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Abstract: Various conditions, including traffic accidents, sports injuries, and neurological disorders,
can impair human wrist movements, underscoring the importance of effective rehabilitation methods.
Robotic devices play a crucial role in this regard, particularly in wrist rehabilitation, given the com-
plexity of the human wrist joint, which encompasses three degrees of freedom: flexion/extension,
pronation/supination, and radial/ulnar deviation. This paper provides a comprehensive review
of wrist rehabilitation devices, employing a methodological approach based on primary articles
sourced from PubMed, ScienceDirect, Scopus, and IEEE, using the keywords “wrist rehabilitation
robot” from 2007 onwards. The findings highlight a diverse array of wrist rehabilitation devices,
systematically organized in a tabular format for enhanced comprehension. Serving as a valuable
resource for researchers, this paper enables comparative analyses of robotic wrist rehabilitation
devices across various attributes, offering insights into future advancements. Particularly noteworthy
is the integration of serious games with simplified wrist rehabilitation devices, signaling a promising
avenue for enhancing rehabilitation outcomes. These insights lay the groundwork for the develop-
ment of new robotic wrist rehabilitation devices or to make improvements to existing prototypes
incorporating a forward-looking approach to improve rehabilitation outcomes.

Keywords: wrist; rehabilitation; robotics; review; artificial intelligence

1. Introduction

Numerous ailments, including physical traumas, strokes, neurological disorders,
sports-related injuries, and traffic accidents, can result in impairments to the wrist [1]. In
particular, stroke is the leading cause of disability among adults worldwide, causing a high
number of individuals to have motor and cognitive deficits [2,3]. The main consequence of
this brain injury is the loss or weakening of the movements of the human body, especially of
the upper limbs [4]. Soon after the stroke, the brain goes through stages of recovery, where
the central nervous system (CNS) can reorganize neural circuits through neuroplasticity [5].

Neuroplasticity is defined as the ability of the nervous system to restructure itself,
forming new connections so that another part of the brain takes over the function of the
injured part [6]. The basic condition for functional improvement after stroke is increased
neuroplasticity [6]. Considering that neuroplasticity begins to develop immediately in
the first months after stroke, the type and intensity of interventions in the acute period
gain importance [6]. This restructuring of the nervous system, which is responsible for
the learning and stimulation processes, occurs both spontaneously and with the aid of
rehabilitation and non-invasive cerebral stimulation [7]. Thus, the use of robotic devices
can assist in the rehabilitation process by providing improvements in motor and functional
performance and permitting the quantitative evaluation of movements [8,9].

Medical rehabilitation serves as a comprehensive process that aims to maximize the
physical, social, vocational, psychological, and educational capabilities of individuals facing
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significant disabilities. These impediments often hinder integration into the family and
society, requiring a rehabilitation process to mitigate these negative effects [10]. The overall
goal is to facilitate the individual’s reintegration into society by addressing the physical and
socio-psychological aspects of their challenges. Physical therapy and rehabilitation play
a key role in restoring daily activities for individuals experiencing motor problems. The
integration of robotic devices in rehabilitation processes has emerged as a promising path,
offering improvements in motor and functional performance. These devices contribute to
the rehabilitation process by providing quantitative movement assessments, increasing the
accuracy and effectiveness of therapeutic interventions. Notably, research in post-stroke
rehabilitation has explored the efficiency and benefits of employing robotic devices such as
reported, for example, in [11,12].

The possibility of using robotic devices as an efficient means for providing therapy
has been the subject of research involving post-stroke rehabilitation [11–13]. Rehabilitation
devices for upper limbs have made great advances in recent years. However, further
studies related to the subject are still needed, due to the complexity of human hand
movements [14,15]. Compared to traditional care, robotic rehabilitation can be better
performed at high intensity and frequency, being able to continuously monitor exercise
performance so that the level of treatment is tailored to the patient’s needs [16]. One of the
applications of robotics in medicine is the development of devices to aid in the rehabilitation
of the human wrist [1,3]. The human wrist is a joint having three degrees of freedom that
connects the hand to the forearm, developing radial/ulnar deviation, flexion/extension,
and pronation/supination movements [17].

This review article aims to report the main research on robotic devices to aid the
wrist rehabilitation process. The existing devices are classified according to the number
of degrees of freedom, wrist movements, type of actuator, control system, experimental
evaluation, safety, and the presence of artificial intelligence (AI) in the implementation of
serious games or virtual reality games. In addition, this work provides a careful discussion
on the safety of the robotic devices since it is critical to ensure the highest safety standards
for patients. This aspect is addressed by considering the IEC 80601-2-78:2020 standard [18]
(The International Electrotechnical Commission) regarding medical electrical equipment.
Another important aspect reported is the integration of serious games into the rehabilitation
process. Serious games not only create a playful environment for the patient but also serve
as a means of quantitatively measuring the patient’s progress and the effectiveness of the
rehabilitation device. This functional duality not only enriches the rehabilitation experience
but also offers a more engaging and measurable approach to monitor patient development
over time. Associated with serious games, AI is applied in order to adjust the level of
difficulty of serious games exclusively for each patient, helping to increase engagement
and motor improvement. Finally, this article condenses the main parameters necessary for
the manufacture of new equipment for the rehabilitation of the human wrist.

It should be noted that the review articles found in the literature do not have the wrist
as their main focus, covering other joints of the upper and lower limbs [3,4,19–22] or are not
up-to-date [1]. The review articles [1,3,4,19–22] also do not clearly present how to conduct
the mathematical modeling of the new device based on the characteristics of the human
wrist as detailed in this paper.

This paper is organized as follows: Section 2 provides the proposed search method,
followed by the human wrist description in Section 3. The classification of wrist rehabilita-
tion devices and the selected devices described are presented in Section 4. A brief review of
different strategies to control the rehabilitation of wrist robots and security is discussed in
Section 5. Serious games with an AI focus in wrist rehabilitation are presented in Section 6,
while Section 7 presents the discussion and future directions in the development of wrist
rehabilitation devices. Finally, the conclusion is presented in Section 8.
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2. Literature Review Search Method

This paper provides an overview of significant research on robotic devices to facilitate
the wrist rehabilitation process. To find rehabilitation articles related to the human wrist
using robots, four databases were searched: PubMed, ScienceDirect, Scopus, and IEEE.
The keywords used in these databases were as follows: rehabilitation, robot, and wrist.
The strategy used was the preferred reporting criteria for systematic review and meta-
analysis guidelines (PRISMA) [23], as shown in the PRISMA diagram in Figure 1. In
the research, in the four databases, it is common for an article to be cited two or more
times on the used platforms. Thus, in order to remove the duplication of the citations of
the articles, it is necessary to exclude repetitions. In addition, PRISMA is composed of
inclusion and exclusion criteria. The inclusion criteria are articles involving human wrist
rehabilitation robots, articles published in English, and articles with a publication period
between January 2007 and February 2024. The publication period aims to identify the
oldest to latest technologies to analyze trends and necessary improvements needed in the
development of devices for human wrist rehabilitation. There are also exclusion criteria.
Based on the research data, it is necessary to exclude articles involving systematic reviews,
reviews and meta-analyses, books, book chapters, letters to the editor, conference abstracts,
research protocols, or a protocol study [23]. Therefore, adopting the PRISMA methodology
becomes crucial for conducting a literature review based on structured criteria. Moreover,
it provides a chance to derive fresh insights into crafting a novel device with refined and
effective attributes suited for wrist rehabilitation.
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3. Wrist Description

This section describes wrist kinesiology and the simplification of a model for the
mathematical modeling of this joint.

The continuous advancement of technology has driven the growth of study method-
ologies in the field of robotic rehabilitation. This expansion has spurred new research and
studies, particularly in areas such as wrist injuries. Wrist injuries, although complex and
challenging to treat, have gained increasing attention in recent studies due to the critical
role of the wrist in the human body [24].
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Understanding the intricacies of wrist movements and the associated degrees of
freedom is crucial for developing effective rehabilitation strategies, especially considering
the dynamic and intricate nature of this joint. This knowledge forms a fundamental basis
for the design and implementation of robotic devices tailored to address specific wrist
challenges in the rehabilitation process. To design a safe and ergonomic device for people
with wrist problems, the robot needs to be synthesized based on anthropometric and
kinesiological data, in conjunction with human wrist kinematics and kinetics.

3.1. Wrist Kinematics

The wrist, in this context, can be compared to a spherical joint with mechanical
constraints determined by its associated ranges of motion [17]. Wrist flexion/extension
movements occur in the sagittal plane, where flexion brings the palm of the hand toward
the anterior surface of the forearm, and extension moves the dorsal surface of the hand
toward the posterior surface of the forearm [17]. The range of motion, measured from the
reference position, is documented as between 85◦ and 90◦, Figure 2 [17].
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Figure 2. Schemes of the wrist motion ranges: (a) wrist extension; (b) the flexion of the wrist.

The wrist abduction movement, known as radial deviation, and the adduction move-
ment, known as ulnar deviation, occur in the frontal plane around the anteroposterior axis.
Specifically, the radial deviation has a range of motion of 15◦ with respect to the reference
position. On the other hand, ulnar deviation exhibits different amplitudes based on the
adopted reference points. When considering the angle in the line connecting the center
of the wrist with the distal portion of the third finger, the amplitude for ulnar deviation
is 45◦. If the reference is the axis of the hand, the amplitude becomes 30◦. In relation to
the axis of the middle finger, the ulnar deviation reaches an amplitude of 55◦ [17]. These
specific amplitudes provide valuable information on the range of motion for radial and
ulnar deviations, essential for designing targeted rehabilitation strategies and devices that
align with natural wrist movement patterns in the frontal plane, Figure 3.
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The pronation and supination movements involve the rotation of the radius around
the ulna, facilitating the rotation of the forearm, and consequently the wrist, around its
axis. In the supination position, the palm is facing up with the thumb pointed outwards,
while in the prone position, the palm is facing down with the thumb pointed inwards. The
range of motion for supination and pronation is 90◦. Understanding these specific ranges
of motion is crucial for the design of effective rehabilitation strategies and for the design
of devices that accommodate the natural rotational dynamics of the forearm and wrist,
Figure 4 [17].
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Figure 4. (a) Supination; (b) pronation movements of the human wrist.

3.2. Wrist Anthropometry and Mathematical Model

Anthropometry is a discipline that is dedicated to the measurement and analysis of
the dimensions and proportions of the human body, including the evaluation of physical
characteristics such as height, weight, and limb length [25]. Studies of this type assume a
peculiar importance, considering the need to develop devices that adapt to the anatomy of
hand/wrist users. In this context, the understanding of human anthropometry, as well as
its application in the design of medical rehabilitation devices for the wrist, contributes to
improving the well-being, health, comfort, and safety of patients who make use of these
devices in their rehabilitation processes [25].

Figure 5 gives the main dimensions of the hand necessary to design the wrist device
obtained from [26].

Machines 2024, 12, x FOR PEER REVIEW 7 of 25 
 

 

 

 
Figure 5. Hand dimensions (mean ± std [mm]) [26]. 

Figure 6 shows that human wrist movement includes flexion/extension (FE), ra-
dial/ulnar deviation (RU), and pronation/supination (PS). According to [26], the rotation 
ranges and torques required for daily activities range from 70° to 150° and 0.06 Nm to 0.35 
Nm, respectively. In the FE and RU movements, the carpus rotates around the radius, 
while in the PS movement, the carpus, together with the distal end of the radius, performs 
a rotation around the ulna [27]. 
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Figure 6 shows that human wrist movement includes flexion/extension (FE), ra-
dial/ulnar deviation (RU), and pronation/supination (PS). According to [26], the rotation
ranges and torques required for daily activities range from 70◦ to 150◦ and 0.06 Nm to
0.35 Nm, respectively. In the FE and RU movements, the carpus rotates around the radius,
while in the PS movement, the carpus, together with the distal end of the radius, performs
a rotation around the ulna [27].

According to [28], the parameters of the dynamic models of the human wrist are
obtained from an anthropometric and kinetic analysis, shown in Figure 7. The Lagrangian
L is expressed as the difference between the kinetic energy T of the system and its potential
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energy V, in Equation (1). In Figure 7, we are considering the movements FE and RU as
those of a rigid body in a plane motion of non-barycentric rotation [29].

L = T − V (1)
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The kinetic energy of the system in question is defined in Equation (2), where m is
the mass of the hand, l is the distance from the wrist to the center of the mass of the hand,
J represents the moment of inertia, and

.
θ denotes the angular velocity of the hand. The

potential energy is determined by Equation (3), where θ is the angle of hand movement,
and g is the acceleration of gravity.

T =
1
2

m l2
.

θ2 +
1
2

J
.

θ2 (2)

V = −m g l sin θ (3)

Substituting Equations (2) and (3) in Equation (1), we obtain the expression denoted
in Equation (4).

L =
1
2

m l2
.

θ2 +
1
2

J
.

θ2 + m g l sin θ (4)
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The Euler–Lagrange formulation is specified in Equation (5), where θ represents the
generalized coordinate corresponding to the active degree of freedom (angular joint), and
Q denotes the set of external (non-conservative) forces.

d
dt

(
∂L

∂
.
θ

)
− ∂L

∂θ
= Q (5)

Wrist flexion/extension and abduction/adduction movements are addressed inde-
pendently in rehabilitation therapies [28]. Consequently, the Euler–Lagrange equation is
applied to a single degree of freedom (DOF) associated with rotation around a specific
axis. External forces include torque T and viscous damping at the joint, characterized by a
damping coefficient b [27], and with these considerations, the Euler–Lagrange formulation
becomes the following:

d
dt

(
∂L

∂
.
θ

)
− ∂L

∂θ
= T − b

.
θ (6)

The Lagrangian derivatives of Equation (6) are solved, leading to the solution of a
nonlinear second-order differential dynamical Equation (7). This equation encompasses
the dynamics of the flexion/extension and abduction/adduction of the wrist.

m l2
..
θ + J

..
θ − m g l cosθ = T − b

.
θ (7)

Equation (7) is solved to obtain the angular acceleration
..
θ required for the construction

of the dynamical models, which are expressed in Equation (8).

..
θ =

1
m l2 + J

[
T − b

.
θ + m g l cosθ

]
(8)

Figure 8 shows the simplified dynamic model of pronation and supination movements
considered to be those of a rigid body in a plane motion of barycentric rotation [29].
The kinetic energy of the movement is defined in Equation (9), where JPS represents the
moment of inertia, and

.
θPS denotes the angular velocity of the pronation/supination hand

movement. The potential energy in this case is given by Equation (10), where W is the hand
width, and θPS is the angle of hand movement.

TPS =
1
2

JPS
.
θ

2
PS (9)

VPS = −m g
W
2

sinθPS (10)
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Replacing Equations (9) and (10) in Equation (1), we obtain Equation (11).

L =
1
2

JPS
.
θ

2
PS + m g

W
2

sinθPS (11)
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Using Equation (6), it is possible to obtain the following:

JPS
..
θPS − m g

W
2

cos θPS = T − b
.
θPS (12)

Equation (12) is solved to obtain the angular acceleration
..
θPS necessary for the con-

struction of the dynamic wrist pronation/supination models, which are expressed in
Equation (13).

..
θPS =

1
JPS

[
T − b

.
θPS + m g

W
2

cos θPS

]
(13)

Based on anthropometric analysis [28], the parameters for the dynamic model are
presented in Table 1. In this table, the mass of the hand is a function of the patient’s body
mass M, the length of the hand is a function of the patient’s height H, and the center of
gravity and radius of rotation are functions of the length of the hand, Table 1.

Table 1. Parameters of kinematic hand model [28].

Parameter Value Unites

Hand mass [m] 0.006·M [kg]

Hand length [L] 0.108·H [m]

Proximal center of gravity [I] 0.506·L [m]

Radius of gyration of hand [k] 0.297·L [m]

Gravity [g] 9.81 [m/s2]

Moment of inertia of
hand [J] m·k2 [kg·m2]

Damping coefficient [b] 0.1 [N·m·s]

4. Wrist Rehabilitation Classification

Rehabilitation wrist robots can be classified into two branches [4], that is, according to
their structure and according to the type of therapy performed, as shown in Figure 9.
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Structure-based robotic wrist rehabilitation can be implemented as an exoskeleton
or end-effector. Robotic exoskeletons share similarities with human limbs, and they are
attached to patients at various points, with their joints coinciding with the natural joints
of the human body, as an example, in Figure 10 [30], while the end-effector has only one
interface: the patient’s hand/forearm.
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The end-effector robots permit an easily attached hand in the device, making the
mechanical structure and control system simpler. These devices can avoid abnormal move-
ments because they do not restrain the anatomical joints. However, it is not possible to
directly estimate the kinematic configuration of the upper limb, and making isolated move-
ments of a single joint is more difficult. In contrast, exoskeletons can provide movements
for a specific joint. Two examples of end-effector devices are shown in Figures 11 and 12.
Figure 12 shows a representation of a device created by the Federal University of Uberlandia
(UFU wrist robot) [24]. This system stands out for its simplicity and ease of manufacture. In
addition, its adaptability is remarkable, and it can be adjusted more flexibly to suit different
hand/arm lengths.
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Often, exoskeletons adopt a wearable configuration, as shown in Figure 10. Wearable
exoskeletons are electromechanical devices designed to assist, augment, or enhance motion
and mobility in the wrist [19]. Occasionally, wearable exoskeletons can use pneumatic
elements like pneumatic muscles, which have the potential to create a more compliant
interaction with the patient. The compliance of this kind of device can help reduce the joint
alignment issues of traditional exoskeleton robots for wrist rehabilitation.

The wrist robots are further classified based on their types of motion assistance: active,
passive, and bilateral, as shown in Figure 9. Active devices, equipped with at least one
actuator, assist in the production of movement in the wrist and are typically used by patients
with limited mobility, as shown in Figure 13. Passive devices, such as actuators that provide
resistive force, are used in the rehabilitation of individuals capable of moving their wrists,
and bilateral devices are conducted by mirroring the patient’s arm movements [12].
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In passive therapy, the patient does not actively participate in the movement [12].
Passive robots are categorized into continuous passive motion and passive assistive robots.
In continuous passive motion (CPM), a machine is used to move the joint without requiring
effort from the patient. Unlike CPM robots, passive assistive devices do not follow a
pre-programmed schedule; however, their movement does not require control input [32].
The active devices respond to the patient’s input to determine their movement, either
by providing assistance or resistance. Active assistive devices share similarities with
their passive counterparts in that they both assist the user in performing movements.
However, active robots incorporate sensors to capture the patient’s motor activity. Active
resistive devices, on the other hand, are controlled by some input from the user, promoting
motor adaptation [12]. There is also bilateral therapy that is conducted by mirroring
the movements of the patient’s hand. In this case, the reflected hand/arm is used to
complement the exercise, and the patient does not actively participate in the movement.
Bilateral therapy had its origins with the development of the Mirror-Image Motion Enabler
(MIME) [12].

Notable robotic devices for wrist rehabilitation have been developed, contributing to
the evolution of robotic rehabilitation, as described in Section Wrist Rehabilitation Devices.

Wrist Rehabilitation Devices

This review article aims to present the main investigations related to robotic devices
intended to assist the wrist rehabilitation process, categorized based on the number of de-
grees of freedom, the movements associated with the wrist, the type of actuator, the control
method, the feedback signal, the experimental evaluation, the safety, and the presence or
absence of serious games/AI. It can be seen that there are distinct types of devices with
multiple characteristics and architectures, which are categorized in Tables 2 and 3.

In [33,34], a wrist robot developed at the Massachusetts Institute of Technology (MIT)
with three degrees of freedom was presented, incorporating a load cell and a direct force
control scheme to minimize interaction forces. This device, presented in 2007, was one of
the pioneers in the rehabilitation of the human wrist, had a commercial version, and was
validated with patients showing improvements in the wrist functions.

In [32,35], a Haptic Knob was developed at the National University of Singapore,
designed for hand opening/closing and forearm pronation/supination with two degrees
of freedom. This robot has a simple mechanical structure, and based on the clinical tests
conducted, the hypothesis was raised that distal training in a functional way could benefit
the whole arm.

An electrically driven forearm/wrist haptic exoskeleton with an impedance-based
position and force controller named RiceWrist was presented in [36]. Subsequently, the
RiceWrist-S, a serial robot mechanism, was developed in [37]. RiceWrist-S [37] made im-
provements to provide high torque output, covering the entire working space of the human
wrist. The OpenWrist presented in [38] was an evolution of the RiceWrist-S, featuring a
fourth degree of passive linear freedom to accommodate misalignments.

In [39], a UHD (Universal Haptic Unit) was developed for wrist rehabilitation, provid-
ing actuation for three degrees of freedom with flexion/extension, pronation/supination,
and abduction/adduction movements. The mechanical design is based on a sequence of
joints that can be locked or unlocked to allow for individual wrist movements.

In [40], a robotic exoskeleton was presented with one degree of freedom for flex-
ion/extension movements in the wrist joints of patients associated with other movements
of the shoulder and elbow. The integration between the shoulder, elbow, and wrist aims to
support clinicians with a quantitative neuromechanical outcome evaluation at the level of
individual joints, multiple joints, or considering the whole arm.
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In [41], the wrist rehabilitation IIT Genova Robotic System with three degrees of free-
dom for abduction/adduction, flexion/extension, and pronation/supination movements
was presented. The use of the proposed device permitted improvements in the wrist’s
active range of motion.

In [42], a SCRIPT 1 prototype was developed at the University of Sheffield, providing
physiotherapy to stroke survivors with passive flexion/extension movements. The patients
need to have neurological/motor control to use the device.

In [30], a robotic device was developed at Harvard University and assessed with a
healthy participant, with a focus on the range of motion and torque. The device permits
the flexion/extension and pronation/supination movements using pneumatic actuators.

The robot known as WRES was developed in [43]. This wrist robotic exoskeleton
has three degrees of freedom, providing abduction/adduction, flexion/extension, and
pronation/supination movements.

It should be noted that the structures that present three degrees of freedom, Table 2,
are based on that presented in [33].

In [31], a wrist robotic exoskeleton developed at Kyushu University named WReD
with a single degree of freedom was developed, providing flexion/extension movement.
In [44,45], a portable and reconfigurable wrist robot was presented, named CR2-Haptic,
with one DOF; with changing the robot orientation, it is possible to train the three wrist
movements: abduction/adduction, flexion/extension, and pronation/supination.

In [46], a wrist exoskeleton was developed using two linear actuators connected to
two elastic elements, permitting flexion/extension and adduction/abduction movements.
Although elastic elements allow for compliance for the mechanisms, their use can reduce
the precision and repeatability of the necessary wrist movements and require more complex
control techniques.

In [10], a wrist robot with one degree of freedom was presented to make the wrist
flexion/extension. The device combines a three DOF force sensor to enable better human–
robot interaction in wrist rehabilitation. An evolution of this device was presented in [47]
that added more DOFs to realize all the individual wrist movements.

In [12], a robot developed at Free University Berlin that permits the flexion/extension
of the wrist with bilateral movements is presented.

In [24], a robotic rehabilitation prototype focusing on wrist rehabilitation movements
was evaluated with healthy volunteers and stroke survivors in a case study. The device
uses a palm rest base, coupled to a servo motor, and employs impedance control, allowing
the patient to resist or assist the movements. The structures with one degree of freedom
presented in Table 2 have a simpler mechanical design than those with three degrees of
freedom and can be interesting alternatives aimed at reducing the development cost of
this equipment.

It is noteworthy that the cost of equipment is rarely quantified or discussed in the
papers reviewed. The only commercial option analyzed in this paper was the MIT wrist
robot, which has been discontinued. In [24], the cost of developing the UFU wrist robot
equipment is around USD 1000. In [45], it was discussed that the necessity of wrist
rehabilitation robots should be cost-effective to be able to apply in rehabilitation procedures,
and the higher complexity of the design leads to a higher cost and more supervision needed.
In [39], it was discussed that the cost of robotic devices for wrist rehabilitation could be
reduced by using standard mechanical and control components. End-effector devices
usually have a lower cost than exoskeletons because they require a less complicated setup
to place the patient in therapy.

Table 3 presents the outcomes of the use of wrist rehabilitation devices in patients.
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Table 2. Features of wrist rehabilitation devices selected.

Device Name DOF Structure-Based Joint Type of
Operation

Control
Method

Feedback
Signal Safety

Serious
Games

and/or AI

MIT wrist robot
[33,34] 3 Exoskeleton Wrist—FE,

RU, PS DC Motors
Impedance

Control
(AAN)

Load cell,
encoders Not Cited

Serious
games
No AI

Haptic Knob
[32,35] 2

End-effector
(parallelogram

mechanism)

Forearm—
PS

Wrist—FE
DC Motors Impedance

Control
Load cell,
encoders Not Cited

Serious
games
No AI

Open Wrist [36–38] 3

Exoskeleton
(3-RPS (revolute–

prismatic–
spherical) parallel

mechanism)

Wrist—FE,
RU, PS DC Motors

PD
Trajectory
Tracking

Joint Angles
(encoders)
and Forces

mechanical
stops

No Serious
games
No AI

UHD
[39] 3 End-effector Wrist—FE,

RU, PS DC Motors Impedance
Control

Linear Poten-
tiometer Not Cited

No Serious
games
No AI

IIT Genova Robot
[41] 3 Exoskeleton Wrist—FE,

RU, PS DC Motors Impedance
Control

Load cell,
encoders Not Cited

Serious
games
No AI

SCRIPT Prototype
1 [42] 1 Exoskeleton Wrist—FE Springs Not

provided
Rotary po-

tentiometer Not Cited
Serious
games
No AI

Harvard University
Robot [30] 2

Exoskeleton
(wearable soft

robot)

Wrist—FE,
PS

Pneumatic
actuator

Not
provided

Not
provided Not Cited

No Serious
games
No AI

WRES [43] 3 Exoskeleton Wrist—FE,
RU, PS DC Motors Not

provided
Load cell,
encoders Not Cited

No Serious
games
No AI

Kocaeli University
[10] 1 Exoskeleton Wrist—FE DC Motor Impedance

Control
Load cell,
encoder

emergency
stop

No Serious
games
No AI

CR2-Haptic [44,45] 1 End-effector Wrist—FE,
RU, PS DC Motor Impedance

Control

Current
sensor
Pulse

oximeter
Encoder

mechanical
stops

emergency
stop

Serious
games
No AI

Kyushu Robot
University [46] 2 Exoskeleton Wrist—FE,

RU
Linear
Motors

Not
provided

Load cell,
camera Not Cited

No Serious
games
No AI

WReD
[31] 1 End-effector Wrist—FE DC Motor Impedance

Control

Torque
sensor,

encoder

mechanical
stops

emergency
stop

No Serious
games
No AI

Free University
Berlin Robot

[12]
1 End-effector Wrist—FE DC Motors Impedance

Control encoder Cited
No Serious

games
No AI

UFU wrist robot
[24] 1 End-effector Wrist—FE,

RU, PS Servomotor
Impedance

Control
(AAN)

Torque
Sensor Cited

Serious
games
No AI

RU—radial/ulnar deviation; FE—flexion/extension; PS—pronation/supination. Assist-As-Needed (AAN).
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Table 3. Outcomes of wrist rehabilitation devices selected and used with patients.

Device Name Experimental Evaluation Outcomes

MIT wrist robot [33,34] 36 stroke participants Improvements in motor impairment scales

Haptic Knob [32,35] 15 stroke participants Significantly improved hand and arm functions

Open Wrist [36–38] spinal cord C3-5 level Improvements in hand function test

UHD
[39] 1 stroke participant Reliable and repeatable performance was achieved

IIT Genova Robot
[41] 9 stroke participants Improvements in motor function and range of motion

SCRIPT Prototype 1 [42] 23 stroke participants Possibility of using device in home care

CR2-Haptic [44,45] 7 stroke participants Improvements in motor function and range of motion

Free University Berlin Robot
[12] 12 stroke participants Reduction in spasticity and pain relief

UFU wrist robot [24] 3 stroke and 14 healthy participants Significant gains in motion amplitudes

5. Wrist Robot Device Control System

The MIT wrist robot [33,34], Haptic Knob [32,35], UHD [39], IIT Genova Robot [41],
WReD [31], and the UFU wrist robot [24] are robots based on the impedance controller
that modulates how the robot reacts to the mechanical disturbance of a patient or doctor,
ensuring smooth and compliant behavior. Impedance control refers to the use of a control
system (actuators, sensors, controllers, and computers) capable of imposing a desired
behavior on the attachment of the robot to the patient’s hand [24,48]. This control system
has been successfully applied in multiple robotic applications involving human–motor
interaction. For robots that interact with humans, the most important feature of the
controller is stability. The stability of most robot controllers is vulnerable when coming into
contact with objects with unknown dynamics. However, dynamic interactions with highly
variable and poorly characterized objects (i.e., patients with neurological impairments) do
not destabilize the impedance controller. This is essential for safe operation in a clinical
setting [22].

In the OpenWrist [35,36], passive and active assist modes are implemented using
PD control, while the restricted mode is implemented via an impedance controller. In
the case of restricted mode, the patient moves the arm against the viscous field to a
desired position, and a movable virtual wall prevents the patient from retracting the arm.
Proportional-Derivative (PD) Control was used as a controller, using position and force as
input parameters. In the version of RiceWrist-S Robot [37], an Assist-As-Needed (AAN)
controller was developed. This control system estimates the lowest sensor strength based
on a model to determine the patient’s capability.

SCRIPT Prototype 1 (SP1) [42] is a wrist, hand, and finger orthosis that assists post-
stroke individuals suffering from disabilities caused by spasticity and abnormal synergies.
SP1 can compensate for these unwanted effects of torques, but it cannot actively generate
or control motion. It refers to a passive mechanism of action.

The basis of a variety of robot-assisted rehabilitation devices is trajectory tracking
control [43]. This method can be applied directly to passive training for patients with
impaired active motor skills. The accurate tracking of desired trajectories is not only simple
but also an effective approach for rehabilitation applications. Incorporating adherence into
trajectory tracking control can result in greater comfort and safety during training, as well
as allowing for active engagement for more effective rehabilitation [31].

The objective of this review article is not to delve into the details of the control of
structures that are already detailed in the literature, as in [1,4,48].
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Safety

One of the main requirements for a rehabilitation robot is safety. For this, there is the
IEC 80601-2-78:2020 standard (The International Electrotechnical Commission (IEC) [18]
is the main global organization that prepares and publishes International Standards for
all electrical, electronic, and related technologies) regarding medical electrical equipment.
For a wrist rehabilitation device, three aspects significantly affect safety, such as operating
ranges, operating modes, and operating forces/torques [24]. Data on desired operating
modes, speed, acceleration, and trajectories should be pre-defined by the physiotherapist
based on the patient’s needs and limited by software or a physical device to avoid unwanted
damage to the already affected wrist.

The [18] is detailed about the necessary requirements for medical devices that apply to
wrist devices, like protection against electrical hazards, protection against mechanical haz-
ards, protection against unwanted and excessive radiation, and protection against excessive
temperatures. The [18] also presents good practices for the construction of the device, con-
sidering the hazardous situations and fault conditions of programmable electrical devices,
electromagnetic compatibility and electromagnetic disturbances of the device, usability, and
the requirements for medical electrical equipment used in the home healthcare environment.
Devices for wrist rehabilitation need to predict emergency stopping mechanisms.

It is noted that most of the devices listed in Table 2 do not reference the IEC 80601-2-
78:2020 standard [18] because they were developed before 2020 or did not take security
requirements into account. According to this standard, specific basic and essential safety
requirements are established, as well as performance requirements for medical robots that
physically interact with patients with a disability, for the purpose of supporting or perform-
ing rehabilitation, assessment, compensation, or relief related to the patient’s movement
functions. Thus, it is believed that safety in a robotic device is indispensable for patient
safety and to attest to the quality of the device. Figure 14 shows a drawing of the wrist robot
device’s interaction with a patient. The patient’s neurological/musculoskeletal systems
and the controller of the wrist device interact with each other through the measurement of
the interaction force in the actuated wrist. This force directly influences the movement of
the patient’s wrist and the physical structure of the device, together with a feedback signal
to the wrist device.
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In addition to safety, another key aspect is the use of serious games/virtual reality
games. These games can make physiotherapy less boring and are a fundamental instrument
for the quantification of the patient’s evolution and the efficiency of the device.

6. Serious Games and AI in Wrist Rehabilitation Devices

The use of serious games in robotic rehabilitation has emerged as a promising ap-
proach to address the challenges associated with the monotony and repetition of therapy
sessions [41,48]. Serious games or virtual reality games designed for rehabilitation offer a
means of increasing engagement, motivation, and adherence to treatment in the context of
robotic rehabilitation [49].

Serious games can provide a motivating and engaging environment for patients un-
dergoing robotic rehabilitation. The interactive and goal-oriented nature of games can
make therapy sessions more enjoyable. Additionally, the introduction of interpersonal
rehabilitation games, where patients can compete or cooperate with another person, adds a
social element to the rehabilitation process. The choice between competition and coopera-
tion can be tailored to individual patient preferences [50]. Another key aspect is the fact
that serious games provide a quantitative means to assess the patient‘s progress and the
efficiency of the robotic rehabilitation device. In summary, integrating serious games into
robotic rehabilitation not only introduces an element of pleasure and motivation but also
improves the overall patient experience. The gamification of therapy sessions can lead to
increased patient compliance, better outcomes, and a more comprehensive assessment of
the device‘s progress and effectiveness [49,51].

However, not all serious games are equally effective for all patients. Each individual
has specific characteristics and needs that should be considered when choosing games
and defining the level of difficulty. To solve this problem, the use of artificial intelligence
techniques has been added, which allow for a further personalization of serious games
for each patient [52–54]. It can be seen that devices such as the MIT wrist robot [33,34],
RiceWrist [36], UHD [39], ITT Genova Robot [41], SCRIPT 1 prototype [42], and UFU wrist
robot [24] use virtual reality capable of quantifying the efficiency of the device and the
evolution of the patient. However, they do not use the artificial intelligence associated
with these virtual games. The Harvard University Robot [30], for example, does not
mention the presence of the games. Currently, the use of artificial intelligence in any
research is indispensable. However, in practice, the research and application of AI in wrist
rehabilitation robots are still not significant. Therefore, the use of AI in rehabilitation would
be extremely relevant for robotic devices. AI would provide more concrete data on the
patient’s evolution and the efficiency of the device, allowing for a further customization of
the serious games for each patient.

7. Discussion

Highlighting the main research related to robotic devices for the rehabilitation of
the human wrist, it can be seen that there are several characteristics found, namely as
follows: the number of degrees of freedom, wrist movements, type of actuator, control
system, experimental evaluation, safety, and presence of AI associated with serious games
or virtual reality games. The referenced articles come from research focused on wrist
rehabilitation devices using the PRISMA methodology.

In most of the devices surveyed, serious games are integrated to create a playful
environment for patients in rehabilitation and quantify the efficiency of the device. It can
be seen that research on the robotic rehabilitation of the human wrist should still associate
serious games with artificial intelligence, providing a more personalized and dynamic
experience for each patient. As previously discussed, not all serious games are equally
effective for all patients. Considering that each individual has specific characteristics and
needs, it is crucial to take these aspects into account when selecting games and determining
the level of difficulty. In addition, regarding the safety of the devices, it was shown that
the devices urgently need to comply with the IEC 80601-2-78:2020 standard [18] regarding
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medical electrical equipment. Safety should be the priority of research related to the
rehabilitation of the human wrist, which focuses on the human being themselves.

Although there are several devices developed for the rehabilitation of the human wrist,
few are commercially available. In addition, several are in the prototype construction phase,
and some present experimental results with patients, as shown in Table 3. In most cases,
the experimental tests were conducted with few patients, but they presented unambiguous
evidence of the effectiveness of using this equipment to improve patient outcomes.

Another aspect observed refers to the fact that the most efficient robotic rehabilitation
devices tend to be the least complex [10]. The development of a low-cost robotic rehabil-
itation device for the human wrist, focusing on the utilization of individual degrees of
freedom, represents an innovative approach in the field of rehabilitation [24]. This concept
is grounded in the idea that simplicity and the targeted treatment of specific movements
can increase the efficiency of robotic rehabilitation devices [50]. The devices proposed
in [24,45] allow for the rehabilitation of the human wrist by individually addressing its
three degrees of freedom. This approach diverges from traditional methods that simul-
taneously work all movements, providing a more focused and potentially more effective
rehabilitation strategy.

The aspects that need to be addressed in the development of a new wrist robot for
rehabilitation are summarized as follows:

➢ Movements: They need to be in the function of the traditional physiotherapeutic
concepts and reproduce the rehabilitation protocols. It is desirable that the center of
rotation of the device coincides with the rotational axis of the human joint;

➢ Safety: In addition to robots being developed to be safe to use, with mechanisms
to prevent accidents and injuries, the need complies with the IEC 80601-2-78:2020
standard [18];

➢ Cost: Especially for developing countries, the issue of cost is fundamental for the
inclusion of this equipment in wrist rehabilitation procedures. In addition to the cost
of the equipment, one must also think about the easy replacement of parts that are
widely used commercially and their maintenance, which should preferably be carried
out by the users themselves;

➢ User-friendly device: Wrist robot devices need to be patient-friendly and easy to
adjust, allowing for the quick attachment and removal of the patient’s hand/forearm.
The equipment also needs to be user-friendly for healthcare professionals, allowing
for easy use;

➢ Adaptability: Wrist robot devices need to adapt to different patients at the anthropo-
metric level and the difficult level. The control systems need to adapt to the needs of
patients, and the use of serious games together with AI can potentially enhance the
rehabilitation process.

In reference [4], it is discussed if the next therapist will be a robot, and the answer
is no for the next decade. We are experiencing an aging population, which leads to a
greater number of health problems that require physiotherapists to rehabilitate the human
wrist [55]. On the other hand, the number of physiotherapists available has decreased [56].
The use of robotic devices can help healthcare professionals serve more patients. We
emphasize that the robotic devices for wrist rehabilitation to be developed should be
seen as tools for health professionals/physiotherapists and not as equipment that will
replace them.

8. Conclusions

This paper presents a comprehensive literature review focusing on robotic devices
designed for wrist rehabilitation. The review reveals a diverse range of such devices,
which have been categorized and summarized in a tabular format for enhanced readability
and analysis. These tables encapsulate key attributes essential for wrist rehabilitation
device development, including degrees of freedom, wrist movements, actuator types,
control systems, experimental evaluations, safety features, and the integration of artificial
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intelligence with serious games or virtual reality. Furthermore, an analysis of these devices’
application with patients demonstrates their potential efficacy in motor wrist rehabilitation.
Therefore, it is recommended that healthcare professionals, particularly physiotherapists
and physicians, leverage this scientific knowledge in treating patients with conditions such
as strokes and wrist injuries. Additionally, this paper serves as a valuable resource for
researchers in the field, offering insights into comparing different robotics wrist based on
specific characteristics, such as the incorporation of serious games with artificial intelligence.
Moreover, it underscores the importance of adhering to safety standards, notably the
implementation of the IEC 80601-2-78:2020 standard [18] in robotic devices to ensure
patient safety.
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