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Abstract 
This article concerns the integral related to the transverse comoving distance 
and, in turn, to the luminosity distance both in the standard non-flat and flat 
cosmology. The purpose is to determine a straightforward mathematical for-
mulation for the luminosity distance as function of the transverse comoving 
distance for all cosmology cases with a non-zero cosmological constant by 
adopting a different mindset. The applied method deals with incomplete el-
liptical integrals of the first kind associated with the polynomial roots admitted 
in the comoving distance integral according to the scientific literature. The out-
come shows that the luminosity distance can be obtained by the combination of 
an analytical solution followed by a numerical integration in order to account 
for the redshift. This solution is solely compared to the current Gaussian qua-
drature method used as basic recognized algorithm in standard cosmology. 
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1. Introduction 

Cosmology is a science that relies upon the emitted radiation of the astrophysical 
sources that we detect with our instruments. Based on that, we measure galactic 
and cosmological distances with different approaches and mindsets. Moreover, 
the main task of cosmology consists of making predictions on the description of 
the physical parameters that we analyze as well as infer statements on the cos-
mogony. In the cosmological context, analytical and numerical methods play an 
important role in making predictions, which are accordingly affected by uncer-
tainty and interpretability in order to suit the needs of scientists and various 
scientific departments. Each method presents benefits and disadvantages which 
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have to be carefully investigated.  
The luminosity distance is a tool to measure the cosmological distances and 

depends on the cosmological model considered. It provides us information 
about how the radiation faintness of distant astronomical objects appears from 
our perspective. In the case of the ΛCDM-FLRW (Lambda Cold Dark Matter 
based on the Friedmann-Lemaitre-Robertson-Walker metric) physical and ma-
thematical frame, the distance luminosity depends on the omega density para-
meters as a result of Friedmann’s approach and equations in the hypothesis of 
and isotropic and homogeneous Universe. Obviously, we are discussing a 
4-dimensional space-time geometry in accordance with the scientific literature 
of the standard model. 

1.1. Existing Methods 

An accurate method of calculation of the luminosity distance allows us to test 
the ΛCDM model and compare it with existing computational methods. Current 
cosmology adopts the Gaussian quadrature algorithms as well as Romberg’s in-
tegration to solve the comoving distance integral. The comoving distance is a 
mathematical parameter that provides us with the current position of an astro-
nomical object in our current epoch and from the terrestrial perspective. How-
ever, in the literature, we can find several articles that provide different analytical 
and numerical solutions to the problem. An analytical solution has already been 
provided in a different mathematical framework by using Legendre’s elliptic 
integral in a flat cosmology [1] followed by the same analysis for a non-flat cos-
mology [2] which has not yet been implemented in the scientific community. A 
numerical method [3] proposes the Carlson symmetric forms which characterize 
a calculation algorithm, by introducing a change of variable in the luminosity 
distance formula and by defining a specific elliptic integral as a solution. The 
method proposed reaches full convergence after iterative computations. The 
same paper proposes another resolutive method which consists of the approxi-
mation by a modified Hermite interpolation. It introduces a new mathematical 
function as well as a third-order polynomial as linear combination of so-called 
Hermite basis splines. These fitting algorithms follow similar approaches availa-
ble in the scientific literature and undertaken by other authors [4] [5]. A method 
based on the Padè approximant [6] calculates an analytical approximation of the 
luminosity distance which can also be expressed through an elliptic integral as 
previously mentioned [2]. Other more complex proceedings infer the luminosity 
distance by means of the so-called HPM (Homotopy Perturbation Method) 
simply by reversing the calculation process from solving an integral to solving a 
set of non-linear differential equations [7] [8]. On this trail, another solving me-
thod [9] uses the PSM (Parker-Sochacki Method) based on a polynomial of dif-
ferent non-linear differential equations. In a good recent resume of all methods 
[10], the authors investigate the distance modulus at various redshift ranges for 
different astronomical sources. All methods are then compared with observa-
tional data with the best fitting plot containing error levels. The context is 
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named cosmography meant as the study of the kinematic properties of the Un-
iverse, very critical against applying Taylor expansion series approaches due to 
the fact that observational data overcome the limit of the expansion series itself. 
This alters the expected convergence of the methods.  

1.2. Legendre-Jacobi’s Elliptic Integrals 

Differently from the mentioned papers, this inquiry determines the value of the 
luminosity distance for increasing redshifts z by involving a specific solution of 
an incomplete class of elliptic integral of the first kind [11] which leads to a spe-
cific solution for our space-time cosmology. Depending on the cosmological case 
under examination, this analysis considers a quartic or a cubic polynomial inside 
the luminosity distance integral made up of the roots of the cosmological para-
meters without any approximation. The roots associated with the cosmological 
parameters show real and complex numbers. One of them is normally the com-
plex conjugated of a parent one. The peculiarities of the roots allow us to identify 
a specific elliptic integral and to determine, based on its mathematics, the com-
oving distance value as function of the redshift z, and in turn the luminosity dis-
tance by means the (1 + z) factor. It is important to point out that the manage-
ment of complex numbers in cosmology, in this specific model of analysis, does 
not influence the reliability or the correctness of the method as the complex 
numbers associated with the roots of the fourth or third-grade polynomial at the 
denominator of the integral cancel out in the calculation procedure. It means 
that a pure mathematical approach translates into a well-defined physical solu-
tion. We are dealing with a Legendre-Jacobi elliptic integrals meant as a class of 
solutions derived from two different mathematical approaches: on one hand, the 
Legendre’s elliptic integrals which can be considered as mathematical functions 
associated with the analysis of elliptic curves. This class of functions involve an 
amplitude and a modulus. On the other hand, Jacobi’s elliptic functions can be 
treated as trigonometric functions adopted in the calculation of solution for dif-
ferential equations which arise from elliptic integral problems. 

1.3. Cosmological Parameters   

This undertaken method leads to an exact solution which allows to plot the dL-z 
graph for the ΛCDM-FLRW based cosmology. Indeed, the distance luminosity is 
defined by 

( )1 ,= +L tcd z d                          (1) 

which is valid only for the ΛCDM cosmological framework resulting in an ex-
panding space. tcd  is the transverse comoving distance as function of the 
comoving distance cd . Accordingly, we can calculate other important parame-
ters in cosmology such as the angular diameter distance Ad  which is defined 
by geometrical reasonings as the ratio between the transversal size of the galaxy 
D and the subtended angular size ϑ  as follows 

0
0 .

1
= = = =

+
tc

A
l dDd l

z
ϑ

ϑ ϑ
                       (2) 
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Specifically, the angular diameter distance allows us to estimate the distance of 
an astronomical object at the moment the light was emitted toward us. For this 
reason, it is smaller in value than the transverse comoving distance. The two 
terms related to the angular size cancel out and what remains is the transversal 
distance 0l  based on General Relativity which is, in turn, associated with the red-
shift z as shown in Equation (2). Furtherly, the angular size of a galaxy is another 
important parameter and topic and it can be calculated through Equation (3) as 

( )1 ,

1

= = = +

+
tcA tc

D D D zdd d
z

ϑ                     (3) 

in which we have to assume an average and reliable transversal size of the galaxy 
equal to 10kpc in order to fulfill the plot. Concerning the unity of measurement, 
in order to pass from radians to arcseconds, we have to multiply the right-hand 
side of the equation by a conversion factor as follows: 

( )206265 1 .= +
tc

D z
d

ϑ                       (4) 

We will see in the tables in the coming paragraphs how we actually convert all 
distances in Glyrs (Giga lightyears) in order to uniform the calculation and to 
minimize the representation scale on the plots. Going back to Equation (1), 
General Relativity derives the transverse comoving distance in the FLRW 
framework as solution of Friedmann equations as follows 

( )

( )

( )

,0 ,0
,0

,0

,0 ,0

,0

sinh for 0 open Universe

for 0 flat Universe

sin for 0 close Universe

  
 ⋅ Ω Ω > 

Ω  


= Ω =
   ⋅ Ω Ω <   Ω

cH
k k

Hk

tc c k

cH
k k

Hk

dd
d

d d

dd
d

      (5) 

In the three different expressions of the same physical parameter of Equation 
(5), we can find the Hubble distance (valid for z < 0.1) which has the following 
expression 

0

,=H
cd

H
                            (6) 

where H0 is the Hubble constant that we can measure in our epoch and that we 
will better introduce in the next rows. c is the speed of light in vacuum equal to 

m299792458 .
sec

=c                         (7) 

Substituting the expression of the Hubble distance of Equation (6) into Equa-
tion (5), we obtain 

( )

( )

( )

0
,0 ,0

0 ,0

,0

0
,0 ,0

0 ,0

1 sinh for 0 open Universe

for 0 flat Universe
1 sin for 0 close Universe

  ⋅ Ω Ω >  Ω  
= Ω =
   ⋅ Ω Ω <   Ω

k c k
k

tc c k

k c k

k

Hc d
H c

d d
Hc d

H c

   (8) 
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With these premises, the equation of interest from Equation (8) in the stan-
dard ΛCDM cosmology for the comoving distance is given by 

( ) ( ) ( )0 4 3 2
0 ,0 ,0 ,0 ,0

d .
1 1 1 Λ

=
Ω + +Ω + +Ω + +Ω

∫c

r m

z

k

c zd
H z z z

      (9) 

For simplicity, we regularly represent the upper integration limit and the va-
riable of the integral argument with the same variable z. It stands for the red-
shift. Recalling Equation (6), according to the most current observational data 
from the Planck telescope [12] the Hubble constant in our current epoch is 

18
0

km 167.36 2.183 10 .
sec Mpc sec

−= = ×
⋅

H               (10) 

Moreover, we can list all other relevant parameters starting from the critical 
density of the Universe in our current epoch equal to 

2
270

,0 3

3 kg8.521 10 .
8 m

−= = ×
π

c
H

G
                   (11) 

From Equation (11), the omega density parameters describing the characteris-
tic of the Universe are defined as function of the critical density in our current 
epoch, as follows 

,0 ,0
,0 ,02 2

,0 0 0

8 1 0.315.
33

8

π Ω = = = = 
 

π

 



m m

m m
c

G
H H

G

             (12) 

It is the omega density parameter expressing the matter content in the Un-
iverse where ,0m  is the matter density of the visible Universe and G is the gra-
vitational constant. We can also write 

,0 ,0 5
,0 ,02 2

,0 0 0

8 1 9.173 10 ,
33

8

−π Ω = = = = × 
 

π

 



r r

r r
c

G
H H

G

           (13) 

which is the omega density parameter associated with the radiation where ,0r  
is the radiation density of the visible Universe, whereas 

2 2

,0 2 2
0 0 0

0.0007 0.0019,Ω = − = − = ±k
kc kc

R H H
              (14) 

is the omega density parameter associated with the curvature of the 4-D space-
time geometry conceived in the FLRW metric where k is the curvature and R0 is 
the scale factor in our epoch (which has a unitary value for rescaling reasonings). 
Last but not least, we can write 

,0 ,0
,0 ,02 2

,0 0 0

2 2

2 2
0 0

8 1
33

8
8 1 1 0.685.

3 8 3

Λ Λ
Λ Λ

π Ω = = =  
 

π
   π Λ Λ

= = =   π   

 


c

G
H H

G
G c c

G H H

            (15) 

The latter is the omega density parameter associated with Einstein’s cosmo-
logical constant which characterizes the dark energy driving the expansion of 
space. Once listed all these parameters, we can infer, inverting the expression 
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that cosmologists measured with their methods, respectively, the following set of 
parameters 

27
,0 3

kg2.686 10 ,
m

−= ×m                     (16) 

31
,0 3

kg7.816 10 ,
m

−= ×r                     (17) 

56
2

13.711 10 ,
m

−= − ×k                     (18) 

27
,0 3

kg5.837 10 ,
m

−
Λ = ×                     (19) 

52
2

11.089 10 ,
m

−Λ = ×                     (20) 

where we conceptually consider ,0r  and ,0Λ  equivalent expression forms in 
order to standardize the units of measurement. Moreover, for definition, the 
following cosmological relation has to be verified 

,0 ,0 ,0 ,0 ,
1

4

0 1.Λ
=

Ω = Ω +Ω +Ω +Ω =∑ j r m k
j

             (21) 

Substituting Equation (9) in the set of Equation (8), it yields 

( ) ( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )

0
,0 ,00 4 3 2

0 0,0 ,0 ,0 ,0 ,0

,00 4 3
0 ,0 ,0 ,0

0
,0

4 3 20 0,0 ,0 ,0 ,0 ,0

1 dsinh for 0 open Universe
1 1 1

d for 0 flat Universe
1 1

1 dsin
1 1 1

Λ

Λ

Λ

 
 ⋅ Ω Ω >
 Ω Ω + +Ω + +Ω + +Ω 

Ω =
= Ω + +Ω + +Ω

⋅ Ω
Ω Ω + +Ω + +Ω + +Ω

∫

∫

z
k k

k r m k

z
k

tc
r m

k

k r m k

Hc c z
H c H z z z

c z
d H z z

Hc c z
H c H z z z

( ),00
for 0 close Universe









  
   Ω <  
    

∫
z

k

 (22) 

After that some terms associated with the Hubble distance cancel out, we ob-
tain 

( ) ( ) ( )
( )

( ) ( )
( )

( ) ( ) ( )

,0 ,00 4 3 2
0 ,0 ,0 ,0 ,0 ,0

,00 4 3
0 ,0 ,0 ,0

,0 0 4 3 20 ,0 ,0 ,0 ,0 ,0

1 dsinh for 0 open Universe
1 1 1

d for 0 flat Universe
1 1

1 dsin
1 1 1

Λ

Λ

Λ

 
 ⋅ Ω Ω >
 Ω Ω + +Ω + +Ω + +Ω 

Ω =
= Ω + +Ω + +Ω

 
 ⋅ Ω 

Ω  Ω + +Ω + +Ω + +Ω 

∫

∫

∫

z
k k

k r m k

z
k

tc
r m

z
k

k r m k

c z
H z z z

c z
d H z z

c z
H z z z

( ),0for 0 close Universe












Ω <
 

k

 (23) 

It is the set of mathematical expressions for the transverse comoving distance 
for each cosmological scenario of our interest. We will focus on each of them 
during the different case analyses. 

2. Calculations 
2.1. Open Non-Flat Cosmology r ,0Ω , m ,0Ω , k ,0Ω , ,0ΛΩ  

In our first case under examination and based on Planck observations, ,0 0Ω >k  
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which corresponds to a slight open Universe in Equation (23), where we extract 
the first equation of interest for the transverse comoving distance 

( ) ( ) ( )
,0 0 4 3 2

0 ,0 ,0 ,0 ,0 ,0

1 dsinh .
1 1 1 Λ

 
 = ⋅ Ω
 Ω Ω + +Ω + +Ω + +Ω 

∫
z

tc k
k r m k

c zd
H z z z

 (24) 

Alternatively, in order to simplify its mathematical expression, we can write 
that 

,0
0 ,0

1 sinh , = ⋅ Ω ⋅ Ω
tc k tc

k

cd I
H

                 (25) 

where we introduced the main integral of the transverse comoving distance tcI , 
which we know was previously part of the comoving distance, given by 

( ) ( ) ( )0 4 3 2
,0 ,0 ,0 ,0

d .
1 1 1 Λ

=
Ω + +Ω + +Ω + +Ω

∫
z

tc

r m k

zI
z z z

        (26) 

As noticed, we do not neglect the contribution given by the omega density of 
radiation and by the curvature term, both commonly ignored in modern com-
putational methods due to their small values. This topic will actually define the 
next approach in the next paragraph when we discuss the other cosmological case. 
Focusing on our current study case, therefore, by developing the binomials with 
different powers in the square root at the denominator, Equation (26) results in 

( ) ( ) ( )0 4 3 2 3 2 2
,0 ,0 ,0 ,0

d ,
4 6 4 1 3 3 1 2 1 Λ

=
Ω + + + + +Ω + + + +Ω + + +Ω

∫
z

tc

r m k

zI
z z z z z z z z z

 (27) 

0 4 3 2 3 2 2
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0

d
4 6 4 3 3 2 Λ

=
Ω + Ω + Ω + Ω +Ω +Ω + Ω + Ω +Ω +Ω + Ω +Ω +Ω

∫
z

tc

r r r r r m m m m k k k

zI
z z z z z z z z z

 (28) 

( ) ( ) ( )0 4 3 2
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0

d

4 6 3 4 3 2 Λ

=
Ω + Ω +Ω + Ω + Ω +Ω + Ω + Ω + Ω +Ω +Ω +Ω +Ω

∫
z

tc

r r m r m k r m k r m k

zI
z z z z

(29) 

Moreover, due to Equation (21), the denominator of Equation (29) changes 
into 

( ) ( ) ( )0 4 3 2
,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0

d .
4 6 3 4 3 2 1

=
Ω + Ω +Ω + Ω + Ω +Ω + Ω + Ω + Ω +

∫
z

tc

r r m r m k r m k

zI
z z z z

 (30) 

Inserting the values of the omega density parameters of Equations (12), (13), 
(14) and (15), it yields 

( ) ( ) ( )0 5 4 5 3 5 2 5

d

9.173 10 4 9.173 10 0.315 6 9.173 10 3 0.315 0.0007 4 9.173 10 3 0.315 2 0.0007 1− − − −
=

× × + × × + + × × + × + + × × + × + × +
∫

z
tc

zI
z z z z

 (31) 

or rather 

0 5 4 3 2

d .
9.173 10 0.315 0.946 0.947 1−

=
× + + + +

∫
z

tc
zI

z z z z
        (32) 

We can identify a quartic polynomial in the square root which admits the fol-
lowing roots (determined by different very reliable computational tools available 
online such as Wolfram Mathematica) 
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1

2

3

4 3

2.297
3430.986
0.353 1.121

0.353 1.121

= −
 = −
 = − −
 = = − +

r
r
r i
r r i

                    (33) 

where i is the imaginary number and 3r  is the complex conjugated of 4r . 
Therefore, the main integral of Equation (32) takes now the form 

( )( )( )( )0
1 2 3 3

d .=
− − − −

∫
z

tc
zI

z r z r z r z r
               (34) 

The order of the roots in the parenthesis is not casual but follows the rules of 
the incomplete elliptic integral of the first order containing two complex roots 
and one of them complex conjugated [11], integral 260.00, in which 

2 1 .< < < ∞r r z                         (35) 

Thus, the integral of Equation (34) containing the roots of Equation (33) can 
be written as 

( ) ( ) ( ) ( )0

d .
2.297 3430.986 0.353 1.121 0.353 1.121

=
− − − − − − − − − +              

∫
z

tc
zI

z z z i z i
 (36) 

We refer to that specific integral found in the scientific literature for which the 
solution is provided by the following expression 

( ) [ ]* * 0,
, ,= ×tc z

I g F kϕ                     (37) 

where *g  is a constant associated with further coefficients as function of the 
polynomial roots whereas the incomplete elliptic integral of the first kind in the 
interval [ ]0, z  is 

( ) [ ] ( ) [ ] ( ) [ ]1 1
* * *0, , ,0

, , , ,= −
z r z r

F k F k F kϕ ϕ ϕ             (38) 

and it assumes exactly this kind of expression as the main solution of the elliptic 
integral in the literature considers only the following integral limits [ ]1,r z . 
However, our integral extremes lay in-between values. For this reason, we have 
to subtract the integral contribution in the interval [ ]1,0r . Accordingly, Equa-
tion (37) becomes 

( ) [ ] ( ) [ ]1 1
* * *, ,0

, , . = −  tc r z r
I g F k F kϕ ϕ                 (39) 

We have to calculate the solution in our desired interval by knowing that 

*
1 ,=g
AB

                          (40) 

in which the coefficients A and B are computed as follows 

( )22
3 33 3

1 ,
2 4

r rr r
A r

 −+   = − −      
                  (41) 

( )( )22 0.353 1.121 0.353 1.1210.353 1.121 0.353 1.1212.297
2 4

i ii iA
 − − − − +− − − +   = − − −      

 (42) 

https://doi.org/10.4236/jhepgc.2024.103057


A. Trinchera 
 

 

DOI: 10.4236/jhepgc.2024.103057 938 Journal of High Energy Physics, Gravitation and Cosmology 
 

which leads to 
2.244,=A                            (43) 

and 

( )22
3 33 3

2 ,
2 4

r rr r
B r

 −+   = − −      
                 (44) 

( )( )22 0.353 1.121 0.353 1.1210.353 1.121 0.353 1.1213430.986
2 4

i ii iB
 − − − − +− − − +   = − − −      

 (45) 

which is ultimately  

3430.634.=B                            (46) 

Therefore, Equation 40 becomes 

*
1 0.017.

2.244 3430.634
= =

×
g                    (47) 

The general formulation of the incomplete elliptical integral of the first order, 
underlining the upper limit upl , is 

( ) ,1

1
* , 0 2 2

*

d, ,
1 sin

 
 

  
=

−
∫ r lup

upr l
F k

k

ϕ θϕ
θ

                 (48) 

where the Jacobi’s amplitude is given by 

( )
( )1

1 2
,

1 2

arccos ,  

 − + −
=  

+ − −  
up

up
r l

up

A B l r B r A
A B l r B r A

ϕ                (49) 

whereas the elliptic modulus is 

( ) ( )2 2
1 2

* .
4

+ − −
=

A B r r
k

AB
                    (50) 

We can start from the calculation of the latter, as *k  has the same value for 
both intervals in the elliptic integrals  ( ) [ ]1

* ,
,

r z
F kϕ  and ( ) [ ]1

* ,0
,

r
F kϕ . There-

fore, 

( ) ( ) 22

*

2.244 3430.634 2.297 3430.986
0.966.

4 2.244 3430.634
+ − − − −  = =

× ×
k       (51) 

It is a valid result as a condition to verify is 

*1 1.− < <k                            (52) 

Based on the logic that we previously discussed in Equation (38), we can start  
from ( ) [ ]1

* ,
,

r z
F kϕ  so that =upl z . Based on the scientific literature, we have to 

first evaluate 

[ ]
( )
( )1

1 2
,

1 2

arccos ,
 − + −

=  + − − 
r z

A B z r B r A
A B z r B r A

ϕ                  (53) 

[ ]
( ) ( ) ( )
( ) ( ) ( )1,

2.244 3430.634 2.297 3430.634 3430.986 2.244
arccos ,

2.244 3430.634 2.297 3430.634 3430.986 2.244
 − + − × − − ×

=  + − − × − − × 
r z

z
z

ϕ  (54) 
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which eventually leads to 

[ ]1,

3428.39 185.123arccos .
3432.878 15583.387
− − =  + r z

z
z

ϕ              (55) 

This expression is exactly responsible for the request of a numerical method as 
integration of the analytical one. Therefore, the first incomplete elliptic integral 
of the first order of Equation (48) in the interval [ ]1,r z  is given by 

( ) [ ]
[ ],1

1
* , 0 2 2

*

d, ,
1 sin

=
−

∫ r z

r z
F k

k

ϕ θϕ
θ

                 (56) 

( ) [ ]1

3428.39 185.123arccos
3432.878 15583.387

* , 0 2 2

d, ,
1 0.966 sin

− − 
 + =

−
∫

z
z

r z
F k θϕ

θ
         (57) 

( ) [ ]1

3428.39 185.123arccos
3432.878 15583.387

* , 0 2

d, .
1 0.933sin

− − 
 + =

−
∫

z
z

r z
F k θϕ

θ
         (58) 

Moreover, considering the remaining incomplete elliptic integral ( ) [ ]1
* ,0

,
r

F kϕ  
with 0=upl , it yields 

[ ]
( )
( )1

1 2
,0

1 2

0
arccos ,

0
 − + −

=  + − − 
r

A B r B r A
A B r B r A

ϕ                (59) 

[ ]
( ) ( )
( ) ( )1,0

2.297 3430.634 3430.986 2.244
arccos 1.583 rad.

2.297 3430.634 3430.986 2.244
 − × − − ×

= = − − × − − × 
rϕ  (60) 

Therefore, the second incomplete elliptic integral of the first order of Equa-
tion (48) in the interval [ ]1,0r  is provided by 

( ) [ ]
[ ],01

1
* ,0 0 2 2

*

d, ,
1 sin

=
−

∫ r

r
F k

k

ϕ θϕ
θ

                (61) 

( ) [ ]1

1.583
* ,0 0 2 2

d, 2.8151.
1 0.966 sin

= =
−

∫r
F k θϕ

θ
           (62) 

If we step back to the expression main integral of the transverse comoving 
distance of Equation (25), in order to determine the value of the incomplete el-
liptic integral of the first order in the interval [ ]0, z  in Equation (39), we can 
write that 

3428.39 185.123arccos
3432.878 15583.387

0 2

d0.017 2.8151 .
1 0.933sin

− − 
 + 

  
= × −   −   

∫
z

z
tcI θ

θ
    (63) 

Therefore, Equation (25) expressed in meters, eventually becomes 

3428.39 185.123arccos
3432.878 15583.387

18 0 2

299792458 1 dsinh 0.0007 0.017 2.8151 ,
2.183 10 0.0007 1 0.933sin

− − 
 + 

−

    = × × × −    × −     
∫

z
z

tcd θ

θ
 (64) 

3428.39 185.123arccos27 4 3432.878 15583.387
0 2

d5.19 10 sinh 4.497 10 2.8151 .
1 0.933sin

− − 
 − + 

    = × × × × −    −     
∫

z
z

tcd θ

θ
 (65) 

In order to evaluate the transverse comoving distance, we have to consider 
numerically different values of z in order to determine the integral. 
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2.2. Open Non-Flat Cosmology m ,0Ω , k ,0Ω , ,0ΛΩ  

Compared to the previous case, we consider in this scenario the following 
assumption 

,0 0,Ω ≅r                           (66) 

which is justified by the small observational value and it is basically the main 
hypothesis made by Carroll [13]. Similarly, ,0 0Ω >k  which corresponds to a 
slight open Universe. Basically, we are now dealing with one omega density pa-
rameter less but we are similarly involving the same mathematics and physics of 
an open Universe. Based on that, due to Equation (25) the integral of Equation 
(26) becomes 

( ) ( )0 3 2
,0 ,0 ,0

d .
1 1 Λ

=
Ω + +Ω + +Ω

∫
z

tc

m k

zI
z z

            (67) 

As in this case Equation (21) has one parameter less, it yields 
3

,0 ,0 ,0 ,0
1

1,Λ
=

Ω = Ω +Ω +Ω =∑ j m k
j

                 (68) 

from which we can write that 

,0 ,0 ,01 .ΛΩ = −Ω −Ωk m                      (69) 

According to some in-between algebraic steps, we can exactly reach Carroll’s 
formula [13] as follows 

( ) ( )( )0 3 2
,0 ,0 ,0 ,0

d ,
1 1 1Λ Λ

=
Ω + + −Ω −Ω + +Ω

∫
z

tc

m m

zI
z z

       (70) 

( ) ( ) ( ) ( )
0 3 2 2

,0 ,0 ,0

d ,
1 1 1 1 1Λ

=
 Ω + + + −Ω −Ω + − 

∫
z

tc

m m

zI
z z z

     (71) 

( ) ( ) ( )0 2
,0 ,0

d .
1 1 2 Λ

=
+ +Ω − + Ω

∫
z

tc

m

zI
z z z z

            (72) 

However, our aim is to continue with the algebraic steps in Equation (72) as 
we want to obtain a polynomial in the variable z with a certain grade in order to 
be able to discuss the corresponding incomplete elliptic integral. Therefore, 
substituting the values for ,0Ωm  and ,0ΛΩ , respectively of Equation (12) and 
Equation (15), in Equation (72), it yields 

( )( ) ( )0 2

d ,
2 1 1 0.315 2 0.685

=
+ + + − +

∫
z

tc
zI

z z z z z
        (73) 

which leads to 

0 3 2

d .
0.315 0.945 0.945 1

=
+ + +

∫
z

tc
zI

z z z
            (74) 

This time, we recognize a cubic polynomial in the square root at the denomi-
nator which admits the following roots 
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1

2

3 2

2.295
0.352 1.122

0.352 1.122

= −
 = − −
 = = − +

r
r i
r r i

                    (75) 

where i is the imaginary number and 2r  is the complex conjugated of 2r . 
Therefore, the integral of Equation (74) takes now the form 

( )( )( )0
1 2 2

d ,=
− − −

∫
z

tc
zI

z r z r z r
                (76) 

( ) ( ) ( )0

d ,
2.295 0.352 1.122 0.352 1.122

=
− − − − − − − +          

∫
z

tc
zI

z z i z i
 (77) 

which leads eventually to 

( ) ( ){ }0 2

d .
2.295 0.352 1.259

=
− − − − +      

∫
z

tc
zI

z z
          (78) 

Therefore, the expression of the transverse comoving distance of Equation 
(25) is now 

( ) ( ){ }
,0 0 20 ,0

1 dsinh .
2.295 ( 0.352 1.259

 
 

= × Ω 
Ω  − − − − +        

∫
z

tc k
k

c zd
H z z

 (79) 

Through Equation (78), we obtained exactly the formulation of the incom-
plete elliptic integral of the first kind [11], this time corresponding in the litera-
ture to integral 239.00, where we can infer, according to the integral terminolo-
gy, that its coefficients, which will be used for the calculation of the parameters, 
are the following 

1 0.352,= −b                           (80) 

and 
2
1 1.259.=a                           (81) 

The integral admits the same type of solution of Equation (39) with the same 
reasoning concerning the interval calculations. However, due to the new incom-
plete elliptic integral of the first kind under examination, we have to calculate 
the solution in our desired interval by knowing that this time 

*
1 ,=g
A

                            (82) 

in which the coefficient A can be computed according to the literature as follows 

[ ]2 2
1 1 1 ,= − +A b r a                         (83) 

which leads to 

( ) 2
0.352 2.295 1.259 2.244.= − − − + =  A               (84) 

From this result, which is the same calculated in the non-flat cosmology case, 
we can calculate in Equation (82) that 

https://doi.org/10.4236/jhepgc.2024.103057


A. Trinchera 
 

 

DOI: 10.4236/jhepgc.2024.103057 942 Journal of High Energy Physics, Gravitation and Cosmology 
 

*
1 0.667.

2.244
= =g                        (85) 

The incomplete elliptical integral of the first order, underlining the upper lim-
it upl , is given by Equation (48) where we know identify different intrinsic pa-
rameters of the integral such as the Jacobis amplitude given by 

1

1
,

1

arccos ,  

 + −
=  

− +  
up

up
r l

up

A r l
A r l

ϕ                    (86) 

whereas the elliptic modulus is 

1 1
* .

2
+ −

=
A b rk

A
                        (87) 

As previously done, we can start from the calculation of the latter, as *k  has 

the same value for both intervals in the elliptic integrals ( ) [ ]1
* ,

,
r z

F kϕ  and 

( ) [ ]1
* ,0

,
r

F kϕ . Therefore, 

( )
*

2.244 0.352 2.295
0.966.

2 2.244
− − −

= =
×

k               (88) 

Despite we are dealing with different coefficients, also in this case we calculated 
the same elliptic modulus which verifies the condition Equation (52). Based on  
the logic that we previously discussed, we can start from ( ) [ ]1

* ,
,

r z
F kϕ  in Equa-

tion (86) so that =upl z . It yields 

[ ]1

1
,

1

arccos ,
 + −

=  − + 
r z

A r z
A r z

ϕ                     (89) 

[ ] ( )1,

2.244 2.295arccos ,
2.244 2.295
 − −

=  
− − + 

r z

z
z

ϕ                (90) 

[ ]1,

0.051arccos .
4.539
− − =  + r z

z
z

ϕ                    (91) 

Due to Equation (91), the first incomplete elliptic integral of the first kind in 
the interval [ ]1,r z  of Equation (56) is given by 

( ) [ ]1

0.051arccos
4.539

* , 0 2

d, .
1 0.933sin

− − 
 + =

−
∫

z
z

r z
F k θϕ

θ
            (92) 

Additionally, considering the remaining incomplete elliptic integral  

( ) [ ]1
* ,0

,
r

F kϕ  from Equation (86) with 0=upl . It yields 

[ ]1

1
,0

1

0arccos .
0

 + −
=  − + 

r

A r
A r

ϕ                     (93) 

It leads to 

[ ] ( )1,0

2.244 2.295arccos 1.582 rad.
2.244 2.295
 −

= = − − 
rϕ             (94) 

Therefore, the second incomplete elliptic integral of the first order in the in-
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terval [ ]1,0r  of Equation (61) is provided by 

( ) [ ]1

1.582
* ,0 0 2

d, 2.811.
1 0.933sin

= =
−

∫r
F k θϕ

θ
            (95) 

In order to determine the value of the incomplete elliptic integral of the first 
order in the interval [ ]0, z , we can write that Equation (39) becomes 

0.051arccos
4.539

0 2

d0.667 2.811 .
1 0.933sin

− − 
 + 

  
= × −   −   

∫
z
z

tcI θ

θ
       (96) 

If we step back to Equation (25), the expression main integral of the transverse 
comoving distance in meters becomes now 

0.051arccos
4.539

18 0 2

299792458 1 dsinh 0.0007 0.667 2.811 ,
2.183 10 0.0007 1 0.933sin

− − 
 + 

−

    = × × × −    × −     
∫

z
z

tcd θ

θ
 (97) 

0.051arccos27 4.539
0 2

d5.19 10 sinh 0.017 2.811 .
1 0.933sin

− − 
 + 

    = × × × −    −     
∫

z
z

tcd θ

θ
 (98) 

Also in this case, it is necessary to add a numerical analysis to the analytical 
one, in order to evaluate the transverse comoving distance at each redshift. 

2.3. Closed Non-Flat Cosmology r ,0Ω , m ,0Ω , k ,0Ω , ,0ΛΩ  

A closed Universe implies ,0 0Ω <k  which can be obtained, for instance, 
subtracting the negative tolerance values from the omega curvature parameter in 
Equation (14) as follows 

,0 0.0007 0.0019 0.0012.Ω = − = −k                   (99) 

In this cosmological case, we extract the third equation from the set of Equa-
tion (23) 

,0
0 ,0

1 sin , = × Ω ×  Ω
tc k tc

k

cd I
H

                (100) 

We are dealing with four omega density parameters which will surely ensure a 
quartic polynomial in the expression at the denominator of the integral of Equa-
tion (26). Accordingly, substituting the new obtained value of Equation (99) into 
previous Equation (26), it yields 

( ) ( ) ( )0 5 4 5 3 5 2 5

d

9.173 10 4 9.173 10 0.315 6 9.173 10 3 0.315 0.0012 4 9.173 10 3 0.315 2 0.0012 1

z
tc

zI
z z z z− − − −

=
× × + × × + + × × + × − + × × + × − × +

∫ (101) 

or rather 

0 5 4 3 2

d .
9.173 10 0.315 0.944 0.943 1−

=
× + + + +

∫
z

tc
zI

z z z z
        (102) 

The quartic polynomial in the square root admits the following roots 

1

2

3

4 3

2.297
3430.99
0.351 1.122

0.351 1.122

= −
 = −
 = − −
 = = − +

r
r
r i
r r i

                     (103) 

where i is the imaginary number and 3r  is the complex conjugated of 4r . 
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Therefore, the main integral takes the same form of Equation (34). Moreover, we 
recognize once again the integral 260.00 [11], where the condition of Equation 
(35) is also verified. Thus, we can explicit the main integral tcI  of Equation (34) 
as 

( ) ( ) ( ) ( )0

d .
2.297 3430.99 0.351 1.122 0.351 1.122

=
− − − − − − − − − +              

∫
z

tc
zI

z z z i z i
 (104) 

The procedure is identical to the procedure undergone in a non-flat open Un-
iverse. However, the values in outcome are not identical. The solution of the 
main integral is given by Equation (37) in which the incomplete elliptic integral 
of the first kind in the interval [ ]0, z  is provided by Equation (38). The con-
stant *g  is calculated according to Equation (40). Its coefficients A and B have 
the same mathematical expressions, respectively, coming from Equation (41) 
and Equation (44). Going into detail with their calculation, we obtain that 

( )( )22 0.351 1.122 0.351 1.1220.351 1.122 0.351 1.1222.297
2 4

i ii iA
 − − − − +− − − +   = − − −      

 (105) 

which leads to 
2.246,=A                          (106) 

as well as 

( )( )22 0.351 1.122 0.351 1.1220.351 1.122 0.351 1.1223430.99
2 4

i ii iB
 − − − − +− − − +   = − − −      

 (107) 

which ends up with 
3430.639.=B                        (108) 

Therefore, from Equation (40), we can calculate that 

*
1 0.0114.

2.246 3430.639
= =

×
g                 (109) 

The incomplete elliptical integral of the first order, underlining the upper lim-
it upl , has been already introduced in Equation (48) as well as the Jacobis am-
plitude in Equation (49) and the elliptic modulus in Equation (50). From the 
latter, we can calculate that 

( ) ( ) 22

*

2.246 3430.639 2.297 3430.99
0.966.

4 2.246 3430.639
+ − − − −  = =

× ×
k      (110) 

It verifies the condition of Equation (52) and starting with the same calcula-
tion logic, from the interval [ ]1,r z , we can write from Equation (53) that 

[ ]
( ) ( ) ( )
( ) ( ) ( )1,

2.246 3430.639 2.297 3430.639 3430.99 2.246
arccos

2.246 3430.639 2.297 3430.639 3430.99 2.246
 − + − × − − ×

=  + − − × − − × 
r z

z
z

ϕ  (111) 

which leads to 

[ ]1,

3428.393 174.174arccos .
3432.885 15586.18
− − =  + r z

z
z

ϕ              (112) 

Due to this, the first incomplete elliptic integral of the first order in the inter-
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val [ ]1,r z  given by Equation (56), can be calculated as 

( ) [ ]1

3428.393 174.174arccos
3432.885 15586.18

* , 0 2

d, .
1 0.933sin

− − 
 + =

−
∫

z
z

r z
F k θϕ

θ
        (113) 

Moreover, considering the remaining incomplete elliptic integral 

( ) [ ]1
* ,0

,
r

F kϕ  with 0=upl  in Equation (59), it yields 

[ ]
( ) ( )
( ) ( )1,0

2.297 3430.639 3430.99 2.246
arccos 1.582 rad

2.297 3430.639 3430.99 2.246
 − × − − ×

= = − − × − − × 
rϕ  (114) 

Therefore, the second incomplete elliptic integral of the first order in the in-
terval [ ]1,0r  in Equation (61) is provided by 

( ) [ ]1

1.582
* ,0 0 2

d, 2.811.
1 0.933sin

= =
−

∫r
F k θϕ

θ
           (115) 

If we step back to the expression of the main integral of the transverse com-
oving distance of Equation (37), in order to determine the value of the incom-
plete elliptic integral of the first order in the interval [ ]0, z , we can write that 

3428.393 174.174arccos
3432.885 15586.18

0 2

d0.0114 2.811 .
1 0.933sin

− − 
 + 

  
= × −   −   

∫
z

z
tcI θ

θ
   (116) 

Therefore, Equation (100), expressed in meters, becomes 

3428.393 174.174arccos
3432.885 15586.18

18 0 2

299792458 1 dsin 0.0012 0.0114 2.811 ,
2.183 10 0.0012 1 0.933sin

− − 
 + 

−

    = × − × × −    × − −     
∫

z
z

tcd θ

θ
 (117) 

3428.393 174.174arccos27 4 3432.885 15586.18
0 2

d3.96 10 sin 3.95 10 2.811 .
1 0.933sin

− − 
 − + 

    = × × × × −    −     
∫

z
z

tcd θ

θ
 (118) 

A numerical analysis is essential to complete the analytical calculation for the 
transverse comoving distance. 

2.4. Flat Cosmology m ,0Ω , ,0ΛΩ  

In this special study case, which is very common in the scientific literature, the 
comoving distance coincides with the transverse comoving distance in the 
second equation of the set Equation (23). Due to that, 

( ) ( ) ( )0 4 3 2
0 ,0 ,0 ,0 ,0

d .
1 1 1 Λ

≡ =
Ω + +Ω + +Ω + +Ω

∫
z

tc c

r m k

c zd d
H z z z

   (119) 

However, precisely because we are dealing with a flat cosmology, we can neg-
lect the following omega density parameters 

,0 ,0 0,Ω =Ω ≅k r                        (120) 

and therefore, Equation (9) assumes the following expression 

( )0 3
0 ,0 ,0

d .
1 Λ

=
Ω + +Ω

∫
z

tc

m

c zd
H z

                (121) 

Due to this, the previous relation of Equation (21) shows only the sum of two 
single contributions 
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2

,0 ,0 ,0
1

1,Λ
=

Ω = Ω +Ω =∑ j m
j

                   (122) 

from which, we can write that 

,0 ,01 .ΛΩ = −Ωm                        (123) 

Thus, we can express the argument of the square root at the denominator as 
function only of the omega matter density parameter. Equation (121) reduces to 

( )0 3
0 ,0 ,0

d ,
1 1

=
Ω + + −Ω

∫
z

tc

m m

c zd
H z

              (124) 

( )
0 3

0
,0

d ,
1 1 1

=
 Ω + − + 

∫
z

tc

m

c zd
H z

               (125) 

0 3 2
0 ,0

d .
3 3 1

=
 Ω + + + 

∫
z

tc

m

c zd
H z z z

              (126) 

It is only function of the omega density parameter for matter, which has the 
value of Equation (12), leading to 

0 3 2
0

d .
0.315 0.945 0.945 1

=
+ + +

∫
z

tc
c zd

H z z z
           (127) 

We recognize exactly Equation (74) in a non-flat open cosmology. Because of 
that, we can copy all the coefficients calculated in the previous cosmological 
case. We consider valid the results of Equation (85) for ∗g , Equation (84) for A, 
Equation (88) for ∗k  and Equation (96) for the main integral tcI . However, the 
final result provided by the transverse comoving distance is different from a 
non-flat open cosmology as there is no more the operator sinh in the formula-
tion. Therefore, Equation (127), expressed in meters, becomes 

0.051arccos
4.539

18 0 2

299792458 d0.667 2.8112 ,
2.183 10 1 0.933sin

− − 
 + 

−

   = × −  × −   
∫

z
z

tcd θ

θ
 (128) 

or rather 

0.051arccos25 4.539
0 2

d9.16 10 2.8112 .
1 0.933sin

− − 
 + 

   = × × −  
−   

∫
z
z

tcd θ

θ
    (129) 

Also in this cosmological case, in order to evaluate the first incomplete elliptic 
integral of the first order in the parenthesis, we have to consider numerically 
different values of z in order to determine the integral. Doing this, we can calcu-
late the transverse comoving distance at each redshift and, in turn, the luminos-
ity distance. The plot of the transverse comoving distance and the luminosity 
distance will be shown in the next chapter. 

3. Graphs and Calculation Sheets 

In the following graphs, we will plot the predictions of the most important 
cosmological factors (transverse comoving distance, luminosity distance, angular 
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diameter distance and angular size) in the ΛCDM-FLRW model according to the 
Gaussian quadrature numerical method (GAUSS-Q, blue curve) compared to a 
solution based on Legendre-Jacobi’s incomplete elliptic integral from Byrd- 
Friedman’s handbook (int. 260.00) of the first kind in an open non-flat cosmology 
with all omega parameters (IEI-1K, brown curve), in an open non-flat cosmology 
with the radiation contribution negligible (IEI-1K, green curve) (int. 239.00), in 
a closed non-flat cosmology (IEI-1K, violet curve) (int. 260.00) and in a flat 
cosmology (IEI-1K, orange curve) (int. 239.00). As previously discussed, the 
reference integral for implementing the method depends on the number of roots 
that the polynomial admits. In turn, it depends on the assumptions made 
concerning the omega density parameters in the equations. For simplicity, we 
denote with the abbreviation IEI-1K the incomplete elliptic integral of the first 
kind as well as the abbreviation GAUSS-Q for the numerical computational 
method named Gaussian quadrature, not covered in this analysis, but largely 
used in cosmology for the calculation of the transverse comoving distance. 

3.1. Transverse Comoving Distance 

Starting exactly from the transverse comoving distance, in order to evaluate the 
first incomplete elliptic integral of the first order in the parenthesis, we have to 
consider numerically different values of z in order to determine the integral. In 
this way, we can calculate a specific distance at each redshift and, in turn, also 
the luminosity distance. The plot of the transverse comoving distance is shown 
in Figure 1. 
 

 
Figure 1. Predictions of the transverse comoving distance. 

 
As two curves overlap in the down part of the plot for small values of distance, 
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we can focus on them by reducing the distance scale in the y axis, as shown in 
Figure 2. 

 

 
Figure 2. Predictions of the transverse comoving distance. It is the plot of Figure 1 with a 
smaller scale in order to highlight the two curves at the bottom previously overlapping. 

3.2. Luminosity Distance 

Once calculated the transverse comoving distance at each redshift, the luminosi-
ty distance of Equation (1) is represented by the plot in Figure 3. 
 

 
Figure 3. Predictions of the luminosity distance. 
 

Also in this case, two curves overlap and a reduction of the distance scale on 
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the y axis is require in order to distinguish their values. The related plot is shown 
in Figure 4. 

 

 
Figure 4. Predictions of the luminosity distance. It is the plot of Figure 3 with a smaller scale 
in order to highlight the two curves at the bottom previously overlapping. 

3.3. Angular Diameter Distance 

The angular diameter distance of Equation (2) is shown in Figure 5. 
 

 
Figure 5. Predictions of the angular diameter distance. 

 
Similar to previous reasoning, we reduce the distance scale and we obtain 

Figure 6. 
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Figure 6. Predictions of the angular diameter distance. It is the plot of Figure 5 with a smaller 
scale in order to highlight the two curves at the bottom previously overlapping. 

3.4. Angular Size 

The plot of the angular size associated with Equation (3) is shown in Figure 7. It 
decreases down to a minimum for than increasing again and it is one of the most 
important characteristics of standard cosmology. 
 

 
Figure 7. Predictions of the angular size for an average-size galaxy (10 kpc).  

 
In this specific case, even three curves overlap for small stances. Once reduced 

the scale, as shown in Figure 8, we can clearly underline the difference between 
these three curves. 
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Figure 8. Predictions of the angular size for an average-size galaxy (10kpc). It is the plot 
of Figure 7 with a smaller scale in order to highlight three curves at the bottom previous-
ly overlapping. 
 

All calculations for the plots are resumed in the following Tables 1-4. Each ta-
ble represents a specific cosmological scenario analyzed in the previous chapters. 
 

Table 1. Computational methods applied to a non-flat (open) Universe. Gaussian quadrature vs incomplete elliptic integral of the 
first kind (int. 260.00) due to the quartic polynomial which admits four roots. 

NON-FLAT 
(OPEN) 

GAUSSIAN QUADRATURE 
INCOMPLETE ELLIPTIC INTEGRAL OF THE 

FIRST KIND 

Ωr, Ωm, Ωk, ΩΛ [Mpc] [Gyrs] [Gyrs] [Gyrs] [arcsec] [rad] [m] [m] [Gyrs] [Gyrs] [Gyrs] [arcsec] 

z dtc dtc dL dA θ arccos( ) F[r1,z] dtc dtc dL dA θ 

0 0 0 0 0 div 1.583 2.815 0 0 0 0 div 

1 3402.490 11.105 22.210 5.553 1.212 1.762 3.455 1.494E+24 0.158 0.316 0.079 85.179 

2 5313.890 17.343 52.030 5.781 1.164 1.890 3.816 2.336E+24 0.247 0.741 0.082 81.728 

3 6508.430 21.242 84.969 5.311 1.267 1.987 4.040 2.859E+24 0.302 1.209 0.076 89.052 

4 7335.350 23.941 119.705 4.788 1.405 2.065 4.198 3.226E+24 0.341 1.705 0.068 98.633 

5 7949.240 25.945 155.668 4.324 1.556 2.128 4.312 3.494E+24 0.369 2.216 0.062 109.292 

6 8427.640 27.506 192.543 3.929 1.712 2.182 4.403 3.707E+24 0.392 2.743 0.056 120.185 

7 8813.820 28.767 230.132 3.596 1.871 2.227 4.475 3.874E+24 0.410 3.276 0.051 131.422 

8 9133.950 29.811 268.302 3.312 2.031 2.267 4.536 4.016E+24 0.425 3.821 0.047 142.626 

9 9404.900 30.696 306.957 3.070 2.192 2.302 4.587 4.136E+24 0.437 4.372 0.044 153.886 

10 9638.070 31.457 346.024 2.860 2.353 2.333 4.631 4.238E+24 0.448 4.928 0.041 165.182 

11 9841.480 32.121 385.447 2.677 2.513 2.361 4.670 4.329E+24 0.458 5.491 0.038 176.439 

12 10020.960 32.706 425.183 2.516 2.674 2.386 4.704 4.407E+24 0.466 6.056 0.036 187.731 

13 10180.860 33.228 465.196 2.373 2.834 2.409 4.734 4.478E+24 0.473 6.627 0.034 198.969 

14 10324.480 33.697 505.455 2.246 2.995 2.430 4.761 4.542E+24 0.480 7.201 0.032 210.190 

15 10454.420 34.121 545.938 2.133 3.155 2.449 4.786 4.599E+24 0.486 7.777 0.030 221.438 
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Continued 

16 10572.720 34.507 586.623 2.030 3.314 2.466 4.807 4.649E+24 0.491 8.354 0.029 232.738 

17 10681.000 34.861 627.491 1.937 3.474 2.483 4.828 4.698E+24 0.497 8.939 0.028 243.833 

18 10780.620 35.186 668.530 1.852 3.633 2.498 4.847 4.742E+24 0.501 9.523 0.026 255.036 

19 10872.660 35.486 709.723 1.774 3.792 2.512 4.864 4.782E+24 0.505 10.108 0.025 266.218 

20 10958.030 35.765 751.061 1.703 3.950 2.526 4.881 4.821E+24 0.510 10.701 0.024 277.242 

 
Table 2. Computational methods applied to a non-flat (open) Universe without radiation contribution. Gaussian quadrature vs 
incomplete elliptic integral of the first kind (int. 239.00) due to the cubic polynomial which admits three roots. 

NON-FLAT 
(OPEN) 

GAUSSIAN QUADRATURE 
INCOMPLETE ELLIPTIC INTEGRAL OF THE 

FIRST KIND 

Ωm, Ωk, ΩΛ [Mpc] [Gyrs] [Gyrs] [Gyrs] [arcsec] [rad] [m] [m] [Gyrs] [Gyrs] [Gyrs] [arcsec] 

z dtc dtc dL dA θ arccos( ) F[r1,z] dtc dtc dL dA θ 

0 0.000 0.000 0.000 0.000 div 1.582 2.811 0 0 0 0 div 

1 3402.820 11.106 22.212 5.553 1.211 1.762 3.455 5.683E+25 6.007 12.014 3.003 2.240 

2 5314.790 17.346 52.039 5.782 1.163 1.890 3.816 8.867E+25 9.372 28.116 3.124 2.153 

3 6509.900 21.247 84.988 5.312 1.267 1.987 4.040 1.084E+26 11.461 45.842 2.865 2.348 

4 7337.350 23.948 119.738 4.790 1.405 2.065 4.198 1.223E+26 12.930 64.649 2.586 2.602 
5 7951.720 25.953 155.717 4.325 1.555 2.129 4.314 1.326E+26 14.016 84.093 2.336 2.880 

6 8430.570 27.516 192.610 3.931 1.711 2.182 4.403 1.405E+26 14.851 103.954 2.122 3.171 

7 8817.160 28.777 230.219 3.597 1.870 2.228 4.477 1.470E+26 15.534 124.275 1.942 3.465 

8 9137.690 29.824 268.412 3.314 2.030 2.268 4.537 1.523E+26 16.101 144.906 1.789 3.761 

9 9409.010 30.709 307.091 3.071 2.191 2.303 4.589 1.568E+26 16.578 165.784 1.658 4.058 

10 9642.530 31.471 346.184 2.861 2.351 2.334 4.633 1.607E+26 16.988 186.868 1.544 4.356 

11 9846.290 32.136 385.636 2.678 2.512 2.362 4.671 1.641E+26 17.348 208.178 1.446 4.653 

12 10026.290 32.724 425.409 2.517 2.673 2.387 4.705 1.671E+26 17.663 229.614 1.359 4.952 

13 10186.300 33.246 465.444 2.375 2.833 2.410 4.735 1.698E+26 17.946 251.248 1.282 5.248 

14 10330.230 33.716 505.737 2.248 2.993 2.431 4.763 1.722E+26 18.201 273.015 1.213 5.544 

15 10460.470 34.141 546.254 2.134 3.153 2.450 4.787 1.743E+26 18.428 294.844 1.152 5.841 

16 10579.040 34.528 586.973 2.031 3.312 2.468 4.810 1.763E+26 18.640 316.872 1.096 6.136 
17 10687.600 34.882 627.879 1.938 3.472 2.484 4.829 1.781E+26 18.825 338.854 1.046 6.433 

18 10787.490 35.208 668.956 1.853 3.630 2.500 4.849 1.798E+26 19.009 361.172 1.000 6.724 

19 10879.790 35.509 710.189 1.775 3.789 2.514 4.866 1.813E+26 19.169 383.373 0.958 7.019 

20 10965.420 35.789 751.567 1.704 3.948 2.527 4.882 1.827E+26 19.315 405.618 0.920 7.314 

 
Table 3. Computational methods applied to a non-flat (closed) Universe. Gaussian quadrature vs incomplete elliptic integral of 
the first kind (int. 260.00) due to the quartic polynomial which admits four roots. 

NON-FLAT 
(CLOSED) 

GAUSSIAN QUADRATURE 
INCOMPLETE ELLIPTIC INTEGRAL OF THE 

FIRST KIND 

Ωr, Ωm, Ωk, ΩΛ [Mpc] [Gyrs] [Gyrs] [Gyrs] [arcsec] [rad] [m] [m] [Gyrs] [Gyrs] [Gyrs] [arcsec] 

z dtc dtc dL dA θ arccos( ) F[r1,z] dtc dtc dL dA θ 

0 0.000 0.000 0.000 0.000 div 1.582 2.811 0 0 0 0 div 

1 3403.760 11.109 22.218 5.555 1.211 1.761 3.452 1.003E+24 0.106 0.212 0.053 126.957 

2 5315.070 17.347 52.042 5.782 1.163 1.889 3.814 1.568E+24 0.166 0.497 0.055 121.777 
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Continued 

3 6508.500 21.242 84.970 5.311 1.267 1.987 4.040 1.922E+24 0.203 0.813 0.051 132.453 

4 7334.040 23.937 119.684 4.787 1.405 2.064 4.196 2.165E+24 0.229 1.144 0.046 146.958 

5 7946.540 25.936 155.615 4.323 1.556 2.128 4.312 2.348E+24 0.248 1.489 0.041 162.650 

6 8423.620 27.493 192.451 3.928 1.713 2.181 4.402 2.488E+24 0.263 1.841 0.038 179.069 

7 8808.570 28.749 229.995 3.594 1.872 2.227 4.475 2.603E+24 0.275 2.201 0.034 195.635 

8 9127.580 29.791 268.115 3.310 2.032 2.267 4.536 2.698E+24 0.285 2.566 0.032 212.331 

9 9397.490 30.672 306.715 3.067 2.193 2.302 4.587 2.778E+24 0.294 2.936 0.029 229.109 

10 9629.720 31.429 345.724 2.857 2.355 2.333 4.631 2.847E+24 0.301 3.310 0.027 245.940 

11 9832.260 32.091 385.086 2.674 2.516 2.361 4.670 2.907E+24 0.307 3.688 0.026 262.712 

12 10010.940 32.674 424.758 2.513 2.677 2.386 4.704 2.960E+24 0.313 4.067 0.024 279.536 

13 10170.090 33.193 464.704 2.371 2.837 2.408 4.733 3.005E+24 0.318 4.447 0.023 296.479 

14 10313.020 33.660 504.894 2.244 2.998 2.429 4.760 3.048E+24 0.322 4.833 0.021 313.206 

15 10442.320 34.082 545.306 2.130 3.158 2.448 4.784 3.086E+24 0.326 5.219 0.020 329.972 

16 10560.000 34.466 585.917 2.027 3.318 2.466 4.807 3.122E+24 0.330 5.610 0.019 346.590 

17 10667.720 34.817 626.711 1.934 3.478 2.482 4.827 3.153E+24 0.333 5.999 0.019 363.355 

18 10766.810 35.141 667.673 1.850 3.637 2.498 4.847 3.184E+24 0.337 6.394 0.018 379.810 

19 10858.340 35.439 708.789 1.772 3.797 2.512 4.864 3.211E+24 0.339 6.787 0.017 396.470 

20 10943.240 35.717 750.047 1.701 3.956 2.525 4.880 3.235E+24 0.342 7.181 0.016 413.133 

 
Table 4. Computational methods applied to flat Universe. Gaussian quadrature vs incomplete elliptic integral of the first kind (int. 
239.00) due to the cubic polynomial which admits three roots. 

FLAT GAUSSIAN QUADRATURE 
INCOMPLETE ELLIPTIC INTEGRAL OF THE 

FIRST KIND 

Ωm, ΩΛ [Mpc] [Gyrs] [Gyrs] [Gyrs] [arcsec] [rad] [m] [m] [Gyrs] [Gyrs] [Gyrs] [arcsec] 

z dtc dtc dL dA θ arccos( ) F[r1,z] dtc dtc dL dA θ 

0 0.000 0.000 0.000 0.000 div 1.582 2.811 0 0 0 0 div 

1 3403.120 11.107 22.214 5.554 1.211 1.762 3.455 5.900E+25 6.236 12.473 3.118 2.158 

2 5315.080 17.347 52.042 5.782 1.163 1.890 3.816 9.205E+25 9.730 29.189 3.243 2.074 

3 6509.920 21.247 84.988 5.312 1.267 1.987 4.040 1.126E+26 11.897 47.590 2.974 2.262 

4 7337.030 23.947 119.733 4.789 1.405 2.065 4.198 1.270E+26 13.422 67.112 2.684 2.506 

5 7951.080 25.951 155.704 4.325 1.555 2.129 4.314 1.376E+26 14.549 87.296 2.425 2.774 

6 8429.610 27.513 192.588 3.930 1.712 2.182 4.403 1.458E+26 15.416 107.911 2.202 3.055 

7 8815.910 28.773 230.187 3.597 1.870 2.228 4.477 1.526E+26 16.126 129.005 2.016 3.338 

8 9136.160 29.819 268.367 3.313 2.031 2.268 4.537 1.581E+26 16.713 150.419 1.857 3.623 

9 9407.240 30.703 307.033 3.070 2.191 2.303 4.589 1.628E+26 17.209 172.090 1.721 3.909 

10 9640.540 31.465 346.112 2.860 2.352 2.334 4.633 1.668E+26 17.634 193.974 1.603 4.197 

11 9844.080 32.129 385.549 2.677 2.513 2.362 4.671 1.704E+26 18.008 216.093 1.501 4.483 

12 10023.700 32.715 425.299 2.517 2.673 2.387 4.705 1.735E+26 18.334 238.343 1.410 4.770 

13 10183.730 33.238 465.327 2.374 2.834 2.410 4.735 1.762E+26 18.628 260.798 1.331 5.056 

14 10327.490 33.707 505.603 2.247 2.994 2.431 4.763 1.787E+26 18.893 283.391 1.260 5.341 

15 10457.570 34.131 546.102 2.133 3.154 2.450 4.787 1.810E+26 19.128 306.048 1.195 5.627 
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Continued 

16 10576.000 34.518 586.805 2.030 3.313 2.468 4.810 1.830E+26 19.348 328.912 1.138 5.911 

17 10684.430 34.872 627.693 1.937 3.473 2.484 4.829 1.849E+26 19.540 351.728 1.086 6.197 

18 10784.180 35.197 668.750 1.852 3.632 2.500 4.849 1.867E+26 19.731 374.893 1.038 6.478 

19 10876.360 35.498 709.965 1.775 3.790 2.514 4.866 1.882E+26 19.897 397.935 0.995 6.762 

20 10961.880 35.777 751.325 1.704 3.949 2.527 4.882 1.897E+26 20.049 421.024 0.955 7.047 

4. Conclusions 

Compared to the different distance scales and magnitude orders that we obtain 
by means of the incomplete elliptic integrals, we can state that the predictions of 
Gaussian quadrature both for a non-flat and for a flat Universe are basically 
identical. The variation of its values is enclosed in a closer scale in the same 
magnitude order. For this reason, we approximate the Gaussian quadrature 
prediction with a single curve (the blue one) in each plot in the framework of 
this inquiry. 

When we discuss the distances in cosmology, we can definitively state that it is 
not possible to solely perform an analytical calculation. Despite many efforts to 
provide only an analytical solution, this has to be followed by a numerical one in 
order to account for the redshift, the integration variable, in the integrals. In this 
context and based on the outcome of this inquiry, the predictions of the 
incomplete elliptic integrals of the first kind would drastically change the 
argumentations in cosmology as we have a big deviation in value depending on 
the type of Universe that we are assuming through the assumption of the 
existence or absence of specific cosmological parameters. 

Going into detail, concerning the transverse comoving distance, a flat Un-
iverse or a non-flat Universe without radiation approached through the incom-
plete elliptic integrals have the closer curve, and therefore prediction, to that of 
the Gaussian quadrature. The deviation appears to stabilize among 15 Glyrs dif-
ference for increasing redshift at least within z = 20. Down to the last curve, a 
non-flat closed Universe would differentiate the most from the Gaussian qua-
drature method. Any value below the Gaussian quadrature prediction basically 
means that we calculate and predict closer distance in space. Exactly the same 
observations can be done for the luminosity distance and the angular diameter 
distance. In these plots, all curves appear to follow the same trend and deviations 
to each other, except for the modulus of the deviation. Even with the angular size 
plot, we can observe a consistent behavior of the curves as the latter are now 
turned upside down due to the inverse proportionality to the transverse comov-
ing distance. The predictions of the angular size according to the incomplete el-
liptical integrals of the first kind would worsen the cosmological predictions as 
we would expect to observe bigger galaxies for increasing redshift. We assumed 
an average-size galaxy equal to 10kpc without arguing about the evolutionary 
stage and therefore the expected size of the galaxies at higher redshifts. 

Remaining on the topic of the elliptic integrals, when we include all omega 

https://doi.org/10.4236/jhepgc.2024.103057


A. Trinchera 
 

 

DOI: 10.4236/jhepgc.2024.103057 955 Journal of High Energy Physics, Gravitation and Cosmology 
 

density parameter in the calculation, all various distances calculated (transverse 
comoving, luminosity and angular diameter) have smaller values compared to 
the Gaussian quadrature. It translates into bigger values for the angular size of 
the galaxies. A closed Universe shows the smallest distances even compared to 
an open one. At the time that we assume to neglect one or more omega density 
parameters in the equations, the distances increase as shown with a flat Universe 
(without curvature and radiation − orange curve) as well as with a non-flat Un-
iverse (without radiation − green curve). This is because by neglecting existing 
parameters for which we are assuming important physical meanings, we are 
basically removing the constraints and the correlations between physics, ma-
thematics and the reality of the Universe that surrounds us. By removing one by 
one omega density parameters, we end up with bigger distances, despite being 
smaller than the Gaussian quadrature ones, as we are releasing the Universe 
from the physical and mathematical resistance exerted by the parameters that we 
removed. With this logic, it is important to stress that the calculation of the dis-
tances in cosmology should be performed without neglecting parameters but 
rather making efforts to include them all and by providing more exact values 
based on observational data. For instance, by neglecting the radiation from the 
equations we change the reality of our Universe in which we do have the radia-
tion and it is furthermore the only tool we have to measure distances through 
the spectrum of the astronomical sources. It is also the only way to measure the 
redshift and accordingly the only way to compare measurements with predic-
tions. Ultimately, we can state that the removal of the radiation, in the form of 
the omega density parameter, makes scientifically no sense. 

Indeed, we should include all parameters defined by Friedmann in General 
Relativity and we have therefore to observe their outcomes in terms of predic-
tions from the equations to then make a comparison with observational data. 
Despite some parameters can be mathematically approximated to zero, their in-
fluence on a complex integral, such as that of the comoving distance, cannot be 
neglected. From the mathematical standpoint, in the main integral, all omega 
density parameters appear to multiply the redshift in different power orders. 
This translates into the fact that, for instance, a tiny omega density radiation can 
still influence the integral if multiplied by the redshift in a quartic polynomial 
where the fourth degree belongs exactly to the radiation term. It is a fact that we 
have to consider all omega density parameters without approximation as any 
parameter affects the calculation independently of the computational method. 

With regard to the difference between the curve of the transverse comoving 
distance in a non-flat cosmology through an incomplete elliptical integral or the 
solution by means of the Gaussian quadrature, it can indeed open different sce-
narios.  

a) The curves calculated by the incomplete elliptical integral of the first kind 
reflect the effective behavior of the Universe. In this case, we are currently over-
estimating the distance values in cosmology due to the Gaussian quadrature 
method. This remark has a consequence on the whole cosmology as, for in-

https://doi.org/10.4236/jhepgc.2024.103057


A. Trinchera 
 

 

DOI: 10.4236/jhepgc.2024.103057 956 Journal of High Energy Physics, Gravitation and Cosmology 
 

stance, the study of the distance modulus of the supernovae Ia might require a 
re-investigation. The same can be stated with the Hubble tension and the influ-
ence that this decisive parameter has on the integrals of the transverse comoving 
distance, in which it is inversely proportional; 

b) The curves calculated by the incomplete elliptical integral of the first kind 
evolve differently, in defect, from the Gaussian quadrature-curve and the reason 
might be attributed to the analytical solution obtained by Legendre-Jacobi’s ap-
proach discussed in Byrd-Friedmann’s handbook of elliptic integrals. Alterna-
tively, this class of solutions might also be intrinsically an approximation com-
pared to the Gaussian quadrature. A deeper mathematical inquiry concerning 
the correctness of the approach might follow this cosmological study for a better 
understanding of the mathematical approach and the comparison between the 
two methods. 
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