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Abstract

Background

The global evolution of pre-hospital care systems faces dynamic challenges, particularly in

multinational settings. Machine learning (ML) techniques enable the exploration of deeply

embedded data patterns for improved patient care and resource optimisation. This study’s

objective was to accurately predict cases that necessitated transportation versus those that

did not, using ML techniques, thereby facilitating efficient resource allocation.

Methods

ML algorithms were utilised to predict patient transport decisions in a Middle Eastern

national pre-hospital emergency medical care provider. A comprehensive dataset compris-

ing 93,712 emergency calls from the 999-call centre was analysed using R programming

language. Demographic and clinical variables were incorporated to enhance predictive

accuracy. Random Forest (RF), Support Vector Machine (SVM), Extreme Gradient Boost-

ing (XGBoost), and Adaptive Boosting (AdaBoost) algorithms were trained and validated.

Results

All the trained algorithm models, particularly XGBoost (Accuracy = 83.1%), correctly pre-

dicted patients’ transportation decisions. Further, they indicated statistically significant pat-

terns that could be leveraged for targeted resource deployment. Moreover, the specificity

rates were high; 97.96% in RF and 95.39% in XGBoost, minimising the incidence of incor-

rectly identified “Transported” cases (False Positive).
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Conclusion

The study identified the transformative potential of ML algorithms in enhancing the quality of

pre-hospital care in Qatar. The high predictive accuracy of the employed models suggested

actionable avenues for day and time-specific resource planning and patient triaging, thereby

having potential to contribute to pre-hospital quality, safety, and value improvement. These

findings pave the way for more nuanced, data-driven quality improvement interventions with

significant implications for future operational strategies.

Introduction

Ambulance services, often called “Emergency Medical Services” (EMS), are undergoing signif-

icant transformations globally, reflecting contemporary healthcare systems’ complex, dynamic

challenges. In a world where rapid technological advancements often outpace the ability of tra-

ditional healthcare infrastructure to adapt, the pressing imperatives include effective and effi-

cient medical intervention strategies. EMS face multifactorial challenges, including increasing

patient volumes, finite resources, and the escalating need for speed and precision in life-saving

interventions [1]. These challenges are particularly pronounced in multinational societies like

Qatar, where a diverse demographic landscape adds layers of complexity to emergency medical

care.

However, the utility of advanced techniques, such as machine learning (ML), assumes

immense significance. The application of ML, a subfield of artificial intelligence, serves as a

catalyst for deep data exploration—unearthing patterns and correlations that often remain

invisible in traditional analyses [2]. In an environment where every minute counts, the capac-

ity to predict medical needs and allocate resources judiciously is a dynamic process. ML‘s pre-

dictive analytics provide an innovative approach to bridging existing gaps in the EMS domain,

offering potentially transformative solutions to both old and new challenges [3].

In the literature, the integration of ML in EMS marked a significant shift towards more effi-

cient and responsive healthcare systems. The role of predictive analytics in healthcare, and spe-

cifically in EMS. For instance, research demonstrated that ML helped enhance diagnostic

processes. Their study showed that ML algorithms could significantly improve the accuracy

and speed of medical diagnoses, particularly in complex cases like cancer detection. This

advancement in diagnostics was crucial for early intervention and effective treatment plan-

ning. Further, other researchers highlighted how ML is used in patient care management by

personalising patient care plans, leading to better patient outcomes and more efficient use of

healthcare resources. This aspect of ML aligns with the overarching goal of improving health-

care delivery and patient satisfaction. It also helped predict and manage public health crises,

such as pandemics. Their research illustrates how ML models can forecast disease spread pat-

terns, aiding in the formulation of effective public health responses. It helped forecast medical

emergencies and anticipate specific trends and emergencies, enabling proactive resource allo-

cation. Recent studies have highlighted the potential of ML in transforming EMS operations

by enhancing response times and resource allocation in EMS and reducing. Similarly, other

studies indicated that ML algorithms could predict high-demand areas, allowing for better

ambulance positioning and quicker response time, as well as resource optimisation. Other

studies revealed that ML could lead to cost savings in healthcare by reducing unnecessary

interventions aligning with the goal of value improvement, indicating that ML can contribute

to cost reduction and quality enhancement in healthcare services.
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Qatar’s multinational population makes it a uniquely challenging environment for the

emergency care service [4]. Hamad Medical Corporation Ambulance Service (HMCAS) is the

leading provider in this setting and continually evolves its healthcare infrastructure. This

makes HMCAS a particularly relevant case study for integrating ML techniques into its opera-

tional system. The rich data generated in such a complex environment are fertile grounds for

ML algorithms to tease out nuanced insights that can inform more effective resource allocation

strategies. With healthcare costs soaring worldwide, there is a growing need for value improve-

ment (VI), a quality improvement (QI) concept that aims not only at cost reduction but also at

enhancing the quality of healthcare services [5]. ML fits neatly into this VI culture. ML could

contribute to resource optimisation by facilitating advanced predictive analytics of patient

transport decisions, ultimately leading to fiscal savings and improved healthcare outcomes. To

our knowledge, no previous study approached the patients’ transport decisions in a pre-hospi-

tal setting using ML.

The study aimed to investigate the role of ML algorithms in predicting patients’ transport

decisions, which would allow optimal resource allocation in HMCAS in Qatar.

Method

Setting and source of data

A retrospective quantitative analysis with predictive modelling was conducted on 93,712 pre-

hospital emergency calls received by HMCAS between January 1st and May 31st, 2023. The

electronic patient care record (ePCR) system, overseen by the HMCAS Business Intelligence

(BI) division, served as the data source. Compliance with the Transparent Reporting of a mul-

tivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) guidelines was

maintained throughout the study for machine learning-based analyses [6]. Ethical approval

was obtained from the Hamad Medical Corporation Medical Research Centre (Reference:

MRC-01-22-264). R-Studio was employed for data processing and analysis.

Participants

The criteria for inclusion encompassed all 999 emergency calls leading to the dispatch of an

ambulance, during which a paramedic conducted an on-scene patient evaluation, irrespective

of whether the patient was transported to a hospital or not. Exclusion criteria were the cases

involving a deceased individual and when the 999 call was made by a healthcare facility.

Statistical analysis

Predictors and outcome variable. The variable “Handover” was considered the outcome

variable. It included a binary outcome, which is whether a patient, after receiving emergency

treatment by paramedics on scene, was conveyed to a healthcare facility (“Transported” = 1)

or not (“Not Transported” = 0).

The continuous predictors were “Age”, “Weight”, and the hour when the 999 call was

received (“Hour_received”).

The categorical variables were nationalities categories (“Nationality_CAT”), the entity man-

aging the 999 calls or “CFS_Owner” (A “Call For Service” can be attributed to the Police, Civil

Defense, or HMCAS), Program Question AnswerTM (ProQA) “ProtocolName”, “Unit_Type”,

“DispatchType”, which is determined according to the ProQA protocol outcome, “Provisonal-

Diagnoses_CAT”, and co-morbidities such as “Seizure”, “Asthma”, Diabetes Mellitus “DM”,

Chronic obstructive pulmonary disease (“COPD”), “CurrentlyPregnant”, Cerebral Vascular

Accident (“CVA”), “Hypertension”, Cardio Artery Disease (“CAD”), “Other”, and Unknown.
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Data pre-processing. Effective data analysis in a medical context hinges upon the quality

and coherence of the underlying data [7]. Pre-processing steps were implemented to ensure

the dataset’s reliability, interpretability, and clinical relevance by renaming, recoding, trans-

forming variables, and handling missing values.

First, the variables’ renaming was conducted to make them understandable in a manageable

format. This step is foundational, ensuring that subsequent operations are intuitive and less

error-prone. This was achieved by mapping column names to more descriptive terms. This

included the variables “ProtocolName”, “ProtocolCode”, “DispatchType”, “ProvisonalDiagno-

sis”, and “Seizure”. Second, existing values under the variables were recoded to a more under-

standable form, such as the values under “ProtocolName” that were recoded into [the protocol

name and its ProQA™ code between “()”] as defined by the International Academy of Emer-

gency Medical Dispatch [8]. Third, data transformation was performed. For example, values

under the variables “ProtocolName” and “DispatchType” were altered based on the corre-

sponding value in the “CFS_Owner” field. Data was restructured to represent the calendar

week numbers.

Further, in the transformation, recategorisation of several variables such as “Transpor-

tedTo”, the hospital facility “PatientTriageArea”, “ProvisonalDiagnosis”, and “Nationality_-

CAT” was performed. Fourth, the variables not required after transformation were removed.

Fifth, the missing values were assessed by generating a plot to allow the visualisation of the

‘missingness’ patterns across variables [9]. This was a twofold process: initially, to assess the

extent and nature of missing data and second, to verify the effectiveness of the missing values

management technique. Missing data were managed using the Multiple Imputation by

Chained Equations (MICE) algorithm. MICE is a statistical technique that runs multiple simu-

lations to fill in the missing data, offering a more accurate representation of the data landscape

[9]. It uses all available variables to estimate the missing ones, proceeding variable by variable

iteratively repeated until the dataset is complete. This process culminates in several datasets

that are analysed collectively, enhancing the reliability of the research outcomes. “Location_-

LAT’ and “Location_Long” were excluded from the MICE process as they were only utilised to

plot the patient transport/not transported decision map. For continuous variables, the MICE

imputation method deployed was the Predictive Mean Matching (PMM), whereas the Classifi-

cation and Regression Trees (CART) MICE method was utilised for the categorical variables

[10]. The imputed values were integrated into the original dataset, fulfilling the replacement of

missing values for comprehensive data.

Outliers were assessed by designing boxplots. They evinced no discernible outliers, thus

obviating the need for further outlier removal steps. Hence, the initial data was deemed devoid

of outliers and was retained for subsequent analysis. Feature selection was conducted by

employing two automated methods to ensure the robustness of the chosen variables. The first

method was the Random Forest (RF) algorithm. The second method was the Recursive Feature

Elimination (RFE) using the “Wrapped Method” [11]. RFE is used to evaluate a combination of

features and assign a score based on model accuracy considering the interactions between fea-

tures [11]. The Wrapped Method helps improve the RFE’s performance by automatically select-

ing the most important features, thereby making the model more accurate and efficient [12].

Further, categories with low counts, such as the non-EMS ProQA™ call-taking protocols,

such as “Maritime”, “Fire”, and “Rescue”, under the “ProtocolName” variable, were grouped

together to avoid algorithmic errors associated with sparse data during ML analysis. Categori-

cal variables were converted into numerical codes to avoid causing errors when building the

models.

It is important to note that despite preliminary feature selection, a substantial correlation

existed among variables, as confirmed by Chi-square and Wilcoxon rank-sum tests (S1 File).
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Variables selected for inclusion were not determined solely by statistical tests; they were also

influenced by the researchers’ expertise and what was previously employed in the literature

[13]. Other epidemiological analyses that identified significant associations with co-morbidi-

ties further informed the selection, including the table in S1 File. Therefore, in addition to

“Handover,” which served as the outcome variable, the final list of variables retained for super-

vised predictive modelling included “Unit_Type,” “Region,” “ProtocolName,” “WeekNum-

ber,” “Hour_Received,” “LocationType,” “WeekDay,” “Age,” “Gender,” “Nationality_CAT,”

“ProvisonalDiagnoses_CAT,” “Hypertension,” and “DM.”

Predictive modelling

Supervised predictive modelling (PM) was adopted for this study.

The pre-processed dataset was segregated into training (80%; n = 70,783.20) and test subsets

(20%; n = 17,695.80). This partitioning is critical for unbiased model evaluation and prevent-

ing overfitting [14].

Parallel computing (PC) was utilised to speed up the data analysis process. A PC allows

multiple calculations simultaneously by taking advantage of the multiple cores in a processor

[15]. This approach benefits complex computations, helping us obtain results more quickly

and efficiently.

Hyperparameter tuning was used to optimise the performance of the ML algorithms [16].

This enables the creation of the most effective model for predicting the transport decisions var-

iable with the highest accuracy, increasing the reliability of the results.

Further, four algorithms were employed to train the data: 1) RF utilised a ten-fold cross-val-

idation [14]. This approach randomly divided the training dataset into ten equal-sized subsets.

The RF algorithm was trained on nine subsets and tested on the remaining one. This proce-

dure was repeated ten times using a different subset for validation. 2) Support Vector Machine

(SVM) was enhanced with a Radial Basis Function (RBF) Kernel. RBF Kernel optimises model

performance by measuring the similarity between data points and examining their relative

positions in a defined set of characteristics [17]. These characteristics are the pre-determined

variables identified as relevant to the model’s predictive accuracy [17]. 3) The eXtreme Gradi-

ent Boosting (XGBoost) was adopted using its built cross-validation system, which provides a

robust and highly accurate algorithmic approach [18]. 4) Adaptive Boosting (AdaBoost) was

also utilised. AdaBoost allows boosting the performance of the models by iteratively correcting

their errors, offering a straightforward yet effective ensemble method [18].

Each model was evaluated on several metrics such as Accuracy, Sensitivity, Specificity, Mat-

thews Correlation Coefficient (MCC), and Area Under the Receiver Operating Curve (AUC).

Prediction’s feature importance was assessed. Feature importance allows for identifying the

most influential variables in the predictive models. The final predictive models were used to

make predictions on the test data. Control charts, specifically p-charts and c-charts, were uti-

lised for statistical quality control to monitor the performance of each model over time [19,

20]. Using the statistical process control (SPC) charts, the prediction models were summarised

and visualised by day hour (“Hour_received”) and weekday to allow a better understanding of

the predictive models’ performance at different times of the day and on different weekdays.

This is crucial to assess the usefulness of these models in pre-hospital settings.

Results

From June to May 31st, 2023, 93,712 emergency calls were received, resulting in 72,279

patients being transported, 21,301 not being transported, and 132 cases identified as cases of

death upon arrival on scene. After data pre-processing and removing the cases that did not
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comply with the inclusion criteria, 67,285 cases of transported patients and 21,194 related to

patients who were not transported were retained for the predictive modelling (Fig 1).

“S2 File” presents the missing value percentages before and after the imputation.

“S3 File” presented boxplots generated to visualise the outliers within the continuous vari-

ables. No discernible outliers were visualised.

Automated feature selection methods were used. The Mean Decrease Accuracy (MDA) and

Mean Decrease Gini (MDG) determined by RF and the scree-plot coefficients determined by

RFE were plotted respectively in “S3 File”. For the RF method, the MDC indicates how much

model accuracy decreases when a feature is randomly permuted. Higher values imply that the

feature is important. The MDG measured how each feature contributed to the homogeneity of

the nodes and leaves in the resulting Random Forest. The RFE method evaluated the effective-

ness of different feature sets in predicting an outcome. Lower Root Mean Square Error and

Mean Absolute Error values, along with R2 values closer to 1, signal better feature sets for accu-

rate predictions; the smaller the associated standard deviations, the more consistently reliable

the selected feature is. Although the RFE does not directly provide the variable names in its

table and attributes them numbers instead, it provides the most significant variable at the end.

The tables in “S4 File” indicated that features such as provisional diagnoses (“ProvisonalDiag-

noses_CAT”), priority to hospital (“PriorityToHospital”), ProQA™ call-taking protocol name

(“ProtocolName”), and patient triage area (“PatientTriageArea”) were predominant for accu-

rate predictive modelling. Hence, the variables included in the modelling were selected based

on the researchers’ clinical experience and operational relevance.

For the predictive modelling, “Table 1” evaluated the four ML algorithms utilised in this

study to predict whether patients who call 999 will be transported to a hospital or not. Each of

the models’ performance metrics (Accuracy, Sensitivity, Specificity, Kappa, and McNemar’s

Fig 1. Geographical distribution of transported and not transported patients across Qatar. (This map was created by the first author using the “Leaflet”

package in R. The data is available under the Open Database License).

https://doi.org/10.1371/journal.pone.0301472.g001
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Test p-value) were determined. Accuracy denotes the proportion of true positives and true

negatives among the total observations. The “No Information Rate (NIR) and p-value” indicate

the baseline model’s accuracy, which in this case is 76.05%. The p-value suggests that the mod-

els are statistically significant in improving prediction compared to a no-information model.

Sensitivity and Specificity represent the model’s ability to identify “true positives” and “true

negatives” correctly. High Specificity across the models (97.69% in Random Forest to 95.39%

in XGBoost) suggests fewer false positives. Kappa offers a chance-corrected measure of agree-

ment between observed and predicted classifications. Higher Kappa suggests better perfor-

mance. XGBoost had the best Kapp value (k = 0.46) and then RF (k = 0.42). McNemar’s Test

helps us understand whether the ML model was genuinely helpful in making reliable predic-

tions or if it was by chance. The p-value was<0.01 for all models, suggesting they are signifi-

cantly better at making correct predictions. The MCC represents the quality of binary

classifications. The closest to 100%, the better the prediction. XGBoost had the best MCC

(48.47%) followed by RF (47.02%). For the AUC (85.05% for XGBoost and 84.87% for RF), the

higher the value, the better the model’s performance. Positive Predictive Value, Negative Pre-

dictive Value, and Balanced Accuracy are ways to better understand how good a model is at

making predictions. True Negatives refer to those cases when patients were “Not Transported”

in reality and correctly predicted by the algorithm. False Positives refer to cases when patients

were “Not Transported” but were incorrectly predicted as “Transported” by the algorithm.

Lastly, False Negatives refer to “Transported” cases but were incorrectly predicted as “Not

Transported”.

“Fig 2” shows a comparative evaluation of four ML algorithms was performed. RF demon-

strated a robust sensitivity in identifying “Transported” cases with a high True Positive count

(13,146). Still, it struggled to correctly predict the “Not Transported” cases since relatively low

True Negative cases (n = 1,520) and high False Positive cases (n = 2,718) were predicted.

Table 1. Predictive models performance metrics.

Random_Forest XGBoost AdaBoost Support_Vector_Machine

Accuracy: 82.90% Accuracy: 83.10% Accuracy: 78.25% Accuracy: 76.65%

95% CI: (82.3%, 83.43%) 95% CI: (82.54%, 83.65%) 95% CI: (77.64%, 78.86%) 95% CI: (76.02%, 77.27%)

No Information Rate (NIR): 76.05% No Information Rate (NIR): 76.05% No Information Rate (NIR): 76.05% No Information Rate (NIR): 76.05%

p-value [Acc*> NIR]: < 0.01 p-value [Acc*> NIR]: < 2.2×10−16 p-value [Acc* > NIR]: 2.033×10−12 p-value [Acc*> NIR]: 0.032

Sensitivity: 35.87% Sensitivity: 44.10% Sensitivity: 17.39% Sensitivity: 72.20%

Specificity: 97.69% Specificity: 95.39% Specificity: 97.42% Specificity: 98.55%

Kappa: 0.42 Kappa: 0.46 Kappa: 0.20 Kappa: 0.08

Mcnemar’s Test p-value: < 0.01 Mcnemar’s Test p-value: < 0.01 Mcnemar’s Test p-value: < 0.01 Mcnemar’s Test p-value:< 0.01

Confusion Matrix and Statistics Confusion Matrix and Statistics Confusion Matrix and Statistics Confusion Matrix and Statistics

Prediction 0 1 Prediction 0 1 Prediction 0 1 Prediction 0 1

0 1520 311 0 1869 621 0 737 347 0 306 200

1 2718 13146 1 2369 12836 1 3501 13110 1 3932 13257

Pos Pred Value: 83.01% Pos Pred Value: 75.06% Pos Pred Value: 67.99% Pos Pred Value: 60.48%

Neg Pred Value: 82.87% Neg Pred Value: 84.42% Neg Pred Value: 78.93% Neg Pred Value: 77.13%

Prevalence: 23.95% Prevalence: 23.95% Prevalence: 23.95% Prevalence: 23.95%

Detection Rate: 8.59% Detection Rate: 10.56% Detection Rate: 4.17% Detection Rate: 1.73%

Detection Prevalence: 10.35% Detection Prevalence: 14.07% Detection Prevalence: 6.13% Detection Prevalence: 2.86%

Balanced Accuracy: 66.78% Balanced Accuracy: 69.74% Balanced Accuracy: 57.41% Balanced Accuracy: 52.87%

‘Positive’ Class: 0 ‘Positive’ Class: 0 “Positive” Class: 0 ‘Positive’ Class: 0

MCC: 47.02% MCC: 48.47% MCC: 26.37% MCC: 14.69%

AUC: 85.05% AUC: 84.87% AUC: NULL AUC: NULL

https://doi.org/10.1371/journal.pone.0301472.t001
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XGBoost performed similarly, although with a slightly improved predicted True Negative rate

(n = 1,869) but a considerable number of False Positives (n = 2,369) and False Negatives

(n = 621). SVM, with an extremely high True Positive rate (1,3257), evidently failed in identify-

ing “Not Transported” cases, giving an extremely low True Negative (n = 306) and high False

Positive (n = 3,932) cases. AdaBoost showed a more balanced performance than SVM, with a

commendable True Positive rate (n = 13,110) and a better True Negative rate (n = 737),

although it also predicted a significant number of False Positives (n = 3,501) and False Nega-

tives (n = 347).

Additionally, “Fig 3” was created to identify the most important variables in the predictive

models. The call-tacking “ProtocolName” and “ProvisonalDiagnoses_CAT” were the most sig-

nificant features across all variables.

In “Figs 4 and 5”, and “S5 File”, the prediction data showcases the frequency of 999 calls cat-

egorised into (Yes = Transported) and (No = Not Transported) across different days of the

week and hours of the day. For RF and XGBoost, the best performing models, Sunday’s 999

call rates remained relatively stable between both models, with only a slight decrease in

XGBoost, whilst certain days like Monday showed more variability. The late-night and early-

morning hours consistently have fewer 999 calls across all days in both datasets. The frequency

of transported patients tends to be higher during the day than at night for almost all days of

the week (Except on Fridays). Peaks in the transported patients can be seen during late morn-

ing to early afternoon hours, notably for Mondays and Wednesdays. For the “Not Trans-

ported” patients, the frequency generally remains lower compared to “Transported” patients

but still shows some hourly variations.

The following examples are illustrated to explain how to use the data in “S5 File” for the pre-

diction of 999 calls using the XGBoost algorithm, also considering the other predictors in the

model:

Fig 2. Confusion matrix plots of the four algorithms.

https://doi.org/10.1371/journal.pone.0301472.g002
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i. Monday at Hour 0: On Mondays at midnight, we can expect approximately 50 are pre-

dicted to be transported, while 15 will likely not be transported.

ii. Wednesday at Hour 11: On Wednesdays at 11 AM, we can expect approximately 385 to be

transported, while 61 will likely not be transported.

iii. Friday at Hour 18: On Fridays at 6 PM, we can expect approximately about 50 are pre-

dicted to be transported, while 12 will likely not be transported.

iv. Sunday at Hour 22: On Sundays at 10 PM, we can expect approximately 62 are predicted

to be transported, while 14 will likely not be transported.

Discussion

In the feature selection process, variables such as “PatientTriageArea” and “PriorityToHospi-

tal” emerged as significant predictors for constructing a robust model. However, these

Fig 3. Feature importance of the four machine learning models.

https://doi.org/10.1371/journal.pone.0301472.g003
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variables were not incorporated into the final models for several reasons. Firstly, the area

where a patient is triaged and the transport priority are frequently subject to change. Specifi-

cally, the patient triage area is often not determined until the ambulance is near the hospital.

This is because patients’ medical conditions are dynamic, evolving during the transport jour-

ney, thereby affecting the final decision regarding identifying their destination area and the

priority level, when the patient has already approved to be transported. Secondly, alternative

feature selection methods, such as the Chi-square test in “S1 File”, revealed that most variables

correlated highly with the outcome variable. This suggests that they, too, could substantially

contribute to constructing a predictive model. Therefore, while automated feature selection

techniques provide valuable insights, it is crucial also to consider other statistical and non-sta-

tistical measures to ensure a comprehensive understanding of how different variables could

influence the model’s performance. This multifaceted approach enriches the robustness of the

model, accommodating wider clinically and operationally significant factors like the call-tak-

ing protocol name. Moreover, prior studies have emphasised that feature selection serves as a

guide towards pertinent variables, and features can be selected based on both their mutual

information and correlation coefficients [11, 21, 22]. Nevertheless, the expertise of the

researchers remains integral in selecting variables for inclusion in the predictive model. Ulti-

mately, the model’s performance metrics serve as the definitive evaluation of its efficacy and

Fig 4. Statistical process control of the prediction data of the hourly patients not transported per model.

https://doi.org/10.1371/journal.pone.0301472.g004

PLOS ONE Machine learning for non-transport decisions

PLOS ONE | https://doi.org/10.1371/journal.pone.0301472 May 3, 2024 10 / 17

https://doi.org/10.1371/journal.pone.0301472.g004
https://doi.org/10.1371/journal.pone.0301472


Fig 5. Hourly and weekly number of patients predicted to be transported to the hospital for all models.

https://doi.org/10.1371/journal.pone.0301472.g005
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reliability. While feature selection algorithms can inform variable importance, the researchers’

nuanced understanding and domain knowledge are indispensable for robust and clinically rel-

evant modelling.

Effective decision-making is often encumbered by the lack of robust, predictive data analyt-

ics in pre-hospital care [23]. Integrating ML techniques into healthcare has foreshowed a new

era of efficiency, predictability, and QI, particularly in pre-hospital settings [3, 24]. This study

demonstrated the robustness of ML algorithms with high accuracy rates in predicting whether

an emergency call would result in the patient being “Transported”’ or not. These findings have

multiple implications for HMCAS, offering avenues for systemic QI interventions that were

previously untapped.

Firstly, the predictive prowess of these algorithms can serve as a valuable tool for resource

optimisation. When medical resources are finite, but demands are often unpredictable and

urgent, allocating resources judiciously might be essential. In our case, RF and XGBoost mod-

els can help identify high-risk time periods likely to experience peaks in emergencies. By doing

so, HMCAS can pre-position ambulances, personnel, and all other necessary equipment,

thereby reducing response times and potentially increasing the effectiveness of the care pro-

vided. Many recent studies explored the potential for predictive analytics to improve pre-hos-

pital medical teams’ performance [3, 25].

Secondly, the high specificity rates of these models can drastically reduce the incidence of

false positives, ensuring that resources are allocated only where truly needed. In the context of

patient transport decisions, false positives are erroneously predicting that a patient needs to be

transported when they do not, which can lead to unnecessary use of pre-hospital resources.

This strains healthcare systems and could divert critical resources from patients requiring

urgent care. Therefore, even models with high specificity must be cautiously interpreted and

continually validated to minimise these risks [26, 27].

The feature importance abilities of ML models (Fig 3) enabled the precise identification of

key predictive variables, such as the ProQA™ protocol name and provisional diagnoses in our

case. Based on these specific variables, this enhances the pre-hospital system’s proficiency in

identifying patients at risk of not being transported. Such targeted predictive analysis can sub-

stantially ease financial and logistical pressures on pre-hospital care systems, for instance, by

fine-tuning dispatch protocols to recognise better patients with low-acuity complaints who

may request not to be transported. In such instances, alternative resources like “non-transport

units” equipped with less costly medical equipment could be allocated rather than dispatching

emergency response units, which are over-equipped and crewed by highly qualified staff like

critical care paramedics as they are designed for more critical patients [28, 29]. This approach

may not only lead to fuel, workforce, and vehicle maintenance savings. It could also mitigate

the risks associated with high-priority driving, with increased risk of road traffic accidents and

under-triage associated with not transporting a patient [30–33]. It is crucial to highlight that

numerous recent studies have accentuated the significant risks of failing to transport patients

who have called for pre-hospital emergency assistance, thereby depriving them of advanced

in-hospital care [34, 35].

Thirdly, ML algorithms are fundamentally adaptive and can continually evolve when

updated with new data, offering dynamic models that can adjust to societal behaviour, techno-

logical progress or healthcare guidelines [36, 37]. This adaptability is crucial for continuous QI

as it allows pre-hospital EMS to be agile and responsive to new challenges or shifts in pre-hos-

pital care needs [38]. For example, the ML models could be updated to consider the emergence

of new health crises such as pandemics, seasonal trends in certain medical conditions, or

changes in urban layouts that can affect transport times. Incorporating these findings into

operational protocols can potentially revolutionise the pre-hospital care paradigm. For
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instance, ambulances and medical teams could be pre-positioned strategically during identi-

fied peak hours, thus decreasing response times and enhancing patient outcomes [39, 40].

Additionally, staff rosters could be adapted to align with these temporal patterns, ensuring suf-

ficient medical personnel are available during high-demand periods. The availability of

advanced telemedicine options could also serve as alternative care pathways for non-transport

cases, thus averting unnecessary pressure on hospitals.

Finally, it is important to note that while ML holds great promise for enhancing EMS capa-

bilities, its effective implementation necessitates a multi-disciplinary approach that includes

healthcare professionals, data scientists, and policymakers. It is not only about algorithmic

sophistication but also about ethical considerations, data privacy, and regulatory compliance.

Further, published studies cautioned against over-reliance on algorithms, highlighting ethical

concerns such as data misuse, patient confidentiality, and the potential for algorithmic bias

[41–43]. The incorporation of ML into pre-hospital EMS practices represents more than just a

technological advance; it signifies a paradigm shift with the potential to fundamentally trans-

form the benchmarks of emergency pre-hospital care [44, 45]. Considering these complexities,

integrating continuous QI principles with ML becomes instrumental when implementing pre-

dictive pre-hospital care models. These QI methodologies, such as those derived from Deming

and Kaizen principles, are helpful since they focus on iterative testing and constant monitor-

ing, ensuring that the ML algorithms (S6 File), when deployed, remain accurate, ethical, and

aligned with healthcare objectives, enabling real-time assessment and their fine-tuning [46,

47]. Concurrently, the culture of “continuous improvement” can perfectly merge with the

adaptive nature of ML, encouraging a culture of regular feedback and instantaneous adjust-

ments, creating a self-updating system that can mitigate risks and dynamically evolve to meet

the ever-changing demands on pre-hospital care.

Limitations

While the models demonstrated commendable accuracy rates, it is noteworthy to mention

that their sensitivity rates, particularly in the case of SVM, dipped to an inadequate 7.2%

highlighting existing limitations in identifying “true positives”. This suggests that the models

are potentially more inclined towards avoiding false positives at the expense of missing out on

genuine emergency cases [48]. In this study, while all four algorithms excelled in sensitivity by

correctly predicting a high number of “Transported” cases, they showed varying degrees of

specificity and error control, highlighting the need for further fine-tuning to improve overall

performance. Such a gap in model performance highlights the pressing need for future

research to refine these algorithms to achieve a more balanced interplay between sensitivity

and specificity with new data. Moreover, missing values in the dataset could contribute to this

issue. Filling in these gaps is more than a data-cleaning operation, it is also a fundamental step

towards improving the robustness of predictive modelling. Missing data, if not addressed,

could introduce bias and compromise the validity of the findings, thus mitigating the utility of

ML in this critical context. Given this, we recommend that HMCAS reviews policies and pro-

cedures, specifically to address non-systematic missing data entry, which will pave the way for

more robust data analysis and predictive modelling in the future.

Conclusion

In conclusion, this study serves as a seminal exploration into utilising ML algorithms for pre-

dicting transport decisions, optimising resource allocation and improving the quality of pre-

hospital emergency care. It presented compelling evidence for the efficacy of predictive model-

ling in differentiating “Transported” from “Not Transported” patients, thereby aiding in
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identifying their transport decision-making process in advance. While the study aligns with

previous research in underlining the criticality of timely interventions and the need for

nuanced, data-driven approaches, it also accentuates areas needing further refinement—

namely, the improvement of model sensitivity and the imperative of handling missing data for

more robust predictions. In doing so, the study sets the stage for future investigations that

could refine these predictive algorithms and further enhance HMCAS’ responsiveness and

effectiveness. The findings offer valuable contributions to personalised, efficient, and pre-hos-

pital life-saving medical interventions as we move towards an increasingly data-centric health-

care paradigm.
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