.org/static-vs-dynamic
http://www.openhandsetalliance.com/oha_faq.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://www.androidpit.com/android-m-release-date-news-features-name
https://doi.org/10.1145/2351676.2351722
https://doi.org/10.1145/2666356.2594299
http://www.jrmcclurg.com/papers/internet_security_final_report.pdf
http://www.computerweekly.com/answer/Dynamic-code-analysis-vs-static-analysis-source-code-testing
http://www.computerweekly.com/answer/Dynamic-code-analysis-vs-static-analysis-source-code-testing
http://jd.benow.ca/

H. Alshahrani et al.

DOI: 10.4236/cn.2017.93014 206 Communications and Network

https://ibotpeaches.github.io/Apktool/

[18] SourceForge (2016) Dex2jar. https://sourceforge.net/projects/dex2jar

[19] Arzt, S., Rasthofer, S. and Bodden, E. (2013) Susi: A Tool for the Fully Automated
Classi Cation and Categorization of Android Sources and Sinks. University of
Darmstadt, Darmstadt.

[20] Yang, Z.M., Yang, M., Zhang, Y., Gu, G.F., Ning, P. and Wang, X.S. (2013) Appin-
tent: Analyzing Sensitive Data Transmission in Android for Privacy Leakage Detec-
tion. Proceedings of the 2013 ACM SIGSAC Conference on Computer & Commu-
nications Security, Berlin, 4-8 November 2013, 1043-1054.
https://doi.org/10.1145/2508859.2516676

[21] Android Developer (2016) Managing the Activity Lifecycle.
https://developer.android.com/training/basics/activity-lifecycle/index.html

[22] Ferreira, D., Kostakos, V., Beresford, A.R., Lindqvist, J. and Dey, A.K. (2015) Secu-
racy: An Empirical Investigation of Android Applications’ Network Usage, Privacy
and Security. Proceedings of the 8th ACM Conference on Security & Privacy in
Wireless and Mobile Networks, New York, 22-26 June 2015, 1-11.
https://doi.org/10.1145/2766498.2766506

[23] Russo, A., Sabelfeld, A. and Li, K. (2009) Implicit Flows in Malicious and Nonmali-
cious Code. Proceedings of the 2009 Marktoberdorf Summer School, Garching,
4-16 August 2009, 301-322.

[24] Simonet, V. (2015) Flow Caml.
http://www.normalesup.org/~simonet/soft/flowcaml

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact cn@scirp.org

https://doi.org/10.4236/cn.2017.93014
https://ibotpeaches.github.io/Apktool/
https://sourceforge.net/projects/dex2jar
https://doi.org/10.1145/2508859.2516676
https://developer.android.com/training/basics/activity-lifecycle/index.html
https://doi.org/10.1145/2766498.2766506
http://www.normalesup.org/%7Esimonet/soft/flowcaml
http://papersubmission.scirp.org/
mailto:cn@scirp.org

	DroidData: Tracking and Monitoring Data Transmission in the Android Operating System
	Abstract
	Keywords
	1. Introduction
	2. Statement of the Problem
	3. Android Overview
	3.1. Android Architecture
	3.2. Android Security Model and Threats

	4. Example
	5. Implementation
	5.1. Static Analysis
	5.2. Dynamic Analysis

	6. Determining User Intention
	7. Related Works
	8. Future Work
	9. Conclusion
	Acknowledgements
	References

