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Abstract 
The article considers a conceptual universe model as a periodic lattice (net-
work) with nodes defined by the wave function in a background-independent 
Hamiltonian based on their relations and interactions. This model gives rise 
to energy bands, similar to those in semiconductor solid-state models. In this 
context, valence band holes are described as dark matter particles with a 
heavy effective mass. The conducting band, with a spontaneously symme-
try-breaking energy profile, contains particles with several times lighter effec-
tive mass, which can represent luminous matter. Some possible analogies 
with solid-state physics, such as the comparison between dark and luminous 
matter, are discussed. Additionally, tiny dark energy, as intrinsic lattice Ca-
simir energy, is calculated for a lattice with a large number of lattice nodes. 
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1. Introduction 

Existence of significant amount of cca 27% of dark matter (DM) in energy 
budget of the Universe is supported by many astrophysical and cosmological 
observation. Dark matter is a label for all matter that does not interact with the 
electromagnetic force as normal matter does. Astrophysical evidences for DM 
are based on gravitational effects which cannot be explained by just observed 
luminous normal matter. Astrophysical evidence for dark matter is based on 
gravitational effects that cannot be explained solely by observed luminous 
normal matter. On a galactic scale, dark matter (DM) is observed through the 
rotation curves of spiral galaxies, the peculiar motions of galaxies within the 
Coma cluster, and the dynamics of the well-known Bullet Cluster. Numerical 
simulations of DM explain the observed filamentary distribution of luminous 
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matter at large scales, where DM acts as gravitational traps, creating such a 
filamentary network. On a cosmological scale, DM has a footprint in the 
anisotropies of the cosmic microwave background. Dark matter is electrically 
neutral, non-relativistic (cold), and non-baryonic. This last feature is concluded 
from the predictions of Big Bang nucleosynthesis as well as cosmic microwave 
background measurements. From other observations and simulations of DM 
halos we can conclude that DM is a long-lived particle with self-interaction and  

cross section 2 10.1 1cm g
m
σ −< < ⋅ . 

The Standard Model (SM) of particle physics does not contain any viable 
candidates for dark matter (DM). Many extensions of the SM propose potential 
candidates, such as supersymmetric theories with superpartners of ordinary matter. 
However, there has been no experimental evidence from the Large Hadron 
Collider (LHC) or other devices to support these theories. 

Measurements of the Cosmic Microwave Background (CMB) performed by 
the PLANCK satellite in 2018 indicate that DM accounts for 27% of the universe’s 
energy budget, compared to 5% for ordinary matter, with the remaining 68% 
attributed to dark energy. This suggests that if DM particles are approximately 
five times heavier than the particles of luminous matter described by the SM, 
then the particle abundance between ordinary and dark matter would be 
approximately similar. 

5 ~DM SM DM SMm m n n∝ →  

Here is a proposed model where dark matter has similar aspects to holes in 
the valence band of semiconductors, and luminous matter resembles electrons in 
the conducting band. Depending on the semiconductor material and lattice 
structure, holes can have different effective masses compared to electrons. For 
example, in GaAs semiconductors, the effective mass of holes is five times 
greater than the effective mass of electrons. 

The idea that elementary particles of the Standard Model are akin to the 
collective excitations in solid-state physics was introduced by P. W. Anderson 
[1] and has been developed further in subsequent works. The original and 
distinctive feature of the conceptual model proposed in this article is the 
formulation where Standard Model particles are excitations in the conducting 
energy band of such a solid-state universe model, while dark matter particles are 
described as vacancies, or holes, in the valence band, similar to semiconductors. 
In other words, our universe is akin to a semiconductor fabric where excitations 
in the conducting energy band are described by the Standard Model. The valence 
or other energy bands constitute the dark sector, and dark matter is the 
“missing” particle matter, or vacancies, in these bands. During the Big Bang 
heating, these missing particles jumped the energy gap between the valence and 
conducting bands. What turns particles in the conducting band into luminous 
matter, is the spontaneous symmetry breaking that occurs within this band. This 
breaks the original ( ) ( )2 1SU U×  to rezidual electromagnetic ( )1EMU  symmetry. 
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The next section demonstrates how a periodic lattice model with two energy 
bands separated by an energy gap can mimic our universe, distinguishing 
between the Standard Model (SM) and Dark Matter (DM) sectors. Section 
three presents calculations of the lattice Casimir energy and explores the resulting 
energy relations that can be interpreted as the dark energy component of the 
model. In the concluding section four, various interactions between DM and 
SM are discussed, including DM/SM excitons and the Universe Hall effect. 
Additionally, it is noted how a 1 + 1 dimensional model of dark energy can 
potentially be extended to 3 + 1 spacetime dimensions with an additional 
compactified dimension. 

2. Conceptual Model 

Let’s consider simple periodic lattice model with wave function n CΨ ∈  des- 
cribing node n in lattice with Hamiltonian in so called tight binding model, 
where fermion particles can sit only on the location nodes of lattice and has 
some probability g to hop to a neighbouring node  

( )0 1 1n n nH E g + −= Ψ − Ψ +Ψ                    (1) 

Using H EΨ = Ψ  give us  

( )0 1 1n n n nE g E+ −Ψ − Ψ +Ψ = Ψ                   (2) 

This can be solved with ansatz eikna
n NΨ =  with wave number or mo- 

mentum k, where  

,k
a a

 ∈ − 

π



π  

Than 1 e ika
n n

±
±Ψ = Ψ  and  

( )0 2 cosiE E g ka= −                       (3) 

Due to periodic function cos in expression for energy is energy limited in 
band 0 02 , 2i iE g E g − +  . For small momentum k aπ  is possible expand 

energy  

( ) ( )
2 2

2 2
0~ 2 ~

2
i h kE k E g ga k

m
− +                  (4) 

Which give a well known formula for particle with effective mass inherited 
from properties of the lattice  

2
*

22
hm
ga

=  

Or another effective mass definition from energy dispersion relations is  
2

*
2

2

hm
E

k

=
 ∂
 ∂ 

                         (5) 
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With standard energy dispersion relations like (3), see Figure 1, in solid states 
one can gets different effective masses for valence and conduction band depending 
on sharpness of flatness energy dispersion curve for small k. 

When we extend our simple model with some hoping probability g′  between 
second neighbouring nodes  

( ) ( )0 1 1 2 2
i

n n n n n nE g g E+ − + −′Ψ − Ψ +Ψ + Ψ +Ψ = Ψ            (6) 

If 2
1 2e , eika i ka

n n n n
± ±

± ±Ψ = Ψ Ψ = Ψ  and  

( ) ( )0 2 cos 2 cos 2iE E g ka g ka′= − +                 (7) 

With wave number or momentum k, where  

,k
a a

 ∈ − 

π



π  

 

 
Figure 1. The standard energy dispersion relation in solids with energy 
gap separting conducting and valence band. 

 

 
Figure 2. The energy dispersion curve with different hoping parameters. 
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One obtains an energy dispersion curve, as shown in Figure 2, formally 
similar to a double-well potential in the Standard Model (SM). However, this is 
not a plot of vacuum potential energy dependent on a scalar field. The figure 
illustrates that the minimum energy of the conducting band does not occur at 
zero lattice momentum. Additional hopping terms to term (6)  

( ) ( )3 3 4 4,n n n ng g+ − + −′′ ′′′Ψ + Ψ Ψ +Ψ  

Can tune energy dispersion to more sharp curves around minimum. Here is 
not some apriori constrain on relations between values of hoping parameter, but 
one can expect g g g g′ ′′ ′′′> > > . Similar to the concept of tunneling probability 
(instantons) between several minima, for more widely separated minima, the 
probability is lower compared to directly neighboring minima. If we consider a 
situation similar to solid-state physics, where non-orthogonal or different atom 
basis lattices are involved, we can obtain an energy band picture as depicted here 
(see Figure 3). 
 

 
Figure 3. Energy dispersion curves with minimal energy of conducting 
band in different value of lattice momentum comparing with maximum 
energy of valence band. 

 
The diagram illustrates that the minimum energy of the conducting band 

occurs at a different lattice momentum value compared to the maximum energy 
of the valence band. This phenomenon is known as an indirect gap, which 
means a particle cannot transition from the highest energy state in the valence 
band to the lowest energy state in the conduction band without changing its 
momentum, mediated by a phonon. In solid-state physics, a phonon is a 
quantum or particle of crystal lattice oscillation. In this context, entities like the 
Higgs boson or dilaton [2] could play a similar role, assuming that crystal lattice 
nodes represent chunks of spacetime with quantized volume, akin to quantum 
loop gravity. If the energy gap between the valence and conduction bands equals 
the mass/energy of the Higgs boson, the Higgs boson can propel a fermion 
particle from the valence band to the conduction Standard Model (SM) band, 
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where the kicked fermion manifests as an SM particle with an effective mass 
given by (5). Is simple to see that effective mass of particle in conducting band in 

1k = ±  is smaller comparing effective mass of hole particle in valence band in 
0k = . This give possible explaining reason why ~DM SMn n , 5DM SMm m∝ , 

5DM SMΩ = Ω . 

3. Dark Energy as Lattice Casimir Energy 

Observational data from the type Ia supernovae, cosmic microwave background, 
and baryon acoustic oscillations continue to confirm that about 68% of the energy 
density today consists of dark energy responsible for the accelerated expansion of 
the Universe [3]. 

The simplest candidate for dark energy is the so-called cosmological constant 
Λ. If the cosmological constant originates from a vacuum energy of particle 
physics, zero point energy of some scalar field, its energy scale maxk  to be Planck 
mass  

( )
max

3
2 2

30

d
2 2

k
vac

k k mρ = +
Π

∫  

Give 74 410 GeVvacρ ∝ , which is significantly larger as the dark energy density 

today 47 410 GeVDEρ −∝ . 

It is therefore necessary to find a mechanism that can explain the small value 
of Λ consistently with observations. One reason why Λ is so small could be 
related to t’Hooft’s technical naturalness of the cosmological constant. A 
parameter is considered technically natural if setting it to zero would enhance 
symmetry. In supersymmetry, when unbroken, an equal number of bosonic and 
fermionic degrees of freedom ensures that the total vacuum energy cancels out. 
However, it is well-known that supersymmetry is broken at sufficiently high 
energies, leading to a generally non-zero vacuum energy. Achieving a tiny Λ value 
in broken supersymmetry theories is possible in models involving certain classes 
of Kähler potentials in the 10-dimensional action, particularly with modulus fields 
from 6-dimensional T after compactification into the 4-dimensional space [4]. 

Another example in recent developments of string theory demonstrates the 
possibility of constructing de Sitter vacua with a small positive Λ by compactifying 
extra dimensions in the presence of fluxes, taking into account non-perturbative 
corrections. [5]. 

Closed membranes, quantized fluxes are considered in general effective 
cosmological constant schemas where large negative bare cosmological constant 
from scalar field in anti-deSitter metric is neutralized to effective tiny value with 
contributions from quantized fluxes of energy density from 4-form field  

( )2

2 4! 2
F F nqµνλσ

µνλσ =
⋅

 

where n is natural number and q is some charge. Than the effective vacuum 
constant is given as  
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2 2

1
2

J

b i i
i

n q
=

Λ = −Λ +∑  

Each of these approaches calculate the difference between sum of discrete 
values and an integral of a function of vacuum fields. Such relation is generalised 
in Abel-Plana formula and is used for Casimir energy calculation. 

Here lattice model can offer good regularization as well as Casimir energy 
environment. Casimir energy is know as zero point energy in special boundary 
condition, usually know as source of attractive force acting beetween two 
uncharged parallel plates due to change in zero point energy of the vacuum 
extending between the plates with respect to the vacuum contained in the same 
region in the absence of plates. From condition of periodicity one have lattice  

discrete parameter, number of nodes LN
a

=  where L is lenght of lattice and a 

is nodes displacement parameter, lattice spacing. Than we can define k in 

discrete values with periodic boundary condition 2 2an nk
L N

=
π π

= . Using Abel- 

Plana formula  

( ) ( ) ( ) ( ) ( )
20 0

0

0
d d

2 e t
n

f f it f it
f n f x x i t

∞ ∞ ∞

=
π

− −
− = +∑ ∫ ∫  

For Casimir effect or simple quantitative analyse for 1 + 1 dimensional lattice 
with energy dispersion relation E(k) given by term (3)  

( ) ( )2 2
0 0

dd e cos
2

a i n N
Casimir n

n n

a k kE E a E k k i a ka
π ππ= − =

π
−∑ ∑∫ ∫  

One get for lattice Casimir energy  

e
1sin

i
N

CasimirE N

N

−

≈ −
 
 
 

                     (8) 

Casimir energy graph for real part is on Figure 4.  
 

 
Figure 4. Casimir energy graph for 1 + 1 dimensional lattice for 
different numbers of lattice nodes. 

https://doi.org/10.4236/jhepgc.2024.103064


B. Majerník 
 

 

DOI: 10.4236/jhepgc.2024.103064 1052 Journal of High Energy Physics, Gravitation and Cosmology 
 

For large lattice model with many nodes (large N), the Casimir energy can 
manifest as a tiny positive value, potentially leading to a repulsive effect akin to 
dark energy. As the number of nodes (N) in the lattice universe expands, dark 
energy becomes very small but not zero, possessing intrinsic attributes tied to 
the fundamental construction of the lattice nodes themselves. 

4. Conclusions 

This article presents conceptual ideas on how a “semiconductor” scheme of 
collective excitation can describe SM and DM particles in their respective 
bands/sectors. Here, we do not investigate the nature of such lattice nodes or the 
binding forces of DM and SM. However, if this analogy with solid-state physics 
holds, similar effects as those observed in solid-state physics may be detectable. 
One well-known example from solid-state physics is excitons, which are bound 
states of holes and electrons. Such states have been observed through optical 
absorption in crystals, resembling the energy spectrum of hydrogen type with  

2
1~E
n

−  where 1,2,3,n =  . 

If collider experiments can detect energy states where energy (from collisions 
or other sources) is absorbed within such a spectrum, it could resemble 
something like a DM/SM exciton. Another analogy could be seen in the Hall 
effect in semiconductors, where under an external magnetic field, holes and 
electrons in an electric current are deflected to the appropriate side of the 
material, generating an additional voltage bias in the transverse direction against 
the electric current. In our speculative analogy, the current of DM/SM particles 
on a cosmological scale could be analogous to the large-scale peculiar velocities 
of clusters of galaxies, known as the dark flow [6], and a cosmic Hall effect 
similar to the Bullet Cluster’s deflection of DM versus SM matter. Here, the 
components of the cluster—stars, gas as luminous matter, and dark matter—behave 
differently and are spatially separated. In the case of dark energy, it has been 
demonstrated that lattice Casimir energy can function similarly to dark energy 
with a very low density. But in 3 + 1 dimensional spacetime universe all 
dimensions are continuous. Where could the source of discretization needed for 
term (8) be found? Here can help theory 1DR S×  with additional compactified 
spatial dimension 1S , where boundary periodic conditions produce the same 
effect as a lattice. Thus, our Universe could harbor a hidden fourth compactified 
dimension, acting as the source of dark energy that drives the expansion of 3D 
space. 
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