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In this study, we develop a general inequality for warped product semi-slant submanifolds of typeMn =Nn1
T × f N

n2
ϑ in a nearly Kaehler

manifold and generalized complex space forms using the Gauss equation instead of the Codazzi equation. There are several
applications that can be developed from this. It is also described how to classify warped product semi-slant submanifolds that
satisfy the equality cases of inequalities (determined using boundary conditions). Several results for connected, compact warped
product semi-slant submanifolds of nearly Kaehler manifolds are obtained, and they are derived in the context of the Hamiltonian,
Dirichlet energy function, gradient Ricci curvature, and nonzero eigenvalue of the Laplacian of the warping functions.

1. Introduction

We can examine the energy, angles, and lengths of their sec-
ond fundamental form using certain warped product mani-
folds. These manifolds are generalizations of Riemannian
product manifolds and provide examples of manifolds with
a strictly negative curvature from a mathematical standpoint.
They can be usefully applied to models of spacetime around
black holes and bodies with enormous gravitational fields
from a mechanical standpoint. From the geometric stand-
point of applied mathematics, their warping functions can
solve numerous partial differential equations (see [1, 2]).
Bishop and O’Neill [3] first proposed the concept of warped
product manifolds in order to analyze negative curvature
manifolds. Here’s how they define it.

Definition 1. Let ðN1, g1Þ and ðN2, g2Þ be two Riemannian
manifolds, where f : N1 ⟶ ð0,∞Þ and γ1 : N1 ×N2 ⟶
N1, γ2 : N1 ×N2 ⟶N2; the orthogonal projection maps
are defined as γ1ðt, sÞ = t and γ2ðt, sÞ = s for any ðt, sÞ ∈N1
×N2. Then, the warped product N1 × f N2 is a product
manifold that is N1 ×N2 associated with the Riemannian
structure; in other words,

g X, Yð Þ = g1 γ1 ∗ X, γ1 ∗ Yð Þ + f ∘ γ1ð Þ2g2 γ2 ∗ X, γ2 ∗ Yð Þ,
ð1Þ

for any X, Y ∈ TMn, where the tangent map is denoted by ∗
and f represents a warping function of Mn.

The theory of slant submanifolds is currently under
investigation; it was first established by Chen in [4] for
nearly Hermitian manifolds. The almost complex (holo-
morphic) and entirely real submanifolds are specific exam-
ples among the classes of slant submanifolds. As a result,
the warped product semi-slant submanifold is the most basic
generalization of a CR-warped product submanifold. al-
Solamy et al. [5] recently investigated a warped product
semi-slant submanifold of a nearly Kaehler manifold, prov-
ing that no such warped product semi-slant submanifold
exists of the form Mn =Nn2

ϑ × f N
n1
T , where Nn2

ϑ is a proper

slant submanifold and Nn1
T is a complex submanifold.

The researchers next looked into warped products of the
type Mn =Nn1

T × f N
n2
ϑ and came up with a number of fasci-

nating conclusions, including characterizations and an
inequality. We refer to [6] for a survey of warped product
submanifolds. We first remark that the utilization of the
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Codazzi equation in Chen’s study [7] problem atomizes
attempts to extend its results from the warped product
semi-slant submanifold setting, due to the slant angle’s
involvement. We use a novel strategy in this work, substitut-
ing the Codazzi equation (used in [7]) with the Gauss equa-
tion. As a generalization of the contact CR-warped products,
we construct a sharp general inequality for warped product
semi-slant submanifolds isometrically immersed in a gener-
alized space form. We also investigate nontrivial warped
product semi-slant submanifolds of type Mn =Nn2

ϑ × f N
n1
T

that are isometrically immersed in an arbitrary nearly Kaeh-
ler manifold; we obtain results (cf. Theorem 21) and
consider interesting applications thereof (cf. Theorem 22).

Chen developed a general inequality for the CR-
warped product of complex space forms in [7]. Further-
more, in [8–11], the classifications of contact CR-warped
products in spheres that satisfy the equality cases similarly
were given. The classifications of the totally geodesic and
totally umbilical submanifolds are examples of how these
relations might be used to classify equalities in the derived
inequality. For various types of inequalities, several authors
(in [12–17]) have presented thorough classifications of
CR-warped products in complex projective space forms
and Lagrangian submanifolds in complex space forms.
Motivated by previous studies, we derived necessary and
sufficient conditions to determine whether a compact
oriented warped product semi-slant submanifold in a
generalized complex space forms is trivial (cf. Theorems
24, 25, and 26, and Corollaries 27 and 28).

Calin and Chang presented a geometric approach to
Riemannian manifolds in [18], identifying its applicability
to partial differential equations that implement a Lagrangian
formalism on Riemannian manifolds; for example, they con-
sidered its application to the energy-momentum tensor and
conservation laws; the Hamiltonian formalism; Hamilton-
Jacobi theory; harmonic functions, maps, and geodes; and
harmonic functions, maps, and geodes. Let us note that the
geometry of a Riemannian manifold can be thought of as a
compact Riemannian submanifold with a boundary; in other
words, ∂M ≠∅. We considered the Euler–Lagrange equa-
tion, kinetic energy function, and Hamiltonian approach to
warped product submanifolds for which the warping func-
tion plays an important role as a positive differential func-
tion for such identities because of the influence of the slant
angle in a warped product semi-slant submanifold of a
nearly Kaehler we provide (cf. Theorems 29, 30, and 32).

The effect of Ricci curvature on the structure of warped
products is investigated. In Riemannian geometry, one
important question arises: What is the geometric meaning
of Ricci curvature? Answer: Ricci-flat manifolds require us
to solve the Riemannian manifold’s Einstein field equations
with a vanishing cosmological constant geometrically.

We study the Ricci curvature on the structure of warped
products. One fundamental question arises: What is the geo-
metric meaning of Ricci curvature in Riemannian geometry?
Answer: Geometrically, Ricci-flat manifolds require us to
solve the Einstein field equations of the Riemannian mani-
fold with a vanishing cosmological constant. In general rela-
tivity, the Ricci tensor corresponds to the universe’s matter

content via Einstein field equations. The degree to which
matter tends to converge or diverge over time is determined
by this term of spacetime curvature. As a result, in physics,
Ricci curvature is more essential than Riemannian curva-
ture, and geometric obstacles of the Ricci curvature and
Ricci tensor will be found in warped product manifolds
(for further details, see [12, 19] and the references therein).
Our next goal is to look into the physical implications of
these issues in terms of warping functions. We propose our
result (cf. Theorem 33) to enable our study to uncover the
useful applications of the obtained inequality in physics.
The work described in this paper will be combined with
the singularity theory techniques presented in [20–24].

The following is a breakdown of the paper’s structure:
We review some basic formulas and definitions in Section
2 and give a quick overview of semi-slant submanifolds. In
Section 3, we analyze warped product semi-slant submani-
folds and prove an inequality for an intrinsic invariant in a
nearly Kaehler manifold in terms of the second basic form,
the squared norm of the warping function, and the Laplacian
of the warping functions. The case of equality is also exam-
ined. In this section, we get the main result for warped prod-
uct semi-slant submanifolds immersed isometrically in a
nearly Kaehler manifold. In Section 4, we use boundary con-
ditions to explain multiple classifications of such inequalities
for Riemannian and compact Riemannian submanifolds. In
Section 5, we strengthen the second fundamental form
inequality in a virtually Kaehler manifold for warped
product semi-slant submanifolds and CR-warped product
submanifolds. We also show that the warped product
semi-slant manifold in a nearly Kaehler manifold becomes
a Riemannian product under a set of complicated require-
ments expressed in terms of the kinetic energy function
and the Hamiltonian of the warping function. In Section
6, we prove that the compact warped product semi-slant
submanifold of a virtually Kaehler manifold is either a
CR-warped product manifold or a simple Riemannian
product manifold in terms of the gradient Ricci curvature
of warped functions.

2. Preliminaries

An almost Hermitian manifold ð ~M, J , gÞ of a 2m-dimen-
sional space, such that J is an almost complex structure
and g is a Riemannian metric, satisfies

að ÞJ2 = −I, bð Þg JX, JYð Þ = g X, Yð Þ, ð2Þ

for any X, Y on ~M
2m
, where the identity map is denoted by I.

Let ΓðT ~M
2mÞ denote the set of all vector fields tangent to

~M
2m
; the Levi-Civita connection defined on ~M

2m
is denoted

by ~∇. Then, a Kaehler manifold with an almost complex
structure J satisfies

∇~
X JÞY = 0,ð ð3Þ
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for any X, Y ∈ ΓðT ~M
2mÞ and ~M

2m
. Moreover, if the almost

complex structure J is such that

∇X Jð ÞY + ∇Y Jð ÞX = 0, ð4Þ

for any vector field X, Y tangent to ~M
2m
, then the manifold

~M represents a nearly Kaehler manifold [25–27]. The above
equation is similar to the following:

∇X Jð ÞX = 0, X ∈ Γ T ~M
2m� �

: ð5Þ

Assume that ~M
n
is a complex space form of constant

holomorphic sectional curvature 4κ and it is denoted by
~M

nð4κÞ. The curvature tensor ~R of ~M
nð4κÞ can be

expressed as

~R W1,W2ð ÞW3 = κ g W2,W3ð ÞW1 − g W1,W3ð ÞW2f
+ g W3, JW2ð ÞJW1 − g W3, JW1ð ÞJW2

+ 2g W1, JW2ð ÞJW3g,
ð6Þ

for all W1,W2,W3 ∈ ΓðT ~NÞ. Based on the cases κ < 0, κ
= 0, and κ > 0, eℕnð4κÞ is the complex hyperbolic space ℂ
Hn, complex Euclidean space ℂn, or the complex projec-
tive space ℂPn. Now, we consider the generalized complex
space forms which are a natural generality of complex
space forms and a special family of Hermitian manifolds.
Actually, a generalized complex space form is a RK-man-
ifold of constant type α with constant holomorphic sec-

tional curvature κ. Moreover, it is denoted by ~M
2mðκ, αÞ.

Hence, the curvature tensor ~R for generalized complex
space is given by

~R X, Y , Z,Wð Þ = κ + 3α
4

g Y , Zð Þg X,Wð Þ − g Y ,Wð Þg X, Zð Þf g
+
κ − α

4
g X, JZð Þg JY ,Wð Þ − g Y , JZð Þg JX,Wð Þf

+ 2g X, JYð Þg JZ,Wð Þg,
ð7Þ

for any X, Y , Z,W ∈ ΓðT ~M
2mÞ. Thus, for the more classifi-

cations of generalized complex space forms, we refer to
[10, 11, 28–32]. The curvature tensor ~R for a nearly Kaeh-
ler 6-sphere is given by

~R X, Y , Z,Wð Þ = g Y , Zð Þg X,Wð Þ − g Y ,Wð Þg X, Zð Þ, ð8Þ

for any X, Y , Z,WðT ~MðS6Þ.
A submanifold is denoted by the Mn of an almost Her-

mitian manifold ~M
2m

with an induced Riemannian metric
g. However, ∇⊥ and ∇ represent the induced Riemannian
connections on the normal bundle T⊥Mn and tangent
bundle TMn ofMn, respectively. Thus, the Gauss and Wein-
garten formulas are defined as

ið Þ∇~
XY = ∇XY + h X, Yð Þ,  iið Þ∇~

XN = −ANX + ∇⊥
XN ,

ð9Þ

for every N ∈ ΓðT⊥MnÞ and X, Y ∈ ΓðTMnÞ, where AN and
h denote the shape operator and second fundamental form

for an immersion of M into ~M
2m
, respectively. Now, for

any N ∈ ΓðT⊥MnÞ and X ∈ ΓðTMnÞ, we have

ið Þ JX = PX + FX,  iið Þ JN = tN + f N , ð10Þ

where FXð f NÞ and PXðtNÞ are the normal and tangential
components of JNðJXÞ, respectively. From (2), it can be
clearly seen that, for each X, Y ∈ ΓðTMnÞ, we have

að Þg PX, Yð Þ = −g X, PYð Þ,  bð Þ Pk k2 = 〠
n

i,j=1
g2 Pei, ej
� �

,

ð11Þ

for each ei, i = 1,⋯, n tangent to Mn. Assuming ~M
2m

to be a

Riemannian manifold and Mn a submanifold of ~M
2m
, the

Gauss equation can be defined as

~R X, Y , Z,Wð Þ = R X, Y , Z,Wð Þ + g h X, Zð Þ, h Y ,Wð Þð Þ
− g h X,Wð Þ, h Y , Zð Þð Þ,

ð12Þ

for any X, Y , Z,W ∈ ΓðTMnÞ, where ~R and R represent the

curvature tensors on ~M
2m

and Mn, respectively. Further-
more, totally umbilical and totally geodesic submanifolds sat-
isfy hðX, YÞ = gðX, YÞH and hðX, YÞ = 0, respectively, for
any X, Y ∈ ΓðTMnÞ, where H is the mean curvature vector
of Mn. If H = 0, then Mn is called a minimal submanifold.
The mean curvature vector H is expressed in terms of fe1,
e2⋯,eng, which is the so-called orthonormal frame of the
tangent space TMn; it is defined as

H =
1
n
trace hð Þ = 1

n
〠
n

i=1
h ei, eið Þ, ð13Þ

where n = dim M. Moreover, we have

hk k2 = 〠
n

i,j=1
g h ei, ej
� �

, h ei, ej
� �� �

,  hrij = g h ei, ej
� �

, er
� �

,

ð14Þ

for which feigi=1,⋯n and fergr=n+1,⋯2m are orthonormal
frames tangent to Mn and normal to Mn, respectively. The
scalar curvature τ for a submanifold Mn of an almost

complex manifold ~M
2m

is given by

τ TMnð Þ = 〠
1≤i≠j≤n

K ei ∧ ej
� �

: ð15Þ
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In the above equation, ei and ej represent the span of the
plane section, and its sectional curvature is denoted by K
ðei ∧ ejÞ. Let Gr be an r-plane section on TMn and fe1,
e2 ⋯ erg be any orthonormal basis of Gr . Then, the scalar
curvature τðGrÞ of Gr is defined as

τ Grð Þ = 〠
1≤i≠j≤r

K ei ∧ ej
� �

: ð16Þ

Let ϕ be a differential function defined on Mn. Thus,

the gradient ∇
!
ϕ is given as

g ∇
!
ϕ, X

� �
= Xf , ∇

!
ϕ = 〠

n

i=1
ei ϕð Þei: ð17Þ

Thus, from the above equation, the Hamiltonian in a
local orthonormal frame is defined as

H dϕ, xð Þ = 1
2
〠
n

j=1
df ej
� �2 = 1

2
〠
n

j=1
ej ϕð Þ2 = 1

2
∇ϕk k2: ð18Þ

Moreover, the Laplacian Δf of f is also given by

Δϕ = 〠
n

i=1
∇ei

ei
� �

ϕ − ei ei ϕð Þð Þ� �
= −〠

n

i=1
g ∇ei

grad ϕ, ei
� �

:

ð19Þ

Similarly, the Hessian tensor of function f is given by

Δϕ = −TraceHϕ = −〠
n

i=1
Hess ϕð Þ ei, eið Þ, ð20Þ

where Hϕ denotes the Hessian tensor. The compact man-
ifold Mn is considered as being without a boundary; that
is, ∂Mn =∅. Thus, we have the following lemma.

Lemma 2 (see [18]; Hopf’s lemma). Let Mn be a connected
and compact Riemannian manifold and ϕ a smooth function
on Mn such that Δϕ ≥ 0ðΔϕ ≤ 0Þ. Then, ϕ is a constant func-
tion on Mn.

Moreover, the integration of the Laplacian of the smooth
function, defined on a compact-orientated Riemannian
manifold Mn without boundary, vanishes with respect to
the volume element of such a manifold, and we obtain the
following formula: ð

Mn
ΔϕdV = 0, ð21Þ

where dV denotes the volume of Mn (see [33]).

Theorem 3 (see [18]). The Euler–Lagrange equation for the
Lagrangian is

Δϕ = 0: ð22Þ

Hopf’s lemma becomes the uniqueness theorem for the
Dirichlet problem if manifold Mn has a boundary.

Theorem 4 (see [18]). Let Mn be a connected and compact
manifold and f a positive differentiable function on Mn such
that Δϕ = 0,OnMn. Thus, ϕ = 0, where ∂Mn is the boundary
of M.

Moreover, let Mn be a compact Riemannian manifold
and f be a positive differentiable function on Mn. Then,
the Dirichlet energy function is defined as described in
[18]; that is,

E ϕð Þ = 1
2

ð
Mn

∇ϕk k2dV : ð23Þ

If Mn is compact, then 0 ≤ EðϕÞ <∞. We provide the
following definition of a slant submanifold.

Definition 5 (see [4]). Assume TxM
n − f0g to be a set con-

taining all nonzero tangent vector fields of immersion Mn

in an almost Hermitian manifold ~M
2m

at a point x ∈Mn.
Then, for each vector X ∈ ðTxM

nÞ at point x ∈Mn, the angle
between JX and the tangent space TxM is considered to be
the Wirtinger angle of X at x ∈Mn; this is denoted as ϑðXÞ.
In this case, a submanifold Mn of ~M

2m
is called a slant

submanifold such that ϑ is a slant angle.

It is clear that the slant submanifolds include totally real
and holomorphic submanifolds. However, Chen proved the
following characterization theorem of slant submanifolds.

Theorem 6. Let ~M
2m

be an almost Hermitian manifold and

Mn be a submanifold of ~M
2m
. Then, Mn is slant if and only

if there exists a constant λ ∈ ½0, 1� such that

P2 = −λI, ð24Þ

where λ = cos2ϑ for a slant angle ϑ defined on the tangent
bundle TMn of Mn.

Hence, we have the following consequences of Theorem 6:

g PX, PYð Þ = cos2ϑg X, Yð Þ,
g FX, FYð Þ = sin2ϑg X, Yð Þ,

ð25Þ

for any X, Y ∈ ΓðTMnÞ.
In an essentially Hermitian manifold, another group of

submanifolds known as semi-slant submanifolds exists as a
natural generalization of slant submanifolds, CR-submani-
folds, and holomorphic and antiholomorphic submanifolds.
Papaghiuc researched and defined semi-slant submanifolds
in [34] as a natural extension of CR-submanifolds of an
almost Hermitian manifold. The following is the definition
of a semi-slant submanifold.
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Definition 7. A Riemannian submanifold Mn of an almost

Hermitian manifold ~M
2m

is defined as a semi-slant subma-
nifold if there exist two complementary distributions D

and Dϑ such that

(i) TM =D ⊕Dϑ

(ii) D is a holomorphic distribution; that is, JðDÞ =D

(iii) Dϑ is called a slant distribution if slant angle ϑ ≠ 0, π/2

Remark 8. For a semi-slant submanifold, let us consider the
dimensions of D and Dϑ in d1 and d2; then, M

n is holo-
morphic if d2 = 0 and slant if d1 = 0. Furthermore, if ϑ = π/
2 and d1 = 0, then Mn is represented as an antiholomorphic
(totally real) submanifold. Moreover, Mn is referred to as a
proper semi-slant submanifold if ϑ differs from 0 and π/2.
We can also define Mn as proper if d1 ≠ 0 and d2 ≠ 0.

Remark 9. If ν is an invariant normal subspace under an
almost complex structure J of the normal bundle T⊥Mn,
then this normal bundle is decomposed as

T⊥Mn = FDϑ ⊕ ν: ð26Þ

3. Warped Product semi-slant Submanifolds of
Nearly Kaehler Manifolds

We will go through some of the findings on warped product
manifolds in this section. References [5, 6, 35–40] provide
more information. We derive our main inequality for the
squared norm of the second fundamental form in terms of
constant holomorphic sectional curvature using numerous
geometric conditions for the mean curvature of a warped
product semi-slant submanifold.

In particular, a warped product manifold is classified to
be trivial if the warping function is constant. In such cases,
we refer to the warped product manifold as a Riemannian
product manifold. It was proven in [3] that, for X ∈ ΓðTN1Þ
and Z ∈ ΓðTN2Þ, the following is satisfied:

∇XZ = ∇ZX = X ln fð ÞZ, ð27Þ

where ∇ denotes the Levi-Civita connection onMn. We recall
the following lemma obtained in [3].

Lemma 10. A warped product manifold Mn =N1 × f N2.
Thus,

(i) ∇XY ∈ ΓðTN1Þ
(ii) ∇ZW = ∇Z′W − gðZ,WÞ∇ln f

for any Z,W ∈ ΓðTN2Þ and X, Y ∈ ΓðTN1Þ, where ∇′ is
the Levi-Civita connection on N2.

Remark 11. If the warping function f is constant, then M
=N1 × f N2 is a trivial warped product or a simple Rie-
mannian product.

Remark 12. In a nontrivial warped product manifold Mn =
N1 × f N2, the manifold N1 is totally geodesic, and N2 is a
totally umbilical submanifold in Mn.

Let φ : Mn =N1 × f N2 ⟶ ~M
2m

be an isometric immer-
sion of a warped product manifold N1 × f N2 in an arbitrary

Riemannian manifold ~M
2m
. Furthermore, let n1, n2, and n

represent the real dimensions of N1,N2,, and Mn, respec-
tively. Then, for any unit tangent vectors Y and W on N1
and N2, respectively, we have

K Y ∧Wð Þ = g ∇W∇YY − ∇Y∇WY ,Wð Þ = 1
f

∇YYð Þf − Y2 f
� �

:

ð28Þ

If we consider the local orthonormal frame fe1, e2,⋯,eng
such that the vectors e1, e2 ⋯ , en1 are tangential to N1 and
en1+1 ⋯ , en are tangential to N2, then in view of the Gauss
equation (12), we can deduce that

τ TMnð Þ = ~τ TMnð Þ + 〠
2m

r=1
〠

1≤i≠j≤n
hriih

r
jj − hrij
� �2� 	

, ð29Þ

for each j = n1 + 1⋯ n.
Hereafter, we will denote the corresponding dimensions

as indices. Recall that [5] proved several results for both
types of warped product semi-slant submanifolds in nearly
Kaehler manifolds.

Theorem 13 (see [5]). There does not exist a proper warped
product submanifold of the formMn =Nn2

ϑ × f N
n1
T in a nearly

Kaehler manifold ~M
2m

such that Nn2
ϑ is a proper slant subma-

nifold and Nn1
T is a holomorphic submanifold of ~M

2m
.

Lemma 14. For a nontrivial warped product semi-slant sub-
manifold Mn =Nn1

T × f N
n2
ϑ in a nearly Kaehler manifold

~M
2m
, we have the following equalities:

(i) gðhðJX, ZÞ, FWÞ + gðhðJX, WÞ, FZÞ = 2ðX ln f Þg
ðZ,WÞ

(ii) gðhðX, ZÞ, FWÞ + gðhðX,WÞ, FZÞ = −2ðJX ln f Þg
ðZ,WÞ

for any X ∈ ΓðTNn1
T Þ and Z,W ∈ ΓðTNn1

ϑ Þ.

Proof. For the first part of the proof, using (9) (i) and the
orthogonality of vector fields, we establish that

g h JX,Wð Þ, FZð Þ = −g ∇~
WJZ, JXÞ−g ∇~

WJX, PZÞ:ðð ð30Þ
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From the covariant derivative of the almost complex
structure J and from (27), we derive that

g h JX,Wð Þ, FZð Þ = X ln fð Þg Z,Wð Þ − g JX, ∇~
W JÞZÞðð

− JX ln fð Þg W, PZð Þ:
ð31Þ

Using the structure equation (4) in the above equation
and in (10) (i), we find that

g h JX,Wð Þ, FZð Þ = X ln fð Þg Z,Wð Þ+g ∇~
ZFW, JXÞð

−g ∇~
Z JX, PWÞ+g ∇~

ZX,WÞðð
− JX ln fð Þg W, PZð Þ:

ð32Þ

Thus, from (27) and (10) (ii), we finally obtain

g h JX,Wð Þ, FZð Þ + g h JX, Zð Þ, FWð Þ = 2 X ln fð Þg Z,Wð Þ,
ð33Þ

which is (i). Replacing X wit JX in (i) and using (2) (i), we
obtain the required result (ii). The lemma is proven
completely.

Lemma 15. Assume that Mn =Nn1
T × f N

n2
ϑ is a nontrivial

warped product semi-slant submanifold in a nearly Kaehler
manifold; thus, we have

(i) gðhðJX, PZÞ,FPWÞ+gðhðJX,PWÞ,FPZÞ=2ðX ln f Þ
cos2ϑgðZ,WÞ

(ii) gðhðX,PZÞ,FPWÞ+gðhðX,PWÞ,FPZÞ=− 2ðJX ln f Þ
cos2ϑgðZ,WÞ

for any X ∈ ΓðTNn1
T Þ and Z,W ∈ ΓðTNn2

ϑ Þ.

Proof. Replacing Z and W by PZ and PW, respectively, and
using (24) in Lemma 14 (i)–(ii), we directly obtain (i) and
(ii), respectively. This completes the proof of the lemma.

Remark 16. In particular, if we substitute Z =W in Lemma
10, then Lemma 10 coincides with Lemma 3.1 in [5].

Lemma 17. Let Mn =Nn1
T × f N

n2
ϑ be a warped product semi-

slant submanifold of a nearly Kaehler manifold ~M
2m
. Then,

(i) gðhðX, ZÞ, FPWÞ + gðhðX,WÞ, FPZÞ = ð2/3Þ cos2ϑ
ðX ln f ÞkZk2

(ii) gðhðX, PZÞ, FWÞ + gðhðX, PWÞ, FZÞ = ð2/3Þ cos2ϑ
ðX ln f ÞkZk2

for any X ∈ ΓðTNn1
T Þ and Z,W ∈ ΓðTNn2

ϑ Þ.

Proof. Replacing Z by Z +W in Lemma 5.2 in [41], and
using the linearity property of vector fields, we derive (i)
and (ii). This completes the proof of the lemma.

Lemma 18. Assume that Mn =Nn1
T × f N

n2
ϑ is a nontrivial

warped product semi-slant submanifold in a nearly Kaeh-
ler manifold. For any X ∈ ΓðTNn1

T Þ and Z,W ∈ ΓðTNn2
ϑ Þ,

we have

(i) gðhðJX, ZÞ,FPWÞ+gðhðJX,WÞ, FPZÞ = −ð2/3Þ cos2
ϑðJX ln f ÞkZk2

(ii) gðhðJX, PZÞ,FWÞ+gðhðJX,PWÞ, FZÞ = −ð2/3Þ cos2
ϑðJX ln f ÞkZk2

Proof. Similarly, by replacing X with JX in Lemma 17
(i)–(ii), we arrive at our required results (i) and (ii) using (2).

To prove the general inequality, we require an orthonor-
mal frame for orthonormal vector fields, as well as some
preparatory results.

Lemma 19. LetMn be a warped product semi-slant submani-

fold in a nearly Kaehler manifold ~M
2m
. Thus,

(i) gðhðX, YÞ, FZÞ = 0

(ii) gðhðJX, JYÞ, ξÞ = −gðhðX, YÞ, ξÞ
for any X, Y ∈ ΓðTNn1

T Þ, Z ∈ ΓðTNn2
ϑ Þ, and ξ ∈ ΓðνÞ.

Proof. The first part of the proof is trivial; the second part
can be proved in a similar manner to Lemma 5.1 in [39].

Lemma 20. Let φ : Mn =Nn1
T × f N

n2
ϑ ⟶ ~M

2m
be an isomet-

ric immersion of a warped product semi-slant submanifold

in a nearly Kaehler manifold ~M
2m
. Then, Nn1

T is a minimal

submanifold of ~M
2m
, and the squared norm of the mean

curvature of Mn is given by

Hk k2 = 1
n2

〠
2m

r=n+1
hrn1+1n1+1+⋯+hrnn
� �2

, ð34Þ

where H denotes the mean curvature vector. Moreover, n1,
n2, n, and 2m are dimensions of Nn1

T ,N
n2
ϑ ,N

n1
T × f N

n2
ϑ , and

~M
2m
, respectively.

Proof. The above lemma can be readily proven in a similar
manner to Lemma 5.2 in [39].

Main inequality for warped product semi-slant
submanifolds.
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Theorem 21. Let φ : Mn =Nn1
T × f N

n2
ϑ ⟶ ~M

2m
be an iso-

metric immersion of a warped product semi-slant submani-

fold Mn in a nearly Kaehler manifold ~M
2m
. Thus,

(i) The squared norm of the second fundamental form of
Mn satisfies

hk k2 ≥ 2 n2 ∇ln fk k2 + δ − n2Δ ln fð Þ� �
, ð35Þ

where δ = ~τðTMnÞ − ~τðTNn1
T Þ − ~τðTNn2

ϑ Þ,n2 is the dimension
of the slant submanifold Nn2

ϑ , and Δ is the Laplacian operator
of Nn1

T .

(ii) The equality holds in (35) if and only if Nn1
T is totally

geodesic and Nn2
ϑ is totally umbilical in ~M

2m
and if

Mn is a minimal submanifold of ~M
2m

Proof. The proof proceeds in a similar manner to the proof
of Theorem 29 [31] if we consider the nearly Kaehler mani-
fold, instead of nearly trans-Sasakian manifold.

3.1. Applications of Theorem 21 to Generalized Complex
Space Forms. In this section, we prove our main theorem
using Theorem 21 for a generalized complex space form.
Then, we give the following result.

Theorem 22. Assume that φ : Mn =Nn1
T × f N

n2
ϑ ⟶ ~M

2m

ðκ, αÞ be an isometric immersion of a warped product semi-

slant Nn1
T × f N

n2
ϑ into generalized complex space form ~M

2m

ðκ, αÞ admitting a nearly Kaehler structure with constant
holomorphic sectional curvature κ of constant type α. Then,

(i) The squared norm of the second fundamental form of
Mn satisfies

hk k2 ≥ 2n2
κ + 3α
4

� 	
n1 − Δ ln fð Þ + ∇ln fk k2


 �
, ð36Þ

where n1 = dim NT , n2 = dimRNϑ, n = dim NT × f Nϑ and 2

m = dim ~M
2mðκ, αÞ.

(ii) The equality holds in (36), if and only if Nn2
ϑ and Nn2

T
are totally umbilical and totally geodesic submani-
folds in ~M, respectively. Moreover, Mn is a minimal

submanifold of ~M
2mðκ, αÞ

Proof. Letting us substitute X =W = ei and Y = Z = ej in (8),
we get

~R ei, ej, ej, ei
� �

=
κ + 3α
4

g ei, eið Þg ej, ej
� �

− g ei, ej
� �

g ei, ej
� �� �

+
κ − α

4
g ei, Jej
� �

g Jej, ei
� ��

− g ei, Jeið Þg ej, Jej
� �

+ 2g2 Jej, ei
� ��

:

ð37Þ

Taking the summation over the basis vector fields of T
Mn such that 1 ≤ i ≠ j ≤ n, one shows that

2~τ TMnð Þ = c + 3α
4

� 	
n n − 1ð Þ + 3

c − α

4

� �
〠

1≤i≠j≤n
g2 Pei, ej
� �

:

ð38Þ

Mn is a warped product of holomorphic and proper
slant submanifolds in a generalized complex space form
~M

2mðc, αÞ. Thus, we set the following frame of orthonor-
mal vector fields as

e1, e2 = Je1,⋯e2d1−1, e2d1 = Je2d1−1, e2d1+1, e2d1+2
= sec ϑPe2d1+1,⋯e2d1+2d2−1e2d1+2d2 = sec ϑPed1−1:

ð39Þ

From using the above orthonormal frame, we obtain

g2 Jei, ei+1ð Þ = 1, for i ∈ 1⋯ n1 − 1f g
= cos2ϑ for i ∈ n1 + 1,⋯n1 + n2 − 1f g: ð40Þ

Thus, it is easily seen that

〠
n

i,j=1
g2 Pei, ej
� �

= n1 + n2 cos2ϑ: ð41Þ

From (38) and (40), it follows that

2~τ TMnð Þ = κ + 3α
4

� 	
n n − 1ð Þ + 3

κ − α

4

� �
n1 + n2 cos2ϑ
� �

:

ð42Þ

Similarly, for TNn1
T , we derive

2~τ TNn1
T

� �
=

κ + 3α
4

� 	
n1 n1 − 1ð Þ + 3

κ − α

4

� �
n1: ð43Þ

Now using fact that kPk2 = n2 cos2ϑ, for slant bundle
TNn2

ϑ , one derives

2~τ TNn2
ϑ

� �
=

κ + 3α
4

� 	
n2 n2 − 1ð Þ + 3

κ − α

4

� �
n2 cos2ϑ: ð44Þ

Therefore, substituting (41), (42), and (40) in Theorem
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21, we get the required result (29). The equality case fol-
lows from Theorem 21 (ii). Thus, the proof is complete.

Notably, the following corollary can be readily obtained
in terms of the Hessian tensor of the warping function ln f
for a warped product submanifold.

Corollary 23. Let φ : Mn =Nn1
T × f N

n2
ϑ ⟶ ~M

2mðκ, αÞ be an
isometric immersion of a warped product Nn1

T × f N
n2
ϑ into

generalized complex space form ~M
2mðκ, αÞ admitting a nearly

Kaehler structure. Then,

hk k2 ≥ 2n2
κ + 3α
4

� 	
n1 + ∇ln fk k2 + Trace H ln f

� �� 	
,

ð45Þ

where H ln f is the Hessian tensor of the warping function ln f .

4. Compact-Orientated Warped Product semi-
slant Submanifolds

In this section, we consider compact Riemannian mani-
folds without boundaries; that is, ∂Mn =∅. Applying these
to warped product semi-slant submanifolds, and using
integration theory on the manifold, we obtain several
characterizations.

Theorem 24. Let Mn =Nn1
T × f N

n2
ϑ be a compact-orientated

warped product semi-slant submanifold generalized complex

space form ~M
2mðκ, αÞ admitting a nearly Kaehler structure.

Then, Mn is a trivial warped product if and only if

hk k2 ≥ 2
κ + 3α
4

� 	
n2n1: ð46Þ

Proof. From Theorem 21, we have

hk k2 ≥ 2
κ + 3α
4

� 	
n2n1 − n2Δ ln fð Þ + n2 ∇ln fk k2: ð47Þ

This implies that

n2 ∇ln fk k2 + 2
κ + 3α
4

� 	
n2n1 − hk k2 ≤ n2Δ ln fð Þ: ð48Þ

Applying integration theory on the compact-orientated
Riemannian manifoldMn without boundary, and then using
(21), we obtain

ð
Mn

2
κ + 3α
4

� 	
n2n1 + n2 ∇ln fk k2 − hk k2

� 	
dV ≤

ð
Mn

Δ ln fð ÞdV = 0:

ð49Þ

Now, if the inequality (44) holds, then from (47), we
find that

ð
Mn

∇ln fk k2� �
dV ≤ 0, ð50Þ

which is impossible for a positive integrable function;
hence, ∇ln f = 0; that is, f is a constant function on Mn.
Thus, by Remark 11 on warped product manifolds, Mn

is trivial. The converse proof is straightforward.

To prove the equality case, we must prove the following
theorem for later use.

Theorem 25. Let φ be a Dϑ-minimal isometric immersion of
a warped product semi-slant submanifold Nn1

T × f N
n2
ϑ in a

nearly Kaehler manifold ~M
2m
. If Nn2

ϑ is totally umbilical in
~M

2m
, then ϕ is Nn2

ϑ -totally geodesic.

Proof. Let us assume that the second fundamental forms of

Mn and ~M
2m

are denoted by h∗ and ~h, respectively; we define

h Z,Wð Þ + h∗ Z,Wð Þ = ~h Z,Wð Þ: ð51Þ

for any vector fields Z and W that are tangential to Nn2
ϑ .

Thus, the above hypothesis and Remark 12 show that

Nn2
ϑ is totally umbilical in ~M

2m
, owing to its being totally

umbilical in Mn. Then, following Lemma 10 (ii), equation
(47) can be written as

h Z,Wð Þ = g Z,Wð Þ ξ+∇ ln fð Þð Þ, ð52Þ

where the vector field ξ is normal to ΓðTNϑÞ and is such
that ξ ∈ ΓðTMnÞ. Assuming that fe∗1 ,⋯e∗n2g is an orthonor-

mal frame of the slant submanifold Nn2
ϑ , then by taking a

summation over the vector fields of Nn2
ϑ in equation (49),

we obtain

〠
n2

i,j=1
h e∗i , e

∗
j

� �
= ξ+∇ ln fð Þð Þ 〠

n2

i,j=1
g e∗i , e

∗
j

� �
: ð53Þ

The left-hand side of the above equation identically
vanishes due to the Dϑ-minimality of φ, such that ∑n2

i,j=1h
ðe∗i , e∗j Þ = 0. Then, equation (50) takes the following form:

n2 ξ+∇ ln fð Þð Þ = 0: ð54Þ

This implies that Nn2
ϑ is nonempty, such that

ξ = −∇ ln fð Þ: ð55Þ

Thus, from (50) and (53), it follows that hðZ,WÞ = 0, for
every Z,W ∈ ΓðTNn2

ϑ Þ. This means that φ is Nn2
ϑ -totally

geodesic. This completes the proof of the theorem.

Theorem 26. Let Mn =Nn1
T × f N

n2
ϑ be a compact-orientated

warped product semi-slant submanifold in a generalized
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complex space form ~M
2mðκ, αÞ admitting a nearly Kaehler

structure. Then, Mn is a trivial warped product if and only if

〠
n1

i=1
〠
n2

j=1
hν ei, ej
� ��� ��2 = κ + 3α

4

� 	
n2n1, ð56Þ

where n1 = dim NT and n2 = dimRNϑ. Moreover, hν is a
component of h in ΓðνÞ.

Proof. We assume that the equality sign holds in (36); then,
we have

κ + 3α
4

� 	
n2n1 + 2n2 ∇ln fk k2 = h D,Dð Þk k2 + h Dϑ,Dϑ

� ���� ���2
+ 2 h D,Dϑ

� ���� ���2 + 2n2Δ ln fð Þ:
ð57Þ

However, the equality case of inequality (36) implies that
Nn1

T is totally geodesic in a nearly Kaehler manifold; this
means that hðei, ejÞ = 0, for any 1 ≤ i, j ≤ 2d1. Moreover,

Nn2
ϑ is totally umbilical and can be written as

h e∗t , e
∗
sð Þ = g e∗t , e

∗
sð ÞH, ð58Þ

for any 1 ≤ t, s ≤ 2d2. Furthermore, Mn is a minimal subma-
nifold of a nearly Kaehler manifold; thus, its mean curvature
vector H should be zero; that is, H = 0; hence, hðe∗t , e∗s Þ = 0,
for every 1 ≤ t, s ≤ 2d2 through Theorem 25

κ + 3α
4

� 	
n2n1 = n2Δ ln fð Þ + h D,Dϑ

� ���� ���2 − n2 ∇ln fk k2:

ð59Þ

We assume that Mn is a compact submanifold; thus, Mn

is closed and bounded; hence, by integrating the above equa-
tion over the volume element dV of Mn and using (21), we
find that

ð
Mn

h D,Dϑ
� ���� ���2 − n2 ∇ln fk k2


 �
dV =

ð
Mn

κ + 3α
4

� 	
n2n1dV :

ð60Þ

Now, let X = ei and Z = ej for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2,
respectively; then, using (14) and expressing in terms of the
orthonormal frame, we have

h D,Dϑ
� ���� ���2 = 〠

2m

k=1
〠
n1

i=1
〠
n1

j=1
g h ei, e∗j

� �
, ek

� �2
: ð61Þ

In the above equation, the first term on the right-hand
side is the FDϑ-component and the second term is the ν
-component. Let us suppose that Mn =Nn1

T × f N
n2
ϑ is a

warped product semi-slant submanifold of an n-dimen-

sion in a nearly Kaehler manifold ~M
2m

of 2m dimensions,

such that dim NT = n1 = 2d1 and dimRNϑ = n2 = 2d2. We
assume that the tangent spaces of Nn1

T and Nn2
ϑ are D

and Dϑ, respectively. We further assume that fe1, e2,⋯,
ed1 , ed1+1 = Je1,⋯,e2d1 = Jed1g is a local orthonormal frame

of TNn1
T and that fe2d1+1 = e∗1 ,⋯,e2d1+d2 = e∗d2 , e2d1+d2+1 =

e∗d2+1 = sec ϑPe∗1 ,⋯,en1+n2 = e∗n2 = sec ϑPe∗d2g is a local ortho-

normal frame of TNn2
ϑ . Thus, the orthonormal frames of

the normal subbundles FDϑ and ν are fen+1 =~e1 = csc ϑF
e∗1 ,⋯,en+d2 =~ed2 = csc ϑFe∗1 , en+d2+1 =~ed2+1 = csc ϑ sec ϑFPe∗1 ,
⋯,en+2d2 =~e2d2 = csc ϑ sec ϑFPe∗d2g and fen+2d2+1,⋯,e2mg,
respectively. Taking a summation over the vector fields
on Nn1

T and Nn2
ϑ and using adapted frame fields, we obtain

h D,Dϑ
� ���� ���2 = csc2ϑ〠

d1

i=1
〠
d2

j,k=1
g h ei, e∗j

� �
, Fe∗k

� �2

+ csc2ϑ sec2ϑ〠
d1

i=1
〠
d2

j,k=1
g h ei, Pe∗j

� �
, Fe∗k

� �2

+ csc2ϑ sec2ϑ〠
d1

i=1
〠
d2

j,k=1
g h Jei, e∗j

� �
, FPe∗k

� �2

+ csc2ϑ sec2ϑ〠
d1

i=1
〠
d2

j,k=1
g h Jei, e∗j

� �
, FPe∗k

� �2

+ csc2ϑ sec4ϑ〠
d1

i=1
〠
d2

j,k=1
g h Jei, Pe∗j

� �
, FPe∗k

� �2

+ csc2ϑ sec2ϑ〠
d1

i=1
〠
d2

j,k=1
g h Jei, Pe∗j

� �
, Fe∗k

� �2

+ csc2ϑ〠
d1

i=1
〠
d2

j,k=1
g h Jei, e∗j

� �
, Fe∗k

� �2

+ csc2ϑ sec4ϑ〠
d1

i=1
〠
d2

j,k=1
g h ei, Pe∗j

� �
, FPe∗r

� �2

+ 〠
2m

r=n+n2+1
〠
n1

i=1
〠
n2

j=1
g h ei, ej
� �

, er
� �2

:

ð62Þ

Then, using Lemmas 14 to 18 in the above equations,
we derive

h D,Dϑ
� ���� ���2 = 2 csc2ϑ +

1
9
cot2ϑ

� 	
〠
d1

i=1
〠
d2

j=1
ei ln fð Þ2g e∗j , e

∗
j

� �2

+ 2 csc2ϑ +
1
9
cot2ϑ

� 	
〠
d1

i=1
〠
d2

j=1
Jei ln fð Þ2g e∗j , e

∗
j

� �2

+ 〠
2m

r=n+n2+1
〠
n1

i=1
〠
n2

j=1
g h ei, ej
� �

, er
� �2

:

ð63Þ
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From (17), the last equation can be expressed as

h D,Dϑ
� ���� ���2 = 2 csc2ϑ +

1
9
cot2ϑ

� 	
∇ln fk k2 〠

d2

j=1
g e∗j , e

∗
j

� �2

+ 〠
2m

r=n+n2+1
〠
n1

i=1
〠
n2

j=1
g h ei, ej
� �

, er
� �2,

ð64Þ

which implies that

h D,Dϑ
� ���� ���2 = n2 1 +

10
9

cot2ϑ
� 	

∇ln fk k2 + 〠
n1

i=1
〠
n2

j=1
hν ei, ej
� ��� ��2:

ð65Þ

Then, from (58) and (63), it follows that

ð
Mn

〠
n1

i=1
〠
n2

j=1
hμ ei, ej
� ��� ��2 + 10

9
n2 cot2ϑ ∇ln fk k2

( )
dV =

ð
Mn

κ + 3α
4

� 	
n2n1dV :

ð66Þ

If (54) holds identically, then from (66), we find that
either f is constant on Mn or cot ϑ = 0. However, Mn is
a proper semi-slant submanifold; thus, Mn is a simple Rie-
mannian product. The converse proof follows immediately
from (66). Hence, the theorem is proven completely.

Corollary 27. Assume that Mn =Nn1
T × f N

n2
ϑ is a warped

product semi-slant submanifold in a generalized complex

space form ~M
2mðκ, αÞ admitting a nearly Kaehler structure.

Suppose that Nn1
T is a compact invariant submanifold and

λT is a nonzero eigenvalue of the Laplacian on Nn1
T . Then,ð

Nn1
T

hk k2dVT ≥
ð
Nn1

T

κ + 3α
4

� 	
n2n1dV + 2n2λT

ð
Nn1

T

ln fð Þ2dVT ,

ð67Þ

where dVT is the volume element on Nn1
T . The equality sign

holds if and only if the following are satisfied:

(i) ∇ln f = λT ln f

(ii) A warped product semi-slant submanifold Mn =Nn1
T

× f N
n2
ϑ is both Nn1

T - and Nn2
ϑ -totally geodesic

Proof. Thus, using the minimum principle property, we have

ð
Nn1

T

∇ln fk k2dVT ≥ λT

ð
Nn1

T

ln fð Þ2dVT , ð68Þ

The equality holds if and only if one has ∇ln f = λT ln f .
Thus, from (44) and (66), we require the result (65). Simi-
larly, it is clear that the equality sign of (65) holds identically
if and only if the warped product is both Nn1

T - and Nn2
ϑ

-totally geodesic. This completes the proof of the corollary.

Corollary 28. Let Mn =Nn1
T × f N

n2
ϑ be a warped product

semi-slant submanifold in a generalized complex space form
~M

2mðκ, αÞ admitting a nearly Kaehler structure such that
Nn1

T is compact, and let λT be a nonzero eigenvalue of the
Laplacian on Nn1

T . Then,

ð
Nn1

T

〠
n1

i=1
〠
n2

j=1
hν ei, ej
� ��� ��2 !

dVT ≥
ð
Nn1

T

2
κ + 3α

4

� 	
n2n1dV

+
10
9
n2 cot2ϑλT

ð
Nn1

T

ln fð Þ2dVT :

ð69Þ

The equality sign holds if and only if the following are
satisfied:

(a) ∇ln f = λT ln f

(b) A warped product semi-slant submanifold Mn =Nn1
T

× f N
n2
ϑ is both Nn1

T - and Nn2
ϑ -totally geodesic

Proof. The proof follows from (67) and (66). This completes
the proof of the theorem.

5. Applications to Dirichlet Energy Functions
and Hamiltonian

We discuss connected, compact Riemannian manifolds with
borders in this section; that is, ∂M ≠∅. Using Hopf’s
lemma, we apply these to warped product submanifolds.
To determine whether nontrivial warped products become
trivial warped product submanifolds of nearly Kaehler man-
ifolds, we obtain necessary and sufficient conditions in terms
of Dirichlet energy (analogous to kinetic energy) and Ham-
iltonian of warping functions.

Theorem 29. Assume that φ : Mn =Nn1
T × f N

n2
ϑ is an isomet-

ric immersion of a warped product semi-slant in a generalized

complex space form ~M
2mðκ, αÞ admitting a nearly Kaehler

structure. A connected and compact warped product Nn1
T × f

Nn2
ϑ is trivial if and only if the Dirichlet energy function satisfies

E ln fð Þ = 9
20n2

tan2ϑ
ð
Mn

κ + 3α
4

� 	
n2n1 − 〠

n1

i=1
〠
n2

j=1
hν ei, ej
� ��� ��2( )

dV ,

ð70Þ

where Eðln f Þ represents the Dirichlet energy of the warping
function ln f and dV is the volume element onMn.
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Proof. Combining equations (57) and (63), we obtain

κ + 3α
4

� 	
n2n1 = n2Δ ln fð Þ + 〠

n1

i=1
〠
n2

j=1
hν ei, ej
� ��� ��2 + n2

10
9

cot2ϑ ∇ln fk k2:

ð71Þ

Taking an integration on Mn over the volume element
dV with a nonempty boundary in the above equation, we
find that

ð
Mn

κ + 3α
4

� 	
n2n1dV = n2

ð
Mn

Δ ln fð Þð ÞdV

+
ð
Mn

〠
n1

i=1
〠
n2

j=1
hν ei, ej
� ��� ��2 !

dV

+
10
9
n2 cot2ϑ

ð
Mn

∇ln fk k2� �
dV :

ð72Þ

Then, from (23) and (70), it follows that

1
n2

ð
Mn

κ + 3α
4

� 	
n2n1dV =

ð
Mn

Δ ln fð ÞdV

+
1
n2

ð
Mn

〠
n1

i=1
〠
n2

j=1
hν ei, ej
� ��� ��2 !

dV

+
20
9

cot2ϑE ln fð Þ:
ð73Þ

Equality (68) is satisfied if and only if we obtain from
(71) the condition that

Ð
MnΔðln f ÞdV = 0, which implies

that Δðln f Þ = 0: The theorem hypothesizes Mn as a con-
nected, compact warped product semi-slant submanifold;
thus, Theorem 4 implies that ln f = 0⟹ f = 1, which
means that f is constant onMn. Thus, the theorem is proven
completely.

In a similar manner, we derive several characterizations
in terms of the Hamiltonian.

Theorem 30. Let Mn =Nn1
T × f N

n2
ϑ be a connected and com-

pact warped product semi-slant submanifold in a generalized

complex space form ~M
2mðκ, αÞ admitting a nearly Kaehler

structure. Then, Mn is a trivial warped product submanifold
of Nn1

T and Nn2
ϑ if and only if the Hamiltonian of the warping

function satisfies the following equality:

H d ln fð Þ, xð Þ = 9
20n2

tan2ϑ
κ + 3α

4

� 	
n2n1 −

1
n2

〠
n1

i=1
〠
n2

j=1
hν ei, ej
� ��� ��2 !

:

ð74Þ

Proof. Using (15) in (69), we derive

20
9

cot2ϑH d ln fð Þ, xð Þ + Δ ln fð Þ = κ + 3α
4

� 	
n1 −

1
n2

〠
n2

j=1
hν ei, ej
� ��� ��2:

ð75Þ

Equation (72) is obtained if and only if Δðln f Þ = 0 on
Mn; thus, by Theorem 4, the warped product submanifold
Mn is trivial. This completes the proof of the theorem.

The analogy of Theorem 3 for this case is classified
below.

Theorem 31. Assume that φ : Mn =Nn1
T × f N

n2
ϑ is an isomet-

ric immersion of a compact warped product semi-slant sub-

manifold in a generalized complex space form ~M
2mðκ, αÞ

admitting a nearly Kaehler structure. Let the warping func-
tion be the solution of the Euler–Lagrange equation; then,
Mn is necessarily a trivial warped product if

hk k2 ≥ 2
κ + 3α
4

� 	
n2n1: ð76Þ

Proof. If the warping function satisfies the conditions of the
Euler–Lagrange equation, then from Theorem 3, we obtain

Δ ln fð Þ = 0: ð77Þ

Thus, from (44) and (75), we derive

hk k2 ≥ 2
κ + 3α
4

� 	
n2n1 + n2 ∇ln fk k2: ð78Þ

Suppose that inequality (74) holds; then, (76) implies
that the warping function must be constant on Mn. This
completes the proof of the theorem.

Theorem 32. Assume that φ : Mn =Nn1
T × f N

n2
ϑ is an isomet-

ric immersion of a compact warped product semi-slant sub-

manifold in a generalized complex space form ~M
2mðκ, αÞ

admitting a nearly Kaehler structure and that the warping
function is a solution of the Euler–Lagrange equation. Then,
the necessary and sufficient conditions for the warped product
Nn1

T × f N
n2
ϑ being trivial are as follows:

〠
n1

i=1
〠
n2

j=1
hν ei, ej
� ��� ��2 = κ + 3α

4

� 	
n2n1: ð79Þ

Proof. The proof of the above theorem is the same as that of
Theorem 31; it uses (57), (63), and Theorem 3. This com-
pletes the proof of the theorem.
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6. Classification of Ricci Curvature and
Divergence of the Hessian Tensor

In this section, we study several applications of the derived
inequality by considering equality cases. Let us identify any
ð0, 2Þ-tensor T on M with a ð1, 1Þ-tensor via

g T Zð Þ, Yð Þ = T Z, Yð Þ, ð80Þ

for all Y , Z ∈ ΓðTMÞ: Thus, we obtain

div ϕTð Þ = ϕ div T + T ∇ϕ, ·ð Þ, ∇ ϕTð Þ = ϕ∇T + dϕ ⊗ T ,
ð81Þ

for all ϕ ∈ C∞ðMÞ. In particular, we have div ðϕgÞ = dϕ.
Moreover, the following general facts are well established
in the literature:

1ð Þ div ∇2ϕ = Ric ∇ϕ, ·ð Þ + dΔϕ,  iið Þ 12 d ∇k k2 = ∇2ϕ ∇, ·ð Þ:
ð82Þ

We consider Mn to be a compact Riemannian manifold
with boundaries and obtain the following classification
results.

Theorem 33. Assume that φ : Mn =Nn1
T × f N

n2
ϑ is an isomet-

ric immersion of a compact warped product semi-slant sub-
manifold Nn1

T × f N
n2
ϑ in a generalized complex space form

~M
2mðκ, αÞ admitting a nearly Kaehler structure. If

〠
n1

i=1
〠
n2

j=1
hν ei, e∗j
� ���� ���2 = κ + 3α

4

� 	
n2n1 + n2

ð
Mn

Ric ∇ln f , ·ð ÞdV ,

ð83Þ

is satisfied for the warped product submanifold Mn, then at
least one of the following statements is true for Mn:

(i) The warped product semi-slant submanifold Nn1
T × f

Nn2
ϑ becomes a CR-warped product that is isometri-

cally immersed in a nearly Kaehler manifold

(ii) The nontrivial warped product semi-slant submani-
fold Nn1

T × f N
n2
ϑ in a nearly Kaehler manifold is a

simple Riemannian product of Nn1
T and Nn2

ϑ

Proof. Using the first identity of (79) and setting ϕ = ln f ,
we derive

div ∇2 ln f = Ric ∇ln f , ·ð Þ + dΔ ln fð Þ, ð84Þ

from the hypothesis of the theorem; assuming that Mn is a
compact warped product submanifold with a boundary
and integrating along the volume element dV, we obtain

Δ ln fð Þ =
ð
M

div ∇2 ln f
� �

dV −
ð
M
Ric ∇ln f , ·ð ÞdV: ð85Þ

We use the Green theorem on the compact manifold
Mn; given a smooth function f : M⟶ℝ, we have

Ð
MΔ

f dV = 0. We can apply the results of Yano and Kon (see
[33]) immediately as Δf = −div ð∇f Þ. From the Green
lemma,

Ð
M div ðXÞdV = 0 for any arbitrary vector field X

on Mn. Thus, we obtain
Ð
Mðdiv ∇2 ln f ÞdV = 0; ∇2 ln f is

the Hessian tensor of the warped function (or the Lapla-
cian of ln f ); hence, (82) implies that

Δ ln fð Þ = −
ð
M
Ric ∇ln f , ·ð ÞdV: ð86Þ

Meanwhile, if we assume that the equality holds in the
inequality (36), then from (57) and (63), we have

n2Δ ln fð Þ + 10
9
n2 cot2ϑ ∇ln fk k2 = κ + 3α

4

� 	
n2n1 − 〠

2d1

i=1
〠
2d2

j=1
hν ei, e∗j
� ���� ���2:

ð87Þ

From (83) and (84), we find the following equation:

10
9

cot2ϑ ∇ln fk k2 = n1 −
1
n2

〠
2d1

i=1
〠
2d2

j=1
hν ei, e∗j
� ���� ���2 + ð

M
Ric ∇ln f , ·ð ÞdV:

ð88Þ

Further simplifications give

ð
Mn

Ric ∇ln f , ·ð ÞdV +
κ + 3α
4

� 	
n1 =

1
n2

〠
2d1

i=1
〠
2d2

j=1
hν ei, e∗j
� ���� ���2

+ 10
9

cot2ϑ ∇ln fk k2:
ð89Þ

If the equality (80) is satisfied, then from (86), we
obtain the following condition:

10
9

cot2ϑ ∇ln fk k2 = 0: ð90Þ

Therefore, from the above equation, we derive two
cases such that

cot2ϑ = 0, or ∇ln fk k2 = 0: ð91Þ

Case I: We consider cot2ϑ = 0ðcos2ϑ/sin2ϑÞ = 0, which
implies that cos ϑ = 0ϑ = π/2: From Remark 8, we conclude
that Nn2

ϑ becomes a totally real submanifold; hence, Mn

becomes a CR-warped product submanifold of a nearly
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Kaehler manifold. This completes the proof of (i) from
Theorem 33.

Case II: We assume that k∇ln f k2 = 0, which means that
∇ln f = 0 and gradlnf = 0. This implies that f is a constant
function on Mn. Hence, from Remark 11, we conclude that
Mn is a trivial warped product semi-slant submanifold of a
nearly Kaehler manifold. This is the second part (ii) of
Theorem 33.

Theorem 34. Let φ : Mn =Nn1
T × f N

n2
ϑ be an isometric

immersion of a compact warped product semi-slant subma-
nifold Nn1

T × f N
n2
ϑ in a generalized complex space form

~M
2mðκ, αÞ admitting a nearly Kaehler structure, such that

the warping function ln f is the first eigenfunction of the
Laplacian of Nn1

T ; this is associated with the first eigenvalue
λ1, which satisfies the following:

ð
Hesslnfk k2dV+

ð
Ric ∇ln f ,∇ ln fð ÞdV

=
9λ1 tan2ϑ
10n2

ð
κ + 3α
4

� 	
n2n1 − 〠

n1

i=1
〠
n2

j=1
hν ei, e∗j
� ���� ���2

 !
dV :

ð92Þ

Proof. ln f is the first eigenfunction of the Laplacian of Mn

and is associated with the first eigenvalue λ1; that is, Δ
ln f = λ1 ln f . Thus, we recall the Bochner formula (see,
e.g., [42]), which states that for a differentiable function
f defined on a Riemannian manifold, the following rela-
tion holds:

1
2
Δ ∇ln fk k2 = Hesslnfk k2 + Ric ∇ln f ,∇ ln fð Þ + g ∇ln f ,∇ Δ ln fð Þð Þ:

ð93Þ

Integrating the above equation with the help of the
Stokes theorem, we obtain

ð
Hesslnfk k2dV+

ð
Ric ∇ln f ,∇ ln fð ÞdV+

ð
g ∇ln f ,∇ Δ ln fð Þð ÞdV = 0:

ð94Þ

Now, by using Δ ln f = λ1 ln f and rearranging the
above equation, we derive

ð
∇ln fk k2dV = −

1
λ1

ð
Hesslnfk k2dV+

ð
Ric ∇ln f ,∇ ln fð ÞdV

� 	
:

ð95Þ

Integrating equation (84), we obtain

10n2
9

cot2ϑ
ð

∇ln fk k2dV =
ð

κ + 3α
4

� 	
n2n1 − 〠

2d1

i=1
〠
2d2

j=1
hν ei, e∗j
� ���� ���2

 !
dV :

ð96Þ

It follows from (92) and (93) that

10n2 cot2ϑ
9λ1

ð
Hesslnfk k2dV+

ð
Ric ∇ln f ,∇ ln fð ÞdV

� 	

=
ð

κ + 3α
4

� 	
n2n1 − 〠

2d1

i=1
〠
2d2

j=1
hν ei, e∗j
� ���� ���2

 !
dV :

ð97Þ

The above equation and (75) imply that cot2ϑ = 0
ðcos2ϑ/sin2ϑÞ = 0, which implies that cos ϑ = 0ϑ = π/2:
Again, from Remark 8, we conclude that Nn2

ϑ becomes a
totally real submanifold; by using the statement of Theorem
34, we obtain our desired result.

Riemannian manifolds with no Ricci curvature are
known as Ricci-flat manifolds. Ricci-flat manifolds are Ein-
stein manifolds that do not require the cosmological con-
stant to vanish. In a Ricci-flat manifold (particularly in
Euclidean space), a circle, for example, can be deformed into
an ellipse of equal area. We get the following result after tak-
ing into account the fact that warped product submanifolds
are Ricci-flat.

Theorem 35. Let φ : Mn =Nn1
T × f N

n2
ϑ be an isometric

immersion of a compact warped product semi-slant subma-
nifold Nn1

T × f N
n2
ϑ in a generalized complex space form

~M
2mðκ, αÞ admitting a nearly Kaehler structure, such that

the warping function ln f is the first eigenfunction of the
Laplacian of Nn1

T and is associated with the first eigenvalue
λ1; then, N

n1
T is Ricci-flat if and only if

ð
Hesslnfk k2dV =

9λ1 tan2ϑ
10n2

ð
κ + 3α
4

� 	
n2n1 − 〠

2d1

i=1
〠
2d2

j=1
hν ei, e∗j
� ���� ���2

 !
dV :

ð98Þ

Proof. Thus, from (94) and (95), we obtain
Ð
Ricð∇ln f ,∇

ln f ÞdV = 0. This means that Nn1
T is Ricci-flat. The

converse proof is straightforward. This completes the
proof of the theorem.
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