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In this work, computational analysis of generalized Burger’s-Fisher and generalized Burger’s-Huxley equation is carried out using
the sixth-order compact finite difference method. This technique deals with the nonstandard discretization of the spatial
derivatives and optimized time integration using the strong stability-preserving Runge-Kutta method. This scheme inculcates
four stages and third-order accuracy in the time domain. The stability analysis is discussed using eigenvalues of the coefficient
matrix. Several examples are discussed for their approximate solution, and comparisons are made to show the efficiency and
accuracy of CFDM6 with the results available in the literature. It is found that the present method is easy to implement with
less computational effort and is highly accurate also.

1. Introduction

The excerpt approximation of the Navier-Stokes equation is
represented by a prominent nonlinear mathematical model
known as Burger’s equation. It is the perfect combination
of advection and diffusion terms. This equation was intro-
duced by Bateman [1]. Later, Burger [2] extensively worked
on this problem, considering the turbulence effect and the
statistical aspects. Burger’s equation describes the process of
simulating shock wave phenomena, dispersion in a porous
medium, heat conduction, diffusion flow, modeling of gas
dynamics, traffic flow, propagation and reflection of the
nonlinear fluid, boundary layer flow, electrohydrodynamics,
sound waves, oil reservoir simulation, etc. The spreading of
any species due to the favorable environment of the invasive
species or predicting the pattern of spreading was an important
issue in the early twenties. The great researcher Fisher [3] pro-
posed amodel for the temporal and spatial propagation, depict-
ing thewave of increase in gene frequency in an infinitemedium
and termed it as Fisher’s equation. It represents the biological
processes, ecological systems, pattern formation, etc. Petrovskii
and Shigesada [4] combined both the models by assuming that

the distribution of species is symmetrical and the environment
is homogeneous. The following 1D equation was proposed:

∂z
∂t

= ∂2z
∂x2

+ f x, t, z, zxð Þ, inΦ =Φx ×Φt , ð1Þ

with the initial and boundary conditions:

z = z0, in �Φx × t0,
Bz =Ω, on ∂Φx × �Φt ,

ð2Þ

whereΦx = ða, bÞ,Φt = ð0, tÞ, andB is the boundary operator.
A mathematical model for fðx, t, z, zxÞ = −βzδzx + γzð1 − zδÞ
in (1) with the above conditions is known as the generalized
Burger’s-Fisher (gBF) equation and is expressed as follows:

∂z
∂t

−
∂2z
∂x2

+ βzδ
∂z
∂x

− γz 1 − zδ
� �

= 0,  0 ≤ x ≤ 1, t ≥ 0,

ð3Þ

subject to the initial condition:
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z x, 0ð Þ = 1
2 + 1

2 tanh −βδx
2 1 + δð Þ
� �� �1/δ

, ð4Þ

and the boundary conditions:

z 0, tð Þ = 1
2 + 1

2 tanh βδ

2 1 + δð Þ
β2 + γ 1 + δð Þ2

β 1 + δð Þ t

 !" # ! !1/δ

, t ≥ 0,

ð5Þ

z 1, tð Þ = 1
2 + 1

2 tanh −βδ
2 1 + δð Þ 1 − β2 + γ 1 + δð Þ2

β 1 + δð Þ t

 !" # ! !1/δ

,

ð6Þ
where β, γ, and δ are the constants. The choice of the value of
these constants reduces the model to different forms of PDEs.
For γ = 0, it reduces to the generalized Burger’s equation.
Taking β = 0, it becomes the generalized Fisher’s equation.
The exact solution of Equation (3) was given by Chen and
Zhang [5] as follows:

z x, tð Þ = 1
2 + 1

2 tanh −βδ
2 1 + δð Þ x −

β2 + γ 1 + δð Þ2
β 1 + δð Þ t

 !" # ! !1/δ

:

ð7Þ

Over the past many years, work has been done for the
explicit solution of Equation (3). Numerical methods provide
a tool for the physical behaviour of the system, although theoret-
ical results are available in the literature. Sari et al. [6] applied the
compact finite difference method along with the third-order
total variation-diminishing Runge-Kutta scheme in the time
domain. Zhao et al. [7] implemented the pseudospectral
method using the time discretization by Crank-Nicolson as well
as the leapfrog scheme and space discretization by Legendre-
Galerkin and Chebyshev-Gauss-Lobatto for nodes. Moham-
madi [8] proposed the exponential spline and finite difference
approximations. Tatari et al. [9] analyzed the radial basis func-
tion collocation techniquewith the predictor-correctormethod.
Malik et al. [10] discussed the hybridization of the Exp-function
method with the nature-inspired algorithm. Yadav and Jiwari
[11] analyzed the finite element analysis with the existence
and uniqueness of the weak solution using Galerkin’s finite ele-
mentmethod.Macias-Diaz andGonzalez [12] implemented the
finite difference method. Soori [13] obtained the exact solution
of the Burger’s-Fisher equation using the variational iteration
method and homotopy perturbation method. An exponential
time differencing scheme using the method of lines was devel-
oped by Bratsos and Khaliq [14]. Gurbuz and Sezer [15]
discussed the modified Laguerre matrix-collocation method.

The significance and various applications motivated the
researchers to compute the analytical and numerical solu-
tions of the Burger’s-Fisher equation. Recently, the dynami-
cal behaviour and exact parametric representations of the
traveling wave solutions under different parametric condi-
tions have been discussed by Li [16]. In the findings, the
exact monotonic and nonmonotonic kink wave solutions,
two-peak solitary wave solutions, and periodic wave solu-

tions, as well as unbounded traveling wave solutions have
been obtained. Onyejekwe et al. [17] applied a boundary
integral element-based numerical technique, in which the
boundary and domain values calculate the fundamental
integral inside the domain. The domain integrals due to non-
linearity are considered for computing the solution. Investi-
gation of the global existence and uniqueness of a periodic
wave solution has been conducted by Zhang et al. [18].

Another important nonlinear equation, describing the
interaction between reaction mechanism, convection effect,
and diffusion transport is the 1D generalized Burger’s-
Huxley (gBH) equation, for which fðx, t, z, zxÞ = −βzδzx + γ
zð1 − zδÞðzδ − ηÞ. The equation is expressed as follows:

∂z
∂t

−
∂2z
∂x2

+ βzδ
∂z
∂x

= γz 1 − zδ
� �

zδ − η
� �

, a ≤ x ≤ b, t ≥ 0:

ð8Þ

The parametersβ, γ, andδ are the constants andparameter
η ∈ ð0, 1Þ. The initial and boundary conditions are as follows:

z x, 0ð Þ = η

2 + η

2 tanh A1xð Þ
� �1/δ

, ð9Þ

z a, tð Þ = η

2 + η

2 tanh A1 a − A2tð Þð Þ
h i1/δ

, z b, tð Þ

= η

2 + η

2 tanh A1 b − A2tð Þð Þ
h i1/δ

:

ð10Þ

The exact solution derived by Wang [19], using nonlinear
transformations, is reproduced hereunder:

z x, tð Þ = η

2 + η

2 tanh A1 x − A2tð Þð Þ
h i1/δ

, ð11Þ

where

A1 = ηδ
−β +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 + 4γ 1 + δð Þ

q
4 δ + 1ð Þ

0
@

1
A, A2

= βη

δ + 1 −
1 − η + δð Þ −β +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2 + 4γ δ + 1ð Þ

q� �
2 δ + 1ð Þ :

ð12Þ

For γ = 0, the above model conforms to the generalized
Burger’s equation, and considering β = 0 and δ = 1, the Huxley
equation [20] is obtained. For β = 0, γ = 1, and δ = 1, it corre-
sponds to the Fitzhugh-Nagoma equation [21]. Yefimova and
Kudryashov [22] applied the Hopf-Cole transformation for
solving the gBH equation. The Adomian decomposition
method was implemented by Ismail et al. [23]. Gao and Zhao
[24] proposed the Exp-function method for a series of exact
solutions of the gBH equation. A high-order difference scheme
using Taylor’s series expansionwas presented by Sari et al. [25].
Celik [26] introduced a numerical method based on the Haar
wavelet approach.
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Zhang et al. [27] reduced the Burger’s-Huxley and
Burger’s-Fisher equations into first-order systems and then
applied the discontinuous Galerkin method. A numerical
scheme based on the finite differences for time integration
and cubic B-spline for space integration was proposed by
Mohammadi [28]. A fourth-order finite difference method
was implemented by Bratsos [29] in a two-time level recur-
rence relation for the solution of the gBH equation. El-Kady
et al. [30] discussed the methods based on cardinal Chebyshev
and Legendre basis functions with the Galerkinmethod, Gauss
quadrature formula, and El-Gendi method to convert the
problem into ordinary differential equations. Technique based
on modified cubic B-spline as the basis function with differen-
tial quadrature method was discussed by Singh et al. [31]. The
nonstandard finite difference method was analyzed by Zibaei
et al. [32]. Bukhari [33] applied local radial basis function dif-
ferential collocation method. Macias-Diaz [34] used the
explicit exponential method. Gilani and Saeed [35] applied
the CAS wavelet in conjunction with the Picard technique.
Cardinal B-spline wavelet numerical method was used by
Shiralashetti and Kumbinarasaiah [36]. A technique based
on the hyperbolic-trigonometric tension B-spline method
was applied by Alinia and Zarebnia [37]. Loyinmi and Akinfe
[38] proposed an algorithm using the coupling of the Elzaki
transform with the homotopy perturbation method.

Recently, the exact solution has been computed by
Kushner and Matviichuk [39] using the theory of finite-
dimensional dynamics. Shukla and Kumar [40] applied the
numerical scheme based on the Crank-Nicolson finite differ-
ence method in collaboration with the Haar wavelet analysis,
to obtain the numerical solution. A feed-forward artificial
neural network technique is applied by Panghal and Kumar
[41] in which the constructed error function is minimized
using the quasi-Newton algorithm.

Based on the traditional finite difference approxima-
tions, Lele [42] proposed well-regulated compact schemes
to provide a better representation of shorter proportionate
lengths. Many researchers have extended the compact finite
difference scheme for linear/nonlinear differential equations,
partial differential equations having Dirichlet or Neumann
boundary conditions. Ansari et al. [43] implemented the
CFD6 scheme for free vibration phenomena of nanobeams
in an elastic medium. A similar scheme for incompressible
Navier-Stokes and scalar transport equation was analyzed
by Boersma [44], a reaction-diffusion equation with delay
was approximated by Li et al. [45] and the modified Burger’s
equation by Kaur et al. [46].

In this work, a numerical scheme based on the sixth-
order compact finite difference method (CFDM6) followed
by the strong stability-preserving Runge-Kutta method
(SSP-RK43) for time integration is used to solve gBF and
gBH equations. The advantage of CFDM6 with the SSP-
RK43 method is that it computes the results at more mesh
points, giving a better approximate solution. The proposed
method gives the sixth order of convergence in the spatial
domain and the third order in the temporal domain. The
proposed method is easy to implement and has less compu-
tational cost. The future scope of the method is to solve
various arduous linear and nonlinear PDEs.

The paper is organized as follows: in Section 2, first- and
second-order spatial derivatives of the CFDM6 are derived.
In Section 3, the proposed method is implemented followed
by SSP-RK43. In Section 4, convergence is discussed. In
Section 5, stability analysis for the proposed scheme is
presented. In Section 6, several test problems are discussed
to demonstrate and justify the applicability of the proposed
scheme. In Section 7, the conclusion explaining the effi-
ciency of CFDM6 is given.

2. Compact Finite Difference Method

The spatial domain ϕx = ða, bÞ is divided into uniform mesh
with step iteration xi = a + ih, i = 0, 1, 2,⋯,N , h = ðb − aÞ/N
and for time domain ϕt = ðt0, tÞ, with t0 = 0, a uniform step
of size Δt = t j+1 − t j such that t j = t0 + jΔt, j = 0, 1, 2,⋯, is
followed. The method for calculating first-order and
second-order derivatives using the compact finite difference
scheme is given hereunder.

2.1. Spatial Derivatives of First Order. The first-order spatial
derivatives for CFDM6 at the inner nodes are calculated as
follows [42]:

φz′i−1 + z′i + φz′i+1 = χ
zi+2 − zi−2

4h
� �

+ ψ
zi+1 − zi−1

2h
� �

: ð13Þ

For the optimality of the scheme with higher-order accu-
racy, consider φ = 1/3 representing the implicit form of the
first-order derivative. The unknown parameters on the other
side are calculated by the relation χ = ð1/3Þð4φ − 1Þ and ψ
= ð2/3Þð2 + φÞ. By simple calculation, Equation (13) reduces
to a sixth-order tridiagonal matrix as a linear system of

equations given below with truncation error ð4/7!Þh6zð7Þi :

z′i−1 + 3z′i + z′i+1 =
−zi−2 − 28zi−1 + 28zi+1 + zi+2

12h ,  i = 2, 3,⋯,N − 2:

ð14Þ

For the value of the derivative at x0, x1, xN−1, and xN ,
one-sided forward and backward schemes have been imple-
mented, which produce following results:

z′0 + 5z′1 =
1
60h −197z0 − 25z1 + 300z2 − 100z3 + 25z4 − 3z5ð Þ,

2z′0 + 11z′1 + 2z′2 =
1
12h −80z0 − 35z1 + 136z2 − 28z3 + 8z4 − z5ð Þ,

2z′N−2 + 11z′N−1 + 2z′N = 1
12h zN−5 − 8zN−4 + 28zN−3ð

− 136zN−2 + 35zN−1 + 80zNÞ,

5z′N−1 + z′N = 1
60h 3zN−5 − 25zN−4 + 100zN−3ð

− 300zN−2 + 25zN−1 + 197zNÞ:
ð15Þ

The relations (14) and (15) can be represented in the
form of a matrix system as

Az′ =Bz, ð16Þ
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where

Az′ =

1 5
2 11 2

1 3 1
: : :

: : :

1 3 1
2 11 2

5 1

2
666666666666666664

3
777777777777777775

z′0
z′1
z′2
:

:

z′N−2

z′N−1

z′N

2
666666666666666664

3
777777777777777775

,

Bz = 1
h

−
197
60 −

25
60

300
60 −

100
60

25
60 −

3
60

−
80
12 −

35
12

136
12 −

28
12

8
12 −

1
12

−
1
12 −

28
12 0 28

12
1
12

−
1
12 −

28
12 0 28

12
1
12

: : :

: : :

−
1
12 −

28
12 0 28

12
1
12

−
1
12 −

28
12 0 28

12
1
12

1
12 −

8
12

28
12 −

136
12

35
12

80
12

3
60 −

25
60

100
60 −

300
60

25
60

197
60

2
66666666666666666666666666666666664

3
77777777777777777777777777777777775

z0

z1

z2

z3

:

:

zN−3

zN−2

zN−1

zN

2
666666666666666666666664

3
777777777777777777777775

:

ð17Þ

2.2. Spatial Derivatives of Second Order. Similarly, the
second-order derivative is calculated as

τz′′i−1 + z′′i + τz′′i+1 = σ
zi+2 − 2zi + zi−2

4h2
� �

+ ς
zi+1 − 2zi + zi−1

h2

� �
:

ð18Þ

For τ = 0, this equation represents the explicit method to
calculate the derivative, and for τ = 1/10, it will represent the
implicit scheme of the second-order derivative. The
unknown constants on the R.H.S. are calculated as ς = ð4/3Þ
ð1 − τÞ and σ = ð1/3Þð−1 + 10τÞ. This reduces Equation (18)
to a tridiagonal system as follows:

z′′i−1 + 10z′′i + z′′i+1 =
12
h2

zi+1 − 2zi + zi−1ð Þ: ð19Þ

For the boundary points, one-sided forward and back-
ward schemes have been implemented, which gives the
following results:

10z′′0 + z′′1 =
12
h2

115
36 z0 −

1555
144 z1 +

89
6 z2 −

773
72 z3 +

151
36 z4 −

11
16 z5

� �
,

z′′N−1 + 10z′′N = 12
h2

115
36 zN −

1555
144 zN−1 +

89
6 zN−2

�

−
773
72 zN−3 +

151
36 zN−4 −

11
16 zN−5

�
:

ð20Þ

The second-order derivative can be written in the matrix
form as

ℂz′′ =Dz,

ℂz′′ =

10 1
1 10 1

1 10 1
: : :

: : :

: : :

1 10 1
1 10 1

1 10

2
666666666666666666664

3
777777777777777777775

z′′0
z′′1
z′′2
:

:

:

z′′N−2

z′′N−1

z′′N

2
666666666666666666664

3
777777777777777777775

,

Dz = 12
h2

115
36

−1555
144

89
6

−773
72

151
36

−11
16

1 −2 1
1 −2 1

: : :

: : :

: : :

1 −2 1
1 −2 1

−11
16

151
36

−773
72

89
6

−1555
144

115
36

2
66666666666666666666664

3
77777777777777777777775

z0

z1

z2

z3

:

zN−3

zN−2

zN−1

zN

2
666666666666666666664

3
777777777777777777775

:

ð21Þ

3. Implementation of CFDM6

By substituting the values of first-order and second-order
derivatives in Equations (3) and (8), a linear system of equa-
tions are obtained for i = 0, 1,⋯,N :

(i) Model-I: generalized Burger’s-Fisher equation:

∂zi
∂t

=ℂ−1Dzi − βzδi A
−1Bzi + γzi 1 − zδi

� �
≡L zið Þ: ð22Þ

(ii) Model-II: generalized Burger’s-Huxley equation:

∂zi
∂t

=ℂ−1Dzi − βzδi A
−1Bzi + γzi 1 − zδi

� �
zδi − η
� �

≡L zið Þ:
ð23Þ
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3.1. SSP-RK43 Scheme. Let

dzi
dt

=L zið Þ, i = 0, 1, 2⋯ ,N , ð24Þ

where L represents the nonlinear differential operator as
defined above. In order to solve this system of ODE’s from
the t j to t j+1 time level, SSP-RK43 is applied using the
following operations:

z 1ð Þ = zj + Δt
2 L zj

	 

,

z 2ð Þ = z 1ð Þ + Δt
2 L z 1ð Þ

� �
,

z 3ð Þ = 2
3 z

j + 1
3 z

2ð Þ + Δt
6 L z 2ð Þ

� �
,

zj+1 = z 3ð Þ + Δt
2 L z 3ð Þ

� �
:

ð25Þ

By using the initial condition, zðx, tÞ at every required
time level can be calculated.

4. Convergence Analysis

Convergence of the model is investigated below for the
desired Equations (22) and (23).

Theorem 1. It is an assumption that the given initial value
problem dz/dt =LðzÞ has a unique solution if LðzÞ satisfies
the following conditions:

(1) LðzÞ is a real function

(2) LðzÞ is well defined and continuous in the domain of
t ∈Φt and z ∈ ð−∞,∞Þ

(3) There exists a constant called the Lipschitz constant κ
such that jLðz, t, ΔtÞ −Lð _z, t, ΔtÞj ≤ κjz − _zj, where
t ∈Φt and z and _z be any two different points

It is clearly seen that LðzÞ for the generalized Burger’s-
Fisher equation and generalized Burger’s-Huxley equation
is real, well defined, and continuous. Hence, above theorem
is satisfied.

Lemma 2. A single-step method (25) is said to be regular, if
the incremental function ϕðz, t, ΔtÞ satisfies the following
conditions:

(1) The function is well defined and is continuous in the
given time and space domain

(2) For every t ∈Φt and z, _z ∈ ð−∞,∞Þ, there exit a con-
stant κ such that

ϕ z, t, Δtð Þ − ϕ _z, t, Δtð Þj j ≤ κ z − _zj j: ð26Þ

Lemma 3. Any single-step method is consistent if ϕðz, t, 0Þ
=Lðz, tÞ.

Theorem 4. The consistency is the necessary and sufficient
condition for the convergence of a regular single-step method
with the order (say) p ≥ 1.

Proof. This theorem ensures that the approximate solution
converges to the exact solution. For the proof, consider the
specific incremental function ϕðz, t, ΔtÞ. Assume that the
given differential equation zt ≡Lz has a unique solution
zðtÞ on Φt and also zðtÞ ∈ Cðp+1ÞΦt for p ≥ 1. Using Tay-
lor’s series expansion about any point t j,

z tð Þ = z t j
	 


+ t − t j
	 


z′ t j
	 


+ 1
2! t − t j
	 
2

z′′ t j
	 


+⋯+ 1
p!

t − t j
	 
p

zp t j
	 


+ 1
p + 1ð Þ! t − t j

	 
p+1
zp+1 ξj

� �
,

ð27Þ

where ξ ∈ ðt j, tÞ. Taking t = t j+1, one gets

z t j+1
	 


− z t j
	 


= Δtz′ t j
	 


: ð28Þ

Thus, the incremental function is defined as

ϕ z t j
	 


, t j, Δt
	 


= Δtð Þz′ t j
	 


+ 1
2! Δtð Þ2z′′ t j	 
+⋯+ 1

p!
Δtð Þpzp t j

	 

:

ð29Þ

It is computed using the approximate value of zj

where the exact value zðt jÞ is required. Hence, zj+1 = zj +
Δtϕðzðt jÞ, t j, ΔtÞ, j = 0, 1, 2,⋯,m − 1. To compute the error
using Taylor’s series,

zj+1 = zj + Δtz′ j + Δtð Þ2
2! z′′j + Δtð Þ3

3! z′′′j

+⋯+ Δtð Þp
p!

zp j + Δtð Þp+1
p + 1ð Þ! z

p+1 ξð Þj:
ð30Þ

The approximate value using the SSP-RK43 scheme is

zj+1 = zj + ΔtL zj
	 


+ Δtð Þ2
2! L2 zj

	 

+ Δtð Þ3

3! L3 zj
	 


+⋯+ Δtð Þp
p!

Lp zj
	 


:

ð31Þ

The following relation is obtained:

Δtϕ z t j
	 


, t j, Δt
	 


= Δtz′ t j
	 


+ Δtð Þ2
2! L2 zj

	 

+ Δtð Þ3

3! L3 zj
	 


+⋯+ Δtð Þp
p!

Lp zj
	 


:

ð32Þ
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The value of Δtϕðzj, t j, ΔtÞ is obtained from Δtϕðzðt jÞ,
t j, ΔtÞ by using the exact approximate value of zj in place of
the exact value of zðt jÞ. According to the SSP-RK43, the
approximate value of zðt j+1Þ is obtained as follows:

zj+1 = zj + Δtϕ zj, t j, Δt
	 


+ Δtð Þ2
2! ϕ′ zj, t j, Δt

	 

+ Δtð Þ3

3! ϕ′′ zj, t j, Δt
	 


+⋯:

ð33Þ

For the above relation, compute the values of zðt jÞ, z′ðt jÞ,
z′′ðt jÞ⋯ zpðt jÞ as follows:

z′ t j
	 


=L z t j
	 


, t j
	 


,

z′′ t j
	 


=L t +LLz ,

z′′′ t j
	 


=L tt + 2′L tz +L2Lzz + Lz L t +LLzð Þ:
⋮

ð34Þ

Thus, from these computed values taking t = t j, the error
term is obtained as follows:

Δtp+1

p + 1ð Þ! z
p+1 ξj
� �

< ε: ð35Þ

Hence, on simplification,

Δtp+1zp+1 ξj
� �

< ε p + 1ð Þ!: ð36Þ

In other words,

Δtp+1Lp ξj
� �

< ε p + 1ð Þ!: ð37Þ

Thus, the given value of pwill give the upper bound, and for
the computational purpose, the value of LpðξjÞ in Equation
(37) is replacedwith themax ∣LpðξjÞ ∣ in the temporal domain
Φt. The SSP-RK43 as discussed above is rewritten as
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Figure 1: Plot of eigenvalues corresponding to gBF equation with Δt = 0:0001 and δ = 8.
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Q1 = zj + Δt
2 L zj, t j

	 

,

Q2 =Q1 +
Δt
2 L Q1ð Þ,

Q3 =
2
3 z

j + 1
3Q2 +

Δt
6 L Q2ð Þ,

zj+1 =Q3 +
Δt
2 L Q3ð Þ:

ð38Þ

The iterated value of zj+1 can be written as

zj+1 = zj + c1Q1 + c2Q2 + c3Q3: ð39Þ

Using Taylor’s series expansion, the incremental function
becomes

ϕ zj, t j, Δt
	 


= Δtð Þ−1 c1Q1 + c2Q2 + c3Q3ð Þ: ð40Þ

From the Theorem 1, the proof for convergence is elabo-
rated as follows:

Q1 −Q1
∗ = zj + Δt

2 L zj
	 


− zj
∗ + Δt

2 L zj
∗

� �
,

Q1 −Q1
∗j j ≤ zj − zj

∗
��� ��� + Δt

2 L zj
	 


−L zj
∗

� ���� ��� ≤ 1 + Δt
2 κ

� �
zj − zj

∗
��� ���,

Q2 −Q2
∗ =Q1 +

Δt
2 L Q1ð Þ −Q1

∗ −
Δt
2 L Q1

∗ð Þ,

Q2 −Q2
∗j j ≤ Q1 −Q1

∗j j + Δt
2 L Q1ð Þ −L Q1

∗ð Þj j

= Q1 −Q1
∗j j + Δt

2 L zj + Δt
2 L zj

	 
� �
−L zj

∗ + Δt
2 L zj

∗
� �� �����

����
≤ 1 + Δt

2 κ

� �
zj − zj

∗
��� ���

+ Δt
2 L zj

	 

+ Δt

2 L zj
	 


Lz z j
	 


+ Δt
2 L zj

	 
� �2
Lzz z j

	 
"

+⋯−L zj
∗

� �
−
Δt
2 L zj

∗
� �

Lz z j
∗

� �
−

Δt
2 L zj

∗
� �� �2

Lzz z j
∗

� �#

≤ 1 + Δt
2 κ

� �
zj − zj

∗
��� ��� + Δt

2 L zj
	 


−L zj
∗

� �h i

+ Δt
2

� �2
L zj
	 


Lz z j
	 


−L zj
∗

� �
Lz z j

∗
� ���� ���

+ Δt
2

� �3
L zj
	 
	 
2

Lzz z j
	 


− L zj
∗

� �� �2
Lzz z j

∗
� �����

����+⋯
≤ 1 + Δtκð Þ zj − zj

∗
��� ��� + Δt

2

� �2
κ2 zj − zj

∗
��� ���

= 1 + Δtκ + Δt
2 κ

� �2
" #

zj − zj
∗

��� ���,
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Figure 2: Plot of eigenvalues corresponding to gBH equation with Δt = 0:0001 and δ = 8.
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Q3 −Q3
∗ = 2

3 z
j + Q2

3 + Δt
2 L Q2ð Þ − 2

3 z
j∗ −

Q2
∗

3 −
Δt
2 L Q2

∗ð ÞÞ,

Q3 −Q3
∗j j = 2

3 zj − zj
∗

��� ��� + 1
3 Q2 −Q2

∗j j + Δt
2 L Q2ð Þ −L Q2

∗ð Þj j

≤
2
3 zj − zj

∗
��� ��� + 1

3 Q2 −Q2
∗j j

+ Δt
2 L Q1 +

Δt
2 L Q1ð Þ

� �
−L Q∗

1 +
Δt
2 L Q∗

1ð Þ
� �� �����

����
≤
2
3 zj − zj

∗
��� ��� + 1

3 Q2 −Q2
∗j j

+ Δt
2 L zj

	 

−L zj

∗
� �� ���� ��� + Δt

2 L zj
	 


Lz zj
	 


−Lz zj
∗

� ���� ���� �

≤ zj − zj
∗

��� ��� + Δt
2 κ 2 + Δt

2 κ

� �
zj − zj

∗
��� ���

+ Δt
2 κ zj − zj

∗
��� ��� + Δt

2 κ

� �2
zj − zj

∗
��� ���

≤ zj − zj
∗

��� ��� + 3Δt
2 κ + 2 Δt

2 κ

� �2
" #

zj − zj
∗

��� ���,
ð41Þ

As discussed by [47], the free parameters are largely taken
according to the range of absolute stability. The other possibility
isminimizing the sumof the absolute value of the coefficients of

the truncation error. ThusLz < κ andLzz < κ2/M whereM is
the upper bound of convergence. For the incremental function,

ϕ zj, t j, Δt
	 


− ϕ zj
∗, t j, Δt

� ���� ���
= Δtð Þ−1 c1Q1 + c2Q2 + c3Q3 − c1Q1

∗ − c2Q2
∗ − c3Q3

∗j j
= Δtð Þ−1 c1 Q1 −Q1

∗j j + c2 Q2 −Q2
∗j j + c3 Q3 −Q3

∗j jð Þ

≤ Δtð Þ−1 c1 1 + Δt
2 κ

� �
zj − zj

∗
��� ��� + c2 1 + Δtκ + Δt

2 κ

� �2
" #

zj − zj
∗

��� ���
 !"

+ c3 zj − zj
∗

��� ��� + 3Δt
2 κ + 2 Δt

2 κ

� �2
" #

zj − zj
∗

��� ���
 !#

≤ Δtð Þ−1 c1 + c2 + c3ð Þ + c1 + 2c2 + c3½ � κ2 + c2 + 2c3½ �Δt κ

2
� �2� �

zj − zj
∗

��� ���:
ð42Þ

The backward substitution of (38) and its comparison with
general Taylor’s series [47] gives c1 = 1/4, c2 = 1/2, c3 = 1/4.
Hence, these values generate the inequality as

ϕ zj, t j, Δt
	 


− ϕ zj
∗, t j, Δt

� ���� ��� ≤ κ 1 + 1
2Δtκ +

1
6 Δtκð Þ2

� �
zj − zj

∗
��� ���:

ð43Þ

Table 1: Comparison of absolute error of Example 1 with β = 0:001, γ = 0:001, h = 0:1, and Δt = 0:0001.

t x
δ = 1 δ = 4

CFDM6 ADM [23] CFDM [6] ETDM [14] CFDM6 CFDM [6] ETDM [14]

0.001

0.1 2.2204E-16 1.94E-06 1.01E-07 1.15E-08 1.1102E-16 1.75E-08 7.71E-09

0.5 1.1102E-16 1.94E-06 1.04E-07 3.07E-13 1.1102E-16 1.75E-08 2.07E-13

0.9 4.4409E-17 1.94E-06 1.01E-07 1.15E-08 3.3307E-16 1.75E-08 7.71E-09

0.010

0.1 5.8818E-16 1.94E-05 7.53E-07 6.02E-08 4.4409E-15 1.27E-06 4.05E-08

0.5 1.6653E-16 1.94E-05 1.04E-06 8.96E-13 4.2188E-15 1.75E-06 5.56E-13

0.9 1.1102E-15 1.94E-05 7.53E-07 6.02E-08 4.8850E-15 1.27E-06 4.05E-08

100

0.1 2.2204E-16 — 7.53E-07 1.01E-07 5.5511E-16 — 5.73E-08

0.5 1.1102E-15 — 1.04E-06 1.50E-11 2.7756E-15 — 3.51E-12

0.9 1.1102E-16 — 7.53E-07 1.01E-07 1.3323E-15 — 5.73E-08
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Figure 3: Graphical representation of solutions corresponding to Example 1 with N = 10 and Δt = 0:001.
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It is observed that jϕðzj, t j, ΔtÞj satisfies the Lipschitz condi-
tion in zj and is a continuous function in Δt. Thus, it is con-
cluded that SSP-RK43 is convergent.

5. Stability Analysis

The stability analysis of both the models is discussed below
by taking nonlinearity coefficient z =m (say), where m =
max z, in the entire process to handle the nonlinear term
in Equations (22) and (23). The eigenvalue-based technique
[45] is followed to establish the stability of the system.

(1) Model-I: generalized Burger’s-Fisher equation:

∂z
∂t

=ℂ−1Dzi − βmδA−1Bzi + γ 1 −mδ
� �

zi,

zt = ℂ−1D − βmδA−1B + γ 1 −mδ
� �� �

I
� �

zi ≡Tzi:

ð44Þ

(2) Model-II: generalized Burger’s-Huxley equation:

∂zi
∂t

=ℂ−1Dzi − βmδA−1Bzi + γ 1 −mδ
� �

mδ − η
� �

zi, ð45Þ

zt = ℂ−1D − βmδA−1Bzi + γ 1 −mδ
� �

mδ − η
� �� �

I
� �

zi ≡Tzi,
dz
dt

=Tz:

ð46Þ

The matrix T is constant for both the Model-I and
Model-II with the assumption that it has distinct or possibly
complex eigenvalues with a negative real part. Using the
given initial condition for the analytic solution, the relation
becomes

z tð Þ = exp Ttð Þz0, ð47Þ

whereas on expanding the exponent as a matrix function
where I is the identity matrix,

exp Ttð Þ = I +Tt + Ttð Þ2
2! + Ttð Þ3

3! +⋯: ð48Þ

For Model-I and Model-II, consider the transformation
matrix P such that P−1TP =D where D is the diagonal
matrix; thus, the relation becomes

P−1 exp Ttð ÞP = exp Dtð Þ, ð49Þ

Table 2: Comparison of absolute error of Example 2 with β = 1, γ = 1, h = 0:1, and Δt = 0:0001.

t x
δ = 2 δ = 8

CFDM6 ADM [23] CFDM [6] ETDM [14] CFDM6 CFDM [6] ETDM [14]

0.0005

0.1 2.2547E-11 1.40E-03 7.62E-05 5.67E-06 4.8073E-11 1.02E-04 2.44E-06

0.5 8.4710E-14 1.35E-03 9.14E-05 5.75E-09 1.6162E-12 1.37E-04 1.82E-10

0.9 1.8019E-11 1.28E-03 1.02E-04 5.95E-06 6.3383E-13 1.69E-04 3.15E-06

0.0010

0.1 4.3846E-11 2.80E-03 1.50E-04 1.08E-05 9.3434E-11 2.00E-04 4.65E-06

0.5 1.8086E-13 2.69E-03 1.83E-04 1.15E-08 3.2596E-12 2.74E-04 4.02E-10

0.9 3.5862E-12 2.55E-03 2.00E-04 1.14E-05 1.6023E-12 3.31E-04 6.00E-06
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Figure 4: Graphical representation of solutions corresponding to Example 2 with N = 10 and Δt = 0:001.
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Table 3: Comparison of absolute error of Example 3 with β = 0:1, γ = −0:0025, h = 0:1, and Δt = 0:0001.

t x
δ = 2 δ = 4 δ = 8

CFDM6 CFDM [6] ETDM [14] CFDM6 CFDM [6] ETDM [14] CFDM6 CFDM [6] ETDM [14]

0.1

0.1 6.661E-16 1.21E-05 9.47E-06 2.220E-16 1.34E-05 6.76E-06 1.110E-15 1.47E-05 4.09E-06

0.5 6.661E-16 2.90E-05 2.74E-08 5.551E-16 3.49E-05 1.03E-08 6.661E-16 3.83E-05 1.84E-08

0.9 2.220E-16 1.54E-05 9.57E-06 7.772E-16 1.39E-05 6.92E-08 3.331E-16 1.53E-05 4.24E-06

0.5

0.1 1.341E-16 1.67E-05 9.58E-06 6.661E-16 2.00E-05 6.83E-06 4.441E-16 2.20E-05 4.14E-06

0.5 1.887E-15 4.69E-05 5.18E-08 2.331E-15 5.64E-05 1.93E-08 6.661E-16 6.22E-05 3.47E-08

0.9 4.441E-16 1.71E-05 9.66E-06 1.665E-15 2.07E-05 7.01E-06 1.332E-15 2.28E-05 4.30E-06

2.0

0.1 5.551E-16 — 9.59E-06 1.221E-15 — 6.86E-06 1.221E-15 — 4.20E-06

0.5 3.331E-15 — 5.26E-08 1.776E-15 — 1.89E-08 3.997E-15 — 3.45E-08

0.9 6.661E-16 — 9.67E-06 7.772E-16 — 7.04E-06 3.331E-16 — 4.35E-06

Table 4: Comparison of absolute error of Example 4 with β = 1, γ = 1, η = 0:001, δ = 2, h = 0:1, and Δt = 0:0001.

Method
t = 0:1 t = 1

x = 0:1 x = 0:5 x = 0:9 x = 0:1 x = 0:5 x = 0:9
CFDM6 (Δt = 0:1) 6.4123E-08 6.4126E-08 6.4129E-08 6.4099E-07 6.4102E-07 6.4105E-07

EFD [49] 2.0510E-06 5.2339E-06 2.0511E-06 3.0562E-06 8.4901E-06 3.0564E-06

HSCM [50] 5.1820E-07 1.3220E-06 5.1820E-07 7.7340E-07 2.1480E-06 7.7340E-07

UAHT [37] 2.8510E-07 7.8223E-07 2.8507E-07 3.0616E-07 8.5042E-07 3.0614E-07

UAH [37] 5.2629E-07 1.3423E-06 5.2620E-07 7.8705E-07 2.1860E-06 7.8690E-07

UAT [37] 5.3131E-07 1.3585E-06 5.3121E-07 7.8706E-07 2.1861E-06 7.8691E-07
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Figure 5: Graphical representation of solutions corresponding to Example 3 with N = 10 and Δt = 0:001.

Table 5: Comparison of L∞ error norm of Example 4 with β = 1, γ = 1, η = 0:001, h = 0:1, and Δt = 0:001.

Method
t = 0:2 t = 1

δ = 1 δ = 4 δ = 8 δ = 1 δ = 4 δ = 8
CFDM6 (Δt = 0:1) 7.4965E-08 1.3207E-07 1.3587E-07 3.7494E-07 6.6011E-07 6.7896E-07

MCSCM [51] 3.7487E-08 1.2271E-05 3.3191E-05 4.2940E-08 1.4046E-05 3.7949E-05

MGT [52] 4.0305E-08 1.3193E-05 3.5687E-05 4.6849E-08 1.5325E-05 4.1407E-05

UAHT [37] 1.8104E-08 5.9274E-06 1.6034E-05 1.8219E-08 5.9602E-06 1.6102E-05

UAH [37] 4.0069E-08 1.3118E-05 3.5485E-05 4.6833E-08 1.5321E-05 4.1400E-05

UAT [37] 4.0326E-08 1.3202E-05 3.5712E-05 4.6834E-08 1.5322E-05 4.1400E-05
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where

D =

η1

η2

η

: : :

: : :

ηn−2

ηn−1

ηn

2
666666666666666666664

3
777777777777777777775

: ð50Þ

Taking P−1z = v in Equation (46), the differential equa-
tion becomes

dv
dt

=Dv: ð51Þ

Similarly, as discussed above, the solution of Equation
(52) is v = exp ðDtÞv0, and the recursive relation is

vj+1 = E DΔtð Þvj: ð52Þ

In this diagonal matrix, EðDΔtÞ is an approximate
matrix of exp ðDΔtÞ. The diagonal elements of the approxi-
mated matrix are EjðηjΔtÞ. Implementing Equation (25) on
the scalar Equation (44),

z′ = ηjz: ð53Þ

Thus, the method discussed in Equation (25) is abso-
lutely stable if

Ej η jΔt
	 
�� �� < 1, ð54Þ

where Re ðηÞ < 0. The stability of the system exclusively
depends on the eigenvalues of the coefficient matrix T of
the form ∑4

m=0ðTΔtÞm/m! which should satisfy Equation
(54). The necessary conditions that eigenvalues of T should
satisfy are given below [47]:

Table 6: Comparison of error norms of Example 4 with β = 1, γ = 1, η = 0:001, δ = 2, h = 0:1, and Δt = 0:01.

Method Error (time) t = 0:05 t = 0:1 t = 1 t = 5

CFDM6
L∞ 3.2065E-08 6.4129E-08 6.4105E-07 3.1999E-06

L2 3.0418E-08 6.0835E-08 6.0812E-07 3.0355E-06

UAHT [37]
L∞ 6.0735E-07 7.8321E-07 8.5042E-07 8.4946E-07

L2 4.4929E-07 5.7352E-07 6.2103E-07 6.2033E-07

UAH [37]
L∞ 8.0770E-07 1.3430E-06 2.1860E-06 2.1837E-06

L2 6.2288E-07 1.0009E-06 1.5964E-06 1.5947E-06

UAT [37]
L∞ 8.2028E-07 1.3587E-06 2.1861E-06 2.1837E-06

L2 6.3230E-07 1.0124E-06 1.5964E-06 1.5947E-06
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Figure 6: Error and solution profile of Example 4 with N = 50 and Δt = 0:01.
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(i) For real η j::−2:78 < Δtηj < 0

(ii) For pure imaginary ηj : −2
ffiffiffi
2

p
< Δtη j < 2

ffiffiffi
2

p

(iii) For complex ηj : Δtηj should lie in the region as
given by [48]

For different values of parameters, eigenvalues correspond-
ing to gBF and gBH equations are given in Figures 1 and 2,
respectively. It can be clearly observed that the eigenvalues of
all the consideredproblems satisfy the above defined conditions;
therefore, the proposed technique is unconditionally stable.

6. Numerical Experiments

The accuracy of compact finite difference scheme is mea-
sured using the L2 and L∞ error norms, which are defined
as follows:

L∞ = max
0≤i≤N

zi − Zij j, L2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h〠

N

i=0
zi − Zið Þ2

vuut , ð55Þ
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Figure 7: Error and solution profile of Example 5 with N = 50 and Δt = 0:01.

Table 8: Comparison of L∞ error norm of Example 5 with β = 0:1, γ = 0:001, η = 0:0001, h = 0:1, and Δt = 0:001 for different values of δ.

Method
t = 0:2 t = 1

δ = 1 δ = 4 δ = 8 δ = 1 δ = 4 δ = 8
CFDM6 (Δt = 0:1) 5.7337E-13 1.1345E-12 1.1825E-12 2.8669E-12 5.6727E-12 5.9123E-12

MCSCM [51] 3.0271E-13 5.6344E-10 2.0904E-09 3.4889E-13 6.4937E-10 2.4085E-09

MGT [52] 3.0804E-13 5.7325E-10 2.1267E-09 3.5806E-13 6.6634E-10 2.4720E-09

UAHT [37] 1.3929E-13 2.5756E-10 9.5551E-10 1.4017E-13 2.5918E-10 9.6154E-10

UAH [37] 3.0631E-13 5.7006E-10 2.1148E-09 3.5847E-13 6.6629E-10 2.4718E-09

UAT [37] 3.0790E-13 5.7372E-10 2.1284E-09 3.5746E-13 6.6630E-10 2.4719E-09

Table 7: Comparison of absolute error of Example 5 with β = 0:1, γ = 0:001, η = 0:0001, δ = 2, h = 0:1, and Δt = 0:0001.

Method
t = 0:5 t = 0:8

x = 0:1 x = 0:5 x = 0:9 x = 0:1 x = 0:5 x = 0:9
CFDM6 (Δt = 0:1) 2.7448E-12 2.7405E-12 2.7442E-12 4.3917E-12 4.3848E-12 4.3908E-12

EFD [49] 4.3493E-11 1.2069E-10 4.3494E-11 4.3758E-11 1.2154E-10 4.3759E-11

HSCM [50] 2.1847E-11 6.0620E-11 2.1840E-11 2.1980E-11 6.1050E-11 2.1980E-11

UAHT [37] 7.3920E-12 2.0534E-11 7.3920E-12 7.3920E-12 2.0534E-11 7.3920E-12

UAH [37] 1.8881E-11 5.2390E-11 1.8881E-11 1.8998E-11 5.2769E-11 1.8998E-11

UAT [37] 1.8892E-11 5.2427E-11 1.8892E-11 1.8999E-11 5.2772E-11 1.8999E-11
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where zi and Zi represent the exact and numerical solutions,
respectively, at the node point xi for some fixed time.

Example 1. Consider gBF Equation (3) with the parameters
β = 0:001 and γ = 0:001 for the initial condition as Equation
(4) and the boundary conditions as (5) and (6). The exact

solution is given by Equation (7). Table 1 gives a comparison
of the absolute error for fixed spatial step size h = 0:1 and
temporal step size Δt = 0:0001. Absolute error is calculated
at time levels t = 0:001, 0:010, 100 with δ = 1 and δ = 4. The
results are found to be more accurate in comparison to the
Adomian decomposition method [23], compact FDM [25],

Table 9: Comparison of absolute error of Example 6 with β = 5, γ = 10, η = 0:0001, δ = 2, h = 0:1, and Δt = 0:0001.

t x CFDM6 (Δt = 0:1) EFD [49] HSCM [50] UAHT [37]

0.2

0.1 1.2065E-08 6.58058E-07 1.971E-07 8.69755E-08

0.5 1.2065E-08 1.78564E-06 5.350E-07 2.41380E-07

0.9 1.2065E-08 6.58087E-07 1.971E-07 8.69729E-08

0.5

0.1 3.0158E-08 7.45354E-07 2.233E-07 8.74403E-08

0.5 3.0158E-08 2.06834E-06 6.198E-07 2.42887E-07

0.9 3.0159E-08 7.45392E-07 2.233E-07 8.74376E-08

0.8

0.1 4.8246E-08 7.49483E-07 2.247E-07 8.74351E-08

0.5 4.8247E-08 2.08190E-06 6.242E-07 2.42873E-07

0.9 4.8247E-08 7.49521E-07 2.247E-07 8.74324E-08

Table 10: Comparison of absolute error of Example 6 with β = 5, γ = 10, η = 0:00001, δ = 2, h = 0:1, and Δt = 0:0001.

t x CFDM6 (Δt = 0:1) EFD [49] HSCM [50] UAHT [37]

0.2

0.1 1.2066E-10 2.08154E-08 6.235E-09 2.75063E-09

0.5 1.2066E-10 5.64806E-08 1.692E-08 7.63381E-09

0.9 1.2066E-10 2.08155E-08 6.235E-09 2.75062E-09

0.5

0.1 3.0164E-10 2.35874E-08 7.065E-09 2.76548E-09

0.5 3.0164E-10 6.54514E-08 1.960E-08 7.68188E-09

0.9 3.0164E-10 2.35875E-08 7.065E-09 2.76547E-09

0.8

0.1 4.8262E-10 2.37299E-08 7.108E-09 2.76547E-09

0.5 4.8262E-10 6.59132E-08 1.974E-08 7.68186E-09

0.9 4.8262E-10 2.37300E-08 7.108E-09 2.76546E-09
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Figure 8: Error and solution profile of Example 6 with N = 50 and Δt = 0:01.
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and exponential time differencing method of lines [29].
Figure 3(a) compares numerical and exact solution at differ-
ent time levels, and Figure 3(b) presents the 3D behaviour of
the numerical solution with N = 10, Δt = 0:01, and δ = 8.

Example 2. Consider Equation (3) for β = γ = 1 with the ini-
tial condition (4) and boundary conditions (5) and (6). The
absolute error is compared in Table 2 with those of previous
investigators Ismail et al. [23], Sari et al. [25], and Bratsos

Table 12: Comparison of absolute error of Example 7 with β = 0, γ = 1, η = 0:001, δ = 3, h = 0:1, and Δt = 0:0001:

t x CFDM6 ADM [23] FDS4 [29] MCSDQM [31]

0.05

0.1 3.7499E-08 1.9841E-06 3.9673E-06 1.5946E-06

0.5 3.7499E-08 1.9837E-06 3.9665E-06 3.6584E-06

0.9 3.7499E-08 1.9833E-06 3.9657E-06 1.5942E-06

0.10

0.1 7.4996E-08 3.9681E-06 7.9346E-06 2.3479E-06

0.5 7.4996E-08 3.9673E-06 7.9330E-06 6.0721E-06

0.9 7.4996E-08 3.9665E-06 7.9314E-06 2.3475E-06

1.00

0.1 7.4962E-07 3.9663E-05 7.9346E-05 3.5221E-06

0.5 7.4962E-07 3.9655E-05 7.9330E-05 9.8610E-06

0.9 7.4962E-07 3.9647E-05 7.9314E-05 3.5217E-06

Table 11: Comparison of absolute error of Example 7 with β = 0, γ = 1, η = 0:001, δ = 2, h = 0:1, and Δt = 0:0001:

t x CFDM6 ADM [23] FDS4 [29] GCG [30] MCQDQM [31]

0.05

0.1 3.7491E-08 5.5890E-07 1.1176E-06 4.8110E-07 4.4924E-07

0.5 3.7493E-08 5.5884E-07 1.1175E-06 3.9966E-07 1.0307E-06

0.9 3.7494E-08 5.5877E-07 1.1174E-06 3.9240E-07 4.4917E-07

0.10

0.1 7.4981E-08 1.1178E-06 2.2353E-06 1.0397E-06 6.6147E-07

0.5 7.4984E-08 1.1177E-06 2.2350E-06 9.5823E-07 1.7107E-06

0.9 7.4987E-08 1.1175E-06 2.2347E-06 9.5091E-07 6.6139E-07

1.00

0.1 7.4953E-07 1.1175E-05 2.2353E-05 1.1021E-05 9.9267E-07

0.5 7.4956E-07 1.0074E-05 2.2350E-05 1.1057E-05 2.7793E-06

0.9 7.4959E-07 1.1173E-05 2.2347E-05 1.0841E-05 9.9260E-07
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Figure 9: Error and solution profile of Example 7 with N = 50 and Δt = 0:01.
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[29] for h = 0:1, Δt = 0:0001, and δ = 2, 8 at t = 0:0005 and
t = 0:0010. Figure 4(a) compares the numerical and exact
solution at different time levels, and Figure 4(b) represents
the 3D behaviour of numerical solution with N = 10, Δt =
0:01, and δ = 8.

Example 3. Consider Equation (3) for the initial and
boundary conditions (4) and (6) with β = 0:1 and γ = −
0:0025. Table 3 depicts the accuracy of the results
obtained by CFDM6, by comparing the absolute error
with literature data for h = 0:1, Δt = 0:0001, and δ = 2, 4,
8. Figure 5(a) compares the numerical and exact solution
at different time levels, and Figure 5(b) represents the
3D behaviour of the numerical solution with N = 10, Δt
= 0:01, and δ = 8.

Example 4. Consider gBH Equation (8) with the initial and
boundary conditions (9) and (10) for parametric values β
= γ = 1 and η = 0:001. The exact solution is given by (11).
The absolute error at node points x = 0:1, 0:5, 0:9 is given
in Table 4 at t = 0:1 and t = 1 for h = 0:1, Δt = 0:0001, and
δ = 2. Comparison shows that results are better than expo-
nential finite difference scheme [49], hybrid B-spline [50],
and tension B-spline collocation method [37]. Table 5 gives
a comparison of L∞ error norm for δ = 1, 4, and 8. Table 6
gives a comparison of L2 and L∞ error norms with δ = 2, h
= 0:1, η = 0:001, Δt = 0:01 at t = 0:05, 0:1, 1, 5. Figure 6(a)
represents the absolute error at different time levels with N
= 10, and Figure 6(b) gives the 3D profile of numerical solu-
tion with N = 50, Δt = 0:01, and δ = 8.

Example 5. The gBH Equation (8) is considered for the ini-
tial and boundary conditions (9) and (10). The CFDM6
results are evaluated forβ = 0:1andγ = 0:001, andη = 0:0001
,h = 0:1,Δt = 0:0001, andδ = 2at timet = 0:5andt = 0:8are
given in Table 7. The absolute error is compared with [37,
49, 50]. The L∞ error norm is compared for CFDM6 with
the collocation of cubic B-splines [51], multiscale Runge-
Kutta Galerkin method (MGT) [52], and a new kind of
tension B-spline function [37] and is presented in Table 8
at different values of δ = 1, 4, 8. Figure 7(a) represents the
absolute error at different time levels with N = 10, and
Figure 7(b) gives the 3D profile of numerical solution with
N = 50, Δt = 0:01, and δ = 8.

Example 6. Consider gBH Equation (8) with initial and
boundary conditions (9) and (10). The absolute error is
compared with the schemes discussed by [37, 49, 50] for β
= 5, γ = 10, η = 0:0001, Δt = 0:0001, and δ = 2 at different
node points for time t = 0:2, 0:5, and 0:8. Tables 9 and 10
give a comparison of absolute error for η = 0:0001 and η =
0:00001, respectively. Remarkable closeness of numerical
and exact solutions can be seen in the tables. Figure 8(a) rep-
resents the absolute error at different time levels with N = 10,
and Figure 8(b) gives the 3D profile of numerical solution
with N = 50, Δt = 0:01, and δ = 8.

Example 7. The gBH Equation (8) is subjected to initial
and boundary conditions (9) and (10) for β = 0, γ = 1,
and η = 0:001. Table 11 compares absolute error of
CFDM6 with the Adomian decomposition method
(ADM) [23], fourth-order numerical scheme (FDS4) [29],
Gauss Chebyshev Galerkin (GCG) [30], and modified
cubic B-spline differential quadrature method (MCSDQM)
[31] at δ = 2, h = 0:1, and Δt = 0:0001. Table 12 gives the
comparison of absolute error for δ = 3. The efficiency of
the numerical solution to approach the exact solution
can be easily seen, and the results are better than those
of other methods. Figure 9(a) represents the absolute error
at different time levels with N = 10, and Figure 9(b) gives
the 3D profile of the numerical solution with N = 50, Δt
= 0:01, and δ = 8.

7. Conclusion

Compact FDM along with the SSP-RK43 scheme has been
implemented to solve gBF and gBH equations. Several exam-
ples of both the equations are successfully solved with the
proposed technique. Absolute error and L2 and L∞ error
norms are calculated and compared with the previous
results. The results with CFDM6 are found to be better than
those with many techniques like the Adomian decomposi-
tion method, exponential time differencing method of lines,
cubic B-spline collocation method, exponential finite differ-
ence scheme, hybrid B-spline collocation, tension B-spline
collocation, multiscale Runge-Kutta Galerkin method, and
modified cubic B-spline differential quadrature method.
Comparison shows that the technique is providing highly
accurate results with ease in implementation and less
computational effort.
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