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Abstract

Cyclic AMP controls neuronal ion channel activity. For example hyperpolarization-activated

cyclic nucleotide–gated (HCN) and M-type K+ channels are activated by cAMP. These

effects have been suggested to be involved in astrocyte control of neuronal activity, for

example, by controlling the action potential firing frequency. In cortical neurons, cAMP can

induce mixed-mode oscillations (MMOs) consisting of small-amplitude, subthreshold oscil-

lations separating complete action potentials, which lowers the firing frequency greatly. We

extend a model of neuronal activity by including HCN and M channels, and show that it can

reproduce a series of experimental results under various conditions involving and inferring

with cAMP-induced activation of HCN and M channels. In particular, we find that the model

can exhibit MMOs as found experimentally, and argue that both HCN and M channels are

crucial for reproducing these patterns. To understand how M and HCN channels contribute

to produce MMOs, we exploit the fact that the model is a three-time scale dynamical system

with one fast, two slow, and two super-slow variables. We show that the MMO mechanism

does not rely on the super-slow dynamics of HCN and M channel gating variables, since the

model is able to produce MMOs even when HCN and M channel activity is kept constant. In

other words, the cAMP-induced increase in the average activity of HCN and M channels

allows MMOs to be produced by the slow-fast subsystem alone. We show that the slow-fast

subsystem MMOs are due to a folded node singularity, a geometrical structure well known

to be involved in the generation of MMOs in slow-fast systems. Besides raising new mathe-

matical questions for multiple-timescale systems, our work is a starting point for future

research on how cAMP signalling, for example resulting from interactions between neurons

and glial cells, affects neuronal activity via HCN and M channels.

Author summary

Neurons use the frequency of electrical signals called action potentials to encode informa-

tion, and various messenger systems interact with ion channels to control this so-called
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firing frequency. Recent experimental recordings show that the intracellular messenger

cAMP can induce mixed-mode oscillations (MMOs) consisting of small-amplitude, sub-

threshold oscillations separating action potentials, which lowers the firing frequency

greatly. We extend a recent mathematical model of neuronal electrical activity to investi-

gate how MMOs occur from interactions between ion channels regulated by cAMP. Our

simulations reproduce a range of experimental results, including cAMP-induced MMOs.

We explain the model dynamics using modern geometrical methods that exploit the dif-

ferent timescales in the model. Our analyses show that the very slow dynamics of cAMP-

regulated HCN and M ion channels is not crucial for creating MMOs, but rather that the

cAMP-induced increase in their average activity is important. Our analyses suggest that

both HCN and M channels are crucial for MMOs and controlling the firing frequency,

which has implications for our understanding of how astrocytes control neuronal infor-

mation processing. Moreover, our study raises new mathematical questions related to

how super-slow dynamical variables modify MMOs.

Introduction

Cyclic AMP (cAMP) is an ubiquitous second messenger involved in a wide range of intracellu-

lar signaling processes. In neurons, cAMP has been suggested to control excitability and elec-

trical activity by regulating ion channel activity [1, 2]. Of particular interest for the present

work, in cortical neurons cAMP activates hyperpolarization-activated cyclic nucleotide–gated

(HCN) channels [3, 4], which mediate a depolarizing current, and M-type potassium (also

known as KCNQ or Kv7) channels, which carry a hyperpolarizing current [5, 6].

Recent experimental findings from layer V pyramidal cells [4] demonstrated how Ca2+-evoked

ATP release from astrocytes modulates the action potential (AP) conduction speed and the neu-

ronal membrane excitability through cAMP increase and HCN channels. It was shown that HCN

activation changes spiking electrical activity consisting of regular AP firing, into complex electri-

cal patterns of mixed-mode oscillations (MMOs), where subthreshold, small amplitude oscilla-

tions (SAOs) intersperse large amplitude oscillations (LAOs), i.e., complete APs. This shift leads

to a large reduction in the inter-spike frequency due to the presence of SAOs. Similarly, cAMP-

induced activation of M-type channels has been shown to lower the firing frequency in pyramidal

cells by producing MMOs [5]. How cAMP through both hyper- and depolarizing channels can

cause MMOs is far from trivial.

This work proposes and investigates the hypothesis that the experimentally observed phe-

nomena in [4, 5] result from both HCN and M channels. To study this idea, the neuronal elec-

trical activity is modelled by the introduction of HCN and M currents in the model presented

in [4], which is an adaptation of a previous model [7] to pyramidal cells. This extended and

optimized model replicates the experimental results presented in [4, 5]; in particular, it pro-

duces MMOs upon an increase in cAMP levels, in contrast to the simulations shown by Lezmy

et al. [4]. To understand how M and HCN channels contribute to produce MMOs, we exploit

that the model presents variables with different velocities, i.e., it is multiple-time scale dynam-

ical system with one fast, two slow, and two super-slow variables. In this class of models, geo-

metrical and mathematical approaches are used to explain temporal dynamics, and the

mechanisms generating MMOs are increasingly well understood [8]. Using these mathemati-

cal tools, it has been possible to understand and explain MMOs observed in many cellular

quantities, e.g., complex patterns of electrical activity in neurons [9–11], pituitary cells
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[12–14], human beta cells [15], and cardiomyocytes [16, 17], as well as mixed-mode calcium

oscillations [18], complex dynamics appearing from cell-to-cell interaction [19–21], etc.

We find that both HCN and M channels are important for creating MMOs in the model.

However, this is not because of the dynamics of their gating variables, which operate on the

super-slow timescale, since the model is able to produce MMOs even when HCN and M chan-

nel activity is kept constant. In other words, cAMP increases the average HCN and M channel

activity to set the slow-fast subsystem in a region of parameter space where MMOs are pro-

duced by the slow-fast subsystem alone. We show that the slow-fast subsystem MMOs are due

to a folded node, and we construct numerically the relevant geometrical objects that explain

the detailed dynamics of the simulated MMOs.

Results

The model reproduces MMOs in various experimental conditions

We included HCN and M currents in a previous model of neuronal activity [4, 7] in order to

simulate and investigate electrical activity under different experimental conditions [4, 5], which

examined how the cAMP-dependent pathway depicted in Fig 1 influence neuronal behavior.

This model was adapted to pyramidal cells by Lezmy et al. [4], who observed MMOs experi-

mentally in this type of cortical neurons. Our simulations reproduce satisfactorily a range of

biological results, and in particular exhibit MMOs as found experimentally. The Hodgkin-Hux-

ley-type model is formulated as a set of ordinary differential equations and has five variables:

the membrane potential (V) and the gating variables describing, respectively, inactivation of

the fast Na+ current (h) and activation of the slow K+ (s), HCN (r) and M (w) currents. More

details can be found in Materials and methods. Model parameters are given in Table 1.

Elevated cAMP following A2aR activation induces MMOs

In the first experiment, the control condition is compared to the experiment where a stimulus

is provided via CGS21680 (CGS) [4]. This drug activates A2aR and the downstream pathway,

increasing the M and HCN currents, which can cause MMOs [4, 5].

Fig 1. Schematic representation of the considered pathways. The scheme depicts how Adenosine 2A Receptor

(A2aR) activation by extracellular Adenosine (ADO) increases cAMP levels via activation of adenylate cyclases (AC),

which in turn increases the opening probability of HCN and M channels via direct binding and PKA activation,

respectively. The experiments in [4, 5] target this pathway through specific drugs to understand how both M and HCN

channels participate in the modulation of neuronal electrical activity. The chemical compounds employed are the

A2aR agonist CGS21680 (CGS), the HCN channel inhibitor ZD7288 (ZD), the AC activator Forskolin (FSK), and the

M channel antagonists XE991 (XE) and Linopirdine (Lin).

https://doi.org/10.1371/journal.pcbi.1011559.g001
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The system of ODEs is simulated for different intensities of applied current (Fig 2). For the

lower values of IApp, MMOs are seen both in control conditions and when cAMP is raised by

CGS, whereas for IApp equal to 250 and 300 μA/cm2, MMOs are seen only in the presence of

GCS, while regular AP firing is obtained in the control condition, as seen experimentally [4].

Thus, the CGS-induced increases of the M and the HCN currents expand the interval of IApp val-

ues for which the system exhibits MMOs, passing from [81, 223] μA/cm2 to [62, 310] μA/cm2.

The activation of the cAMP pathway augments the hyperpolarizing effect of the M current

during the AP (Fig 3, turquoise, lower panels). In contrast, activation of HCN channels

becomes important after the AP hyperpolarization phase (Fig 3, turquoise, lower panels).

However, as will be shown in the following, although M and HCN currents are important for

positioning the system so that MMOs can appear, it is not their dynamics that cause the SAOs.

Rather, when the depolarizing HCN currents destabilize the resting membrane potential

(Fig 3, upper panels), the slow K+ current IKS counteracts the depolarization (Fig 3, blue, mid-

dle row), which in turn releases inactivation of the fast Na+ current INaF (Fig 3, orange, middle

row). The interplay between IKS and INaF causes subthreshold oscillations, until V crosses the

AP firing threshold.

When HCN currents are blocked, cAMP can silence active cells

Lezmy et al. [4] tested how HCN currents influence neuronal responses by blocking HCN chan-

nels pharmacologically with ZD7288 (ZD) under control conditions, or when the cAMP pathway

was activated by CGS. In the model, this corresponds to setting the HCN conductance (gHCN) to

zero and increasing the M channel conductance only. Fig 4, left panels, presents simulated elec-

trical activity under ZD and ZD+CGS applications. For IApp = 115 μA/cm2, MMOs are observed

in the absence of CGS and presence of ZD, as in the control condition (Fig 2), whereas the addi-

tion of both ZD and CGS turns the neuron silent because of the activation of the hyperpolarizing

M current. For IApp = 300 μA/cm2 and in the presence of ZD, the increased hyperpolarizing effect

of the M currents due to CGS changes continuous spiking into MMOs. Compared to the control

case, the suppression of the HCN currents shifts the current range for which MMOs are observed

from [81, 223] μA/cm2 to [103, 233] μA/cm2. Additional administration of CGS in the presence

of ZD further right-shifts this interval to [118, 337] μA/cm2. These simulations correspond to the

Fig 2. Elevated cAMP promotes MMOs. The figure presents simulated voltage traces under control conditions (first

row, black curves) and when cAMP is elevated as in the experiments with CGS application (second row, red curves) at

four different values of IApp.

https://doi.org/10.1371/journal.pcbi.1011559.g002
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observation that in the presence of ZD and at low stimulus strength, A2aR-mediated signalling

from astrocytes reduced the frequency and even stopped neuronal AP firing [4].

Blocking M channels changes MMOs to spiking and increases the firing

frequency

Arnsten et al. [5] blocked M channels with XE991 (XE) to investigate the roles of both M and

HCN channels. We simulated this experiment by setting the M channel conductance to zero

in the absence or presence of elevated cAMP (Fig 4, right panels). For IApp = 115 μA/cm2, the

block of the M currents turned MMOs (Fig 2, control case) to continuous spiking (Fig 4). For

IApp equal to 300 μA/cm2, XE lowered the AP amplitude and increased the firing frequency

compared to the control scenario (Fig 2), and in the presence of CGS M-channel block

changed MMOs to low-amplitude AP firing. M-channel inhibition allows the HCN channel to

depolarize the membrane potential quickly after the AP hyperpolarization phase. The fast Na+

channels do therefore not reactivate completely, which limits the following AP upstroke. The

MMO oscillation regime, compared to the control case, narrows down to [65, 103] μA/cm2 in

the presence of XE. Combined XE and CGS application shifts this interval to [19, 80] μA/cm2.

Overall, the results in Fig 4 correspond to the experimental findings obtained in [5].

Partial inhibition of M channels in stimulated conditions can change the

signature of MMOs

To understand how M channels influence the observed dynamics with elevated cAMP, For-

skolin (FSK), which raises the cAMP concentration, and the M-channel inhibitor Linopirdine

were applied to the neurons [5].

Fig 3. Ionic currents during APs and MMOs. Voltage (upper row; black and red curves) and principal currents

(middle and bottom rows; see legend for interpretation of colors) in simulations with IApp = 250 μA/cm2, in control

and CGS-stimulated conditions, are shown entirely in the left panels, whereas the right panels show zooms on the

dynamics near the onset of APs and the SAOs involved in MMOs.

https://doi.org/10.1371/journal.pcbi.1011559.g003
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Fig 5 presents the model results after the administration of FSK alone, or in the presence of

both FSK and Linopirdine. Forskolin increases both gM and gHCN, whereas the combined

administration of FSK and Linopirdine is modelled by a reduced increase in gM (see Table 2),

i.e., the application of Linopirdine to an FSK-stimulated cell gives a net reduction of gM. The

partial inactivation of the M channel destabilizes the resting membrane potential and increases

the excitability of the neuron. This effect explains the change in the MMO signatures in the

presence of Linopirdine, with more LAOs and shorter sequences of SAOs compared to the sce-

nario with fully active M channels.

Firing frequency analyses

Fig 6 shows firing frequency curves under different experimental conditions for a range of IApp
values. The FF curve associated with the unstimulated neuron (black) splits into several parts.

Fig 4. Blocking HCN and M channels affects electrical patterns at basal and elevated cAMP levels. The figure

presents the model simulations using IApp equal to 115 and 300 μA/cm2, in the presence of either the HCN blocker

ZD7288 (ZD; left panels) or the M current blocker XE991 (XE; right panels). The first row shows simulations without

activation of the cAMP-dependent pathway, whereas those presented in the second row are for CGS application.

https://doi.org/10.1371/journal.pcbi.1011559.g004

Fig 5. M-channel inhibition changes the signature of MMOs in stimulated conditions. Simulations of the model

with raised cAMP in the absence (left, blue) or presence of partial M channel inhibition, as in the experiments with

Forskolin (FSK) application in the absence or presence of Linopirdine (Lin) [5], are presented. Note how the grey trace

presents more full APs (LAOs) and fewer subthreshold oscillations (SAOs).

https://doi.org/10.1371/journal.pcbi.1011559.g005
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For IApp in the interval [81, 223] μA/cm2, the neuron exhibits MMOs. The neuron is silent if

IApp is below 81 μA/cm2, whereas for IApp 2 [223, 720] μA/cm2, only LAOs persist, i.e., the cell

fires regularly. The application of CGS activates A2aR, which raises cAMP levels, increasing

both HCN and M currents. This modification changes the FF curve (red) by shifting its onset

leftward and making it less steep. In fact, the unstimulated FF curve crosses the one obtained

for CGS stimulation at IApp� 113 μA/cm2. Above this value, the unstimulated case presents

higher FF, while the stimulated one is more active for IApp below the threshold. This crossing

of the FF curves agrees with the results by Lezmy et al. [4].

Fig 6 shows the FF results for two additional conditions. M currents are inhibited in both

these cases, mimicking the application of XE in the absence (magenta) or presence (turquoise)

of the A2aR agonist CGS. Considering the XE-treated neuron, the associated FF curve is

steeper compared to the control and the CGS-treated cases. In fact, under M-channel inhibi-

tion, the neuron generates oscillatory phenomena for lower IApp, due to the lack of the stabiliz-

ing, hyperpolarizing M current. For IApp in [65, 81] μA/cm2, the neuron is silent under control

conditions, while it undergoes MMOs with a FF approximately proportional to IApp if treated

with XE. If the neuron pre-treated with XE undergoes CGS stimulation, the FF curve shifts fur-

ther to the left. The increase in the depolarizing HCN channel conductance explains this

movement, since the neuron is more excitable. The comparison between the curves presented

in Fig 6 and the experimental FF curves [4, 5], strongly suggests that both M and HCN cur-

rents are required to explain how cAMP controls the FF in cortical neurons.

Dynamical system analyses of the slow-fast subsystem

To understand how MMOs appear in the 5D model simulated above, we analyse the three-

dimensional slow-fast (V, h, s) subsystem of the 5D model, which allows us to apply standard

methods regarding folded singularities [8]. Exploiting the fact that the M and HCN channels

have slower dynamics than the other variables in the model, the activation variables of M (w)

and HCN (r) channels are considered as parameters in the slow-fast (V, h, s) subsystem (the

“3D model” in the following). The reduction steps are illustrated in the section Model reduc-

tion in Materials and methods. Fig 7 presents the 3D model simulation of the experiment with

CGS stimulation, corresponding to the 5D model simulation shown in Fig 2. Crucially, the

Fig 6. Firing Frequency analyses. The FF of the 5D model under various pharmacological stimulations at different

levels of applied current. The black curve shows FFs for the unstimulated (control) condition. Red, magenta and

turquoise curves are associated with GCS21680 (GCS; increased cAMP), XE991 (XE; M channel block), and

simultaneous XE991+CGS21680 (XE/CGS) application, respectively.

https://doi.org/10.1371/journal.pcbi.1011559.g006
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dynamics of HCN and M channels are not strictly necessary in order to observe MMOs, which

is a result of the dynamics of the 3D slow-fast subsystem. The most significant difference

between the 5D (Fig 2) and the 3D (Fig 7) simulations is seen in the signatures of the MMOs

presented by the two systems. Specifically, for the same value of IApp, the 3D model shows

fewer LAOs and more SAOs than the 5D model. For example, for IApp = 250 μA/cm2, the full

system presents 2 LAOs followed by 2 or 3 SAOs, whereas the 3D model experiences 1 LAO

followed by 3 or 4 SAOs. This variation is caused by the simplification of the model.

In order to be able to use the same slow-fast subsystem bifurcation diagrams in the presence

and absence of cAMP-mediated activation of M and/or HCN channels, we introduce the mod-

ified slow variables (where cAMP = 0, respectively cAMP = 1, indicate absence, respectively

presence, of cAMP-mediated channel activation)

~w ¼ w 1þ cAMP
DgM
gM

� �

; ~r ¼ r 1þ cAMP
DgHCN

gHCN

� �

; ð1Þ

which are then used as bifurcation parameters in the slow-fast subsystem. In these expressions,

ΔgM and ΔgHCN are the increases in, respectively, M channel and HCN conductances caused

by increased cAMP. Using this formulation, the value of cAMP is completely incorporated

into the parameters ~w and ~r , see Materials and methods for further detail.

Slow-fast subsystem bifurcation diagrams

When projecting the trajectory of the 5D model onto the (~w, ~r) plane, the model trajectory

evolves close to a straight line ~r ¼ m~w þ q (Fig 8B). We can therefore construct one-parame-

ter bifurcation diagrams (1P-BD) for the 3D slow-fast subsystem with bifurcation parameter

~w, and ~r ¼ m~w þ q constrained to lie on the identified straight line. However, the line

depends on the experimental condition that is simulated, and moves upwards when cAMP is

elevated (Fig 8B): Both ~w and ~r increase since cAMP introduces a shift in these variables by

construction.

Fig 8A shows the computed 1P-BD for the slow-fast (V, h, s) subsystem. The results show

the existence of a unique equilibrium point. For high M-channel activation ~w, the equilibrium

is stable. As ~w is reduced (and ~r is increased), the equilibrium loses stability in a Hopf bifurca-

tion (HB). From the HB, unstable periodic solutions emerge. On the other hand, at very low

~w, the branch of unstable equilibria is surrounded by a branch of stable limit cycles, and as ~w
is increased, these lose stability as they go through a cascade of period-doubling bifurcations

Fig 7. 3D model voltage traces. Simulations of the 3D model under control (left, black) and CGS-stimulated (right,

red) conditions, compare with Fig 2.

https://doi.org/10.1371/journal.pcbi.1011559.g007
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Fig 8. Slow-fast 3D subsystem bifurcation diagrams. A: 1P-BD of the slow-fast subsystem for IApp = 300 μA/cm2 in the

control condition with ~w as parameter and ~r constrained to the dashed, black line in panel B. The red (respectively, black)

curve indicates stable (unstable) equilibria, and the green (blue) curves are minima and maxima of stable (unstable)

periodic solutions. The inset on the right shows a zoom on the region where the equilibrium changes stability. The inset on

the left provides a zoom around the period-doubling cascade. HB: Hopf bifurcation, SNPO: saddle-node bifurcation of

periodic orbits, PD: period doubling bifurcation. B: ð~w;~rÞ plane with projections of 5D model simulations for IApp = 300
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(PDs). Following saddle-node of periodic orbit (SNPO) bifurcations, the branch of (unstable)

limit cycles eventually connects to the HB point. Between PD1 and HB, the system exhibits

MMOs. These do not appear as a direct result of the PDs, but rather when the chaotic attractor

makes a sudden discontinuous jump slightly to the right of PD1 at ~w � 0:19969.

Reintroducing the super-slow dynamics of ~w (and ~r), we see that for IApp = 300 μA/cm2 in

the control condition, the system follows a stable periodic orbit without exhibiting SAOs (Fig

8C, upper). In the case with CGS stimulation, the simulated trajectory is fully contained within

the (3D slow-fast subsystem) MMO region (Fig 8C, lower): ~w decreases during the SAOs, but

increases during the LAOs (APs), so that ~w remains in the interval with MMOs. Geometrically,

the explanation is that in the presence of cAMP (cAMP = 1), the ~w nullcline is moved down

and to the right (Fig 8C), so that the system stalls further to the right in the MMO region,

rather than in the LAO region as with cAMP = 0.

The behavior with lower applied current (IApp = 250 μA/cm2) is interesting. Here, the slow-

fast subsystem bifurcations occur at lower values of ~w. Due to the evolution of the dynamical

variables ~w and ~r , the 5D system enters the region with slow-fast subsystem MMOs (Fig 8D).

However, the system does not stay long enough in this region for SAOs to appear, since ~w
decreases for low V and the trajectory moves to the left of PD1 where an AP appears (Fig 8E,

upper). With CGS stimulation (cAMP = 1; Fig 8E, lower), as in the case with IApp = 300 μA/

cm2, the trajectory lies completely in the MMO region since the ~w nullcline lies lower and to

the right, compared to the control case (cAMP = 0).

Relaxing the constraint ~r ¼ m~w þ q permits construction of the two-parameter (~w;~r) BD

(2P-BD) of the slow-fast (V, h, s) subsystem by following the main bifurcations shown in the

1P-BD (Fig 8B and 8D). MMOs are observed only if the entire 5D model trajectory belongs to

the MMO region. The control condition with IApp = 250 μA/cm2 is a borderline scenario. In

fact, as discussed above, the trajectory crosses the PD1 curve but presents no SAOs (Fig 2).

Altogether, the retrieved 2P-BD for the 3D slow-fast subsystem reflects the full 5D model

behavior well, and suggests that the average activation level of HCN and M channels is suffi-

cient to predict the type of activity. For example, activation only of M channels corresponds to

a right-shift in the ð~w;~rÞ plane, which could move the system from the MMO region to the

silent region to the right of the HB curve, as seen in Fig 4, left panels. Vice versa, blocking M

channels corresponds to a left-shift, which can cause the system to go from the MMO to the

LAO region, as seen in Fig 4, right panels, compared to Fig 2.

Similar reasoning can explain why, in the presence of the M current inhibitor XE, the addi-

tion of CGS (XE+CGS) shifts the FF curve towards the left (Fig 6). Mathematically, XE applica-

tion corresponds to projecting the full-system trajectory onto the ~r axis in the ð~w;~rÞ plane.

CGS addition is modelled by setting cAMP = 1, which increases ~r (corresponding to activation

of HCN channels) compared to the CGS-free case. For low values of IApp (e.g., IApp = 85 μA/

cm2), the 2P-BD looks similar to Fig 8B and 8D, but the different regions are located further to

the left and shifted upwards so that the ~r-axis goes through the MMO region for a range of ~r
values spanning those observed in simulations modelling XE application. Hence, the system is

exhibiting MMOs in this case. GCS application moves the system vertically along the ~r axis

into the LAO region where simple APs are observed. For even lower currents (e.g., IApp = 50

μA/cm2 in control (full, black curve) and CGS-stimulated (red) conditions. The dashed lines indicate the linear

approximations ~r ¼ m~w þ q. The background shows the 2-parameter bifurcation diagram (2P-BD) for the slow-fast

subsystem with ð~w;~rÞ as parameters, obtained by following the most relevant bifurcations found in the 1P-BD (panel A). C:

BD as in panel A with 5D simulation projected onto the ð~w;VÞ plane for the control (upper) and CGS-stimulated (lower)

scenarios. The orange curve is the ~w nullcline. D and E: As panels B and C, but for IApp = 250 μA/cm2.

https://doi.org/10.1371/journal.pcbi.1011559.g008
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μA/cm2), the different regions of the 2P-BD are shifted even further to the left and up so that

the XE case is in the silent (white) region without CGS, but in the MMO region for when CGS

is added in addition to XE, which again corresponds to moving along the ~r axis.

The derived BDs can be interpreted biophysically as follows. As the depolarizing HCN

channels activate (higher ~r), and the M channels become less active (lower ~w), the cell’s excit-

ability increases, facilitating AP generation. This observation explains why stable periodic

orbits occur at a low ~w and high ~r . Instead, when ~w increases and ~r decreases, the excitability

of the model reduces. In addition, the more pronounced M channel activation is, the more

SAOs appear, until the equilibrium corresponding to the resting potential eventually becomes

stable for high ~w values.

M currents are necessary to reproduce the experiments

The model parameters are taken from [4, 7, 22]. However, the HCN reversal potential, EHCN,

the M-current conductance, gM, and the increase in this conductance due to cAMP, ΔgM, are

fine-tuned to satisfy both physiological and mathematical constraints to reproduce the electrical

activity observed in the experimental study of [4] (Fig 2). The physiological restrictions require

EHCN to be within the range [−50, −20] mV [23], while the cAMP-induced increase in M-cur-

rent conductance is less than the conductance in control conditions, i.e., ΔgM� gM [5, 24]. The

mathematical constraints should guarantee the reconstruction of the experimentally observed

voltage traces [4]. That is, we look for a combination of (EHCN, gM, ΔgM) that generates spiking

in control condition but MMOs when cAMP is raised, for example after CGS application [4].

By fixing EHCN and gM, the modification of ΔgM only affects the dynamics in the stimulated

condition. As seen in the 2P-BD with bifurcation parameters IApp and ΔgM for gM = 50 mS/cm2

and EHCN = −50 mV (Fig 9), higher values of ΔgM expand and right-shift the interval where the

model activates MMO at elevated cAMP. Similar results were found for other values of gM and

EHCN. In order for the model to produce, at some IApp, MMOs at elevated cAMP but spiking in

control conditions, the area with MMOs at high cAMP must go further to the right than the

MMO area for the control case. In Fig 9 this happens only for ΔgM> 11 mS/cm2, and as ΔgM
increases the interval of IApp values where spiking is seen in control condition but MMOs in

stimulated condition widens. We used ΔgM = gM = 50 mS/cm2.

Summarizing, if cAMP does not affect the M current but HCN channels only, the model is

not able to reproduce the experimental finding that CGS via cAMP elevation switches spiking

electrical activity to MMOs.

Geometry of mixed-mode oscillations

The 5D model is a three-time scale dynamical system as noted above. Its 3D slow-fast subsys-

tem presents one fast (V) and two slow (h and s) variables. We now explain the local and global

dynamics of this 3D system with particular attention to the origin of MMOs. For a brief intro-

duction to the underlying theory see Materials and methods, and, for in-depth expositions,

refs. [8, 25].

The critical manifold C0 (Fig 10) is of great importance in order to understand the dynamics

of the system. It is defined as the set of points (V, h, s) where dV/dt = 0, i.e., the set of equilib-

rium points for the fast subsystem of the 3D model. Points on C0 are said to be attracting or

repelling if they are so when interpreted as fast-subsystem equilibrium points. For our model,

the critical manifold can be expressed explicitly as a graph,

C0 ¼ fðV; h; sÞ 2 R
3
js ¼ gðV; hÞg: ð2Þ
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We find, in the physiologically relevant region, that C0 has a folded structure with two folds,

L� =þ. These folds split C0 into attracting and repelling sheets, denoted respectively S� =þa and

Sr. Starting from V close to the neuron’s resting potential, C0 is thus decomposed as

S�a [ L� [ Sr [ Lþ [ Sþa .

Fig 9. Model dynamics depends on the degree of cAMP-activation of M channels. Two-parameter BD with

bifurcation parameters (IApp, ΔgM) for gM = 50 mS/cm2, EHCN = −50 mV, gHCN = 23 mS/cm2, and ΔgHCN = 12 mS/cm2

(the default values used throughout the paper, see Table 1). Black and red curves indicate respectively HBs in the

control conditions (cAMP = 0) and with raised cAMP (cAMP = 1). The curves in blue and magenta represent,

similarly, the PDs (PD1 in Fig 8) in the control and stimulated cases. The combination of IApp and ΔgM where MMOs

occur is highlighted with shaded blue (control) and magenta (elevated cAMP) areas.

https://doi.org/10.1371/journal.pcbi.1011559.g009

Fig 10. Critical manifold. This figure presents the 3D-model critical manifold C0 with IApp = 250 μA/cm2 in the CGS-

stimulated case. The red curve is the corresponding trajectory from Fig 7. Attracting (S�a ) and repelling (Sr)

submanifolds are presented with red and grey shaded surfaces. The black dashed curves correspond to the fold lines

L�. The folded node and the unstable fixed point are presented using a blue circle and an orange square, respectively.

The right panel shows a zoom on the region near the trajectory.

https://doi.org/10.1371/journal.pcbi.1011559.g010
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At the fold, the system becomes singular (see Materials and methods and [8]). To under-

stand the dynamics near the fold, the system is therefore desingularized, and it turns out that

equilibrium points of the desingularized system on a fold, so-called folded singularities, play a

crucial role in understanding the origin of SAOs [8]. We find that the model possesses a folded

node (FN) singularity, which is well-known to cause SAOs [8].

Let 0< �� 1 denote the time scale separation between the fast V variable and the slower h
and s variables, see also Materials and methods. The following analyses assume that the mod-

el’s initial conditions are located near S�a .

Assuming stability of the 3D model equilibrium, i.e., for all ð~w;~rÞ located on the right of the

HB curve in Fig 8, the 3D slow-fast subsystem trajectory evolves dominated by the slow flow

constrained to an Oð�Þ perturbation of the attracting submanifold S�a , denoted S�a;�, and

approaches the stable equilibrium in infinite time.

Instead, if the equilibrium point is unstable, the dynamics depends on how the system

approaches the fold L� . For parameter combinations in the spiking region, e.g., the control con-

dition shown in Figs 7 and 11 (upper panels), the system’s trajectory evolves constrained to S�a;�
until it reaches the fold curve L� at a regular jump point [8, 25], where it then switches dynamics

and moves to Sþa;� via its fast flow. In Fig 11, this corresponds approximately to crossing L� to

the left of the FN. On Sþa;� it again evolves according to the slow flow. When it reaches Lþ, the

system jumps to S�a;�, and then the above steps repeat, creating relaxation oscillations.

If, on the other hand, the system approaches L� near the folded node, more precisely in the

funnel region (the area with blue shading lines in Fig 11), SAOs are produced as the system

passes from S�a;� to Sr;� [8, 15, 25]. The funnel is divided into rotational sectors, and the number

of SAOs depends on the sector in which the folded node is approached. The trajectory eventu-

ally jumps to Sþa;�, corresponding to the onset of an AP, i.e., a LAO, and then follows the slow

Fig 11. Critical manifold and folded singularities of the 3D model. The presented phase-plane plots show the trajectory

of the 3D model with parameters as in Fig 7 projected onto the (h, V) plane for the control case (black curve, upper panels)

and in the presence of CGS (red, lower), observed globally (left) and locally with a zoom on the region where SAOs appear

for the CGS-stimulated case (right). The dashed black curve represents the fold L� =þ of the critical manifold. The red and

gray shaded regions correspond to the attracting, S� =þa , and repelling, Sr , submanifolds, respectively. The unstable

equilibrium point is given by the orange square, while the blue dot indicates the FN. The blue curve is the strong canard
that together with the fold line delimits the funnel region indicated by the blue horizontal shading lines. The arrows

indicate the direction of the flow.

https://doi.org/10.1371/journal.pcbi.1011559.g011
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flow until it reaches Lþ and jumps back to S�a;�. Depending on the return mechanism, the tra-

jectory may reenter the funnel region, producing single LAOs separated by SAOs, or it may

reach L� at a regular jump point, thus producing two or more LAOs separated by SAOs, as in

Figs 7 and 11 with CGS for IApp = 250 and IApp = 300 μA/cm2, respectively. In other words, the

difference with respect to the number of LAOs between IApp = 250 μA/cm2 and IApp = 300 μA/

cm2 is due to differences in the return mechanisms. In the former case, the orbit is sent back

into the funnel after each LAO, whereas for IApp = 300 μA/cm2 the orbit does not enter the fun-

nel after the first LAO but only after the second LAO.

In more detail, the dynamics shown in Figs 7 and 11 can be understood as follows. Each

rotational sector Ri is bounded by two canards, special solutions that connect the attracting and

repelling sheets of the slow manifold, which we denote ξi−1 and ξi, where i indicates the number

of SAOs exhibited by the canard. The so-called strong canard ξ0 delimits, together with the fold

L� , the funnel region. For more detail on canards, see Multiple time scale dynamical system.

In Fig 7, the system at IApp equal to 250 and 300 μA/cm2 evolves with signatures 1413 and

2423, respectively. In the former case, the model generates 1 LAO followed by 4 or 3 SAOs.

Thus, the return mechanism projects alternatingly the trajectory into R4 delimited by ξ3 and

ξ4, (Fig 12, lower left panel, black segment), and into R3 delimited by ξ2 and ξ3, (blue segment).

For IApp = 300 μA/cm2, 2 LAOs occurs, followed by 3 or 4 SAOs. The generation of 2 consecu-

tive LAOs is related to the return mechanism. Indeed, after the first large excursion, which cor-

responds to the black or red shaded spikes in the voltage trace in the inset in the lower right

panel of Fig 12, the system is projected to the left of ξ0, which bounds the FN funnel, as shown

for the blue and the magenta segments. This fact implies that the trajectory evolves onto S�a;�
until it meets L� at a regular jump point, from where it jumps to Sþa;� without making SAOs.

After the second LAO, the trajectory is projected into the FN funnel, following the red or the

black segments, either and alternatingly between ξ2 and ξ3 (R3), or between ξ3 and ξ4 (R4),

where 3, respectively 4, SAOs occur.

Discussion

In this study, we developed a model of the electrical behavior of a neuronal cell subjected to

different treatments interacting with the cAMP-dependent pathway linking A2aR signalling to

HCN and M channel activation. The model parameters were chosen in compliance with bio-

logical constraints to ensure that the model aligns with physiological knowledge. The model

qualitatively reproduced the experimental results [4, 5], validating its utility in elucidating the

role of HCN and M channels. However, as the model in [4] that we build upon, the AP firing

frequencies are higher than in the experimental recordings [4, 5], but, noteworthy, the rela-

tionship between the FF curves (Fig 6) agrees with the experimental results.

We found that both HCN and M channels shape the neuronal electrical activity. With

enhanced HCN activation, the neuron’s excitability increases, thereby facilitating the genera-

tion of APs. When the M current predominates, the resting membrane potential becomes

more stable. The activation of these two currents can give rise to complex electrical phenom-

ena such as MMOs. Our analyses strongly support the idea that both HCN and M channels are

needed for producing MMOs corresponding to experimental results. Even if these temporal

patterns are fragile, they are crucial for controlling the neuronal firing frequency. We thus sug-

gest that both these two channels are involved in the signalling pathway that allows glial cells

to finely tune the electrical behavior in individual neurons via activation of neuronal A2aR by

ATP released from the glial cells, leading to increased cAMP in the neurons [4], which in turn

activates HCN and M channels by the pathway studied in the present work, see Fig 1. Of physi-

ological relevance, this pathway has been suggested to be involved, e.g., in mediating changes
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between wake and sleep states [4]. Moreover, the reduction in firing frequency following acti-

vation of HCN or M channels has been suggested to impair working memory, in particular in

response to stress [5]. A better understanding of the mechanisms underlying MMOs in neu-

rons is thus of biomedical importance.

To explain the model behavior, we exploited the fact that we were dealing with a multiple

timescale system. The 3D slow-fast subsystem of the 5D model, obtained by fixing HCN and

M channel gating variables to their average values, was shown to be able to produce MMOs

due to the presence of a folded node. Hence, it is not the super-slow dynamics of HCN and M

Fig 12. Canards and attracting and repelling manifolds for the 3D Model. The upper panels show the local

reconstruction of S�a;� (shaded red) and Sr;� (shaded black) for IApp = 250 μA/cm2 (left) and IApp = 300 μA/cm2 (right). In

each panel, the big blue dot indicates the FN. The vertical black dashed line identifies a plane SFS near the FN, and the inset

presents the corresponding intersections between SFS and, respectively, S�a;� (red) and Sr;� (black). The colored lines ξ4 − ξ7

and ξ2 − ξ5, obtained for IApp equal to 250 and 300 μA/cm2, respectively, represent the canard orbits identified via the

intersection points between S�a;� and Sr;� in the plane SFS. In the lower panels, the canard orbits ξ0 − ξ4, the associated

rotational sectors R1 − R4 and the local dynamics of the 3D model are presented for the considered values of IApp. The

voltage traces (insets) and the corresponding phase-plane trajectories are decomposed into color-coded segments

beginning in small circles and ending in crosses to explain how the dynamics and signatures of the MMOs are related to

the identified geometrical structures.

https://doi.org/10.1371/journal.pcbi.1011559.g012
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channel activity that cause MMOs in the model, but rather, cAMP increases the average activ-

ity of these channels, setting the 3D slow-fast subsystem in a region where MMOs occur. We

showed how the bifurcation diagrams for the 3D slow-fast subsystem with the modified gating

variables, ~w and ~r , provided insight into various experiments that were reproduced with simu-

lations of the full 5D model.

Our analyses can be used to make specific predictions. For example, we predict from the

2-parameter bifurcation diagrams in Fig 8 that a moderate increase in applied current (e.g.,

from 250 to 300 μA/cm2, i.e., from panel D to panel B in Fig 8) in a neuron producing MMOs,

would lead to a transient phase with simple AP firing before MMOs reappear, since the

increase in IApp effectively shifts the region where MMOs are observed rightward (compare

panel D to panel B in Fig 8). As a consequence, the super-slow variables ~r and ~w that were in

the MMO region before the increase in IApp (see panel D) fall in the LAO region just after the

step in current and need to move from the LAO to the MMO region (in panel B) before

MMOs reappear. On the contrary, a moderate reduction in IApp can lead to a transient silent

phase before MMOs reappear as the system moves from the white (silent) region to the MMO

region, see panel D.

The 3D model qualitatively reproduced the behavior of the 5D system as presented in Fig 7,

despite some discrepancies in the generated MMO signatures. We speculate that these differ-

ences are related to the assumption of constant HCN and M channel gating variables, r and w.

Reintroducing the dynamics of these variables slowly modulates the location and the properties

of the folded node and its funnel, which would modify the MMO signature. For a mathematical

study of this idea, numerical continuation methods may be valuable tools to continue the canard

orbits of the 3D reduced model by varying the parameters ~w and ~r . Such continuation would

provide insights regarding how the FN funnel changes as the model parameters are changed.

For this scope, it may be convenient to use a 4D model, such as the one obtained by constraining

one of the HCN and M channel activation variables to a straight line, whilst the other is free to

evolve with its dynamic. This framework could apply geometrical theories and bifurcation anal-

yses similar to the ones used here to understand the local and global evolution of the model.

From a biological point of view, it would be interesting to investigate theoretically what

happens if cAMP levels depend on the dynamics of glial cells, and how the different types of

single-cell electrical phenomena impact the overall behavior of small and large networks.

In conclusion, this study employed a white-box realistic neuronal cell model to unveil the

role of HCN and M channels in shaping electrical behavior as a result of cAMP signalling. We

demonstrated and analyzed how the resulting currents can influence and evoke phenomena

such as MMOs. This work represents a starting point for future research on the interplay

between these two channels and their regulation of neuronal electrical activity, as well as for

investigations on how cAMP signalling, for example resulting from interactions between neu-

rons and glial cells, affects neuronal activity.

Materials and methods

Model

We build on the model presented by Lezmy et al. [4], who adapted the model by Richardson

et al. [7] to pyramidal cells. The model equations are

Cm
dV
dt

¼ � INaF � INaP � IKS � IL � IHCN � IM þ IApp;

dp
dt
¼

p1ðVÞ � p
tpðVÞ

ð3Þ
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where V refers to the neuron’s membrane potential, t is the time variable, Cm is the membrane

capacitance, and p 2 {h, s, r, w} indicates a general activation/inactivation variable. The right-

hand side of the first ODE is a sum of ionic currents. These quantify respectively the fast and

persistent Na+ currents (INaF and INaP), the slow K+ current (IKS), the leakage current (IL), the

HCN current (IHCN), the M-type potassium current (IM) and finally the applied current (IApp).
These currents follow

INaF ¼ gNaF m3
1
ðVÞ h ðV � ENaÞ; ð4Þ

INaP ¼ gNaP n3
1
ðVÞ ðV � ENaÞ; ð5Þ

IKS ¼ gKS s ðV � EKÞ; ð6Þ

IL ¼ gL ðV � ELÞ; ð7Þ

IHCN ¼ ðgHCN þ cAMPDgHCNÞ r ðV � EHCNÞ; ð8Þ

IM ¼ ðgM þ cAMPDgMÞw ðV � EKÞ; ð9Þ

with m1, n1, s, r, w activation variables of fast Na+, persistent Na+, slow K+, HCN and M

channel currents, whereas h is the INaF inactivation variable. The terms EX with X 2 {Na, K, L,

HCN} represent the Nernst potential for sodium, potassium, leakage and HCN currents,

respectively, and gX with X 2 {NaF, NaP, KS, L}, indicate the maximal whole-cell conduc-

tances. The terms gHCN and gM represent the maximal HCN and M channel conductances

when intracellular cAMP levels are low, whereas ΔgHCN and ΔgM model their increase after a

rise of the cAMP concentration, as indicated by the binary variable cAMP. Finally, the terms

p1 and τp refer to the activation/inactivation steady-state functions and time constants,

respectively. For each p 2 {h, s, r},

p1ðVÞ ¼
apðVÞ

apðVÞ þ bpðVÞ
; tpðVÞ ¼

1

�pðapðVÞ þ bpðVÞÞ
; ð10Þ

where αp and βp represent the transition rates of the activation/inactivation variable, and ϕp
indicates the temperature correction factor which obeys the following law [26],

�p ¼ Q
T� Tref

10
p ; ð11Þ

where Qp and Tref are channel-dependent terms, and T is the characteristic temperature of the

experiment. The αp and βp are given by

amðVÞ ¼
1:86 ðV þ 25:4Þ

1 � exp½� ðV þ 25:4Þ=10:3�
; bmðVÞ ¼

� 0:086 ðV þ 29:7Þ

1 � exp½ðV þ 29:7Þ=9:16�
; ð12Þ

ahðVÞ ¼
� 0:0336 ðV þ 118Þ

1 � exp½ðV þ 118Þ=11�
; bhðVÞ ¼

2:3

1þ exp½� ðV þ 35:8Þ=13:4�
; ð13Þ
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anðVÞ ¼
0:186 ðV þ 48:4Þ

1 � exp½� ðV þ 48:4Þ=10:3�
; bnðVÞ ¼

� 0:0086 ðV þ 42:7Þ

1 � exp½ðV þ 42:7Þ=9:16�
; ð14Þ

asðVÞ ¼
0:00122 ðV þ 19:5Þ

1 � exp½� ðV þ 19:5Þ=23:6�
; bsðVÞ ¼

� 0:000739 ðV þ 87:1Þ

1 � exp½ðV þ 87:1Þ=21:8�
; ð15Þ

arðVÞ ¼ 0:007 exp �
V þ nðcAMPÞ

19

� �

; brðVÞ ¼ 0:007 exp
V þ nðcAMPÞ

22

� �

; ð16Þ

nðcAMPÞ ¼ 95 cAMP þ 103:5ð1 � cAMPÞ: ð17Þ

Finally, the steady state (w1) and the time constant (τw) of the w activation variable are [22]

w1 ¼
1

1þ exp½� ðV þ 35Þ=10�
; ð18Þ

tw ¼
400

3:3 exp½ðV þ 35Þ=20� þ exp½� ðV þ 35Þ=20�
: ð19Þ

Table 1 presents the model parameters, obtained from [4, 7, 22]. To simulate the different

experimental scenarios, the parameters presented in Table 2 were used. The ODE system was

solved numerically with MATLAB [27] and XPPAUT [28]. Specifically, XPPAUT was used to

derive the bifurcation diagrams presented in Figs 8 and 9, using a fourth-order Runge-Kutta

method with a time step equal to 0.001 ms. MATLAB executed successive data post-process-

ing, visualization and slow-manifold reconstruction algorithms. The system of ODEs was

solved with the built-in MATLAB functions ode45 and ode78. Computer code is available at

https://researchdata.cab.unipd.it/1194.

Model reduction

We simplify the analysis of the system, and in particular of the MMOs, by exploiting the time

scale separations in the model. Specifically, V is fast, h and s are slow, and r and w change with

a super-slow rate. Indeed, for the simulations in Fig 2, during the SAOs, the time-scale separa-

tions are τV/τh< 0.03 and τV/τs< 0.004 (while τV/τh< 0.2 during the full AP), and moreover,

Table 1. Default model parameters. T is the temperature of the experiment, T(ref,1) is the reference temperature used to derive the activation/inactivation properties of the

slow-K+ and fast-Na+ channels, while T(ref,2) is the reference temperature used to characterize the electrophysiological properties of the HCN channels [4].

Parameter Value Unit of Measure Parameter Value Unit of Measure

gNaF 1000 [mS/cm2] T(ref,1) 20 [˚C]

gNaP 1 [mS/cm2] T(ref,2) 35 [˚C]

gKS 40 [mS/cm2] Qm 2.2 [ ]

gL 11.3 [mS/cm2] Qn 2.2 [ ]

gHCN 23 [mS/cm2] Qh 2.9 [ ]

gM 50 [mS/cm2] Qs 3.0 [ ]

ΔgHCN 12 [mS/cm2] Qr 3.0 [ ]

ΔgM 50 [mS/cm2] ENa 50 [mV]

Cm 0.9 [μF/cm2] EK −84 [mV]

IApp [μA/cm2] EL −83.38 [mV]

T 37 [˚C] EHCN −50 [mV]

https://doi.org/10.1371/journal.pcbi.1011559.t001
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τs/τr< 0.3 and τs/τw< 0.2. To analyze the slow-fast (V, h, s) subsystem, we treat w and r as

model parameters and set them to their (approximated) average values,

�w ¼
1

DT

Z t0þDT

t0

wðtÞdt ; �r ¼
1

DT

Z t0þDT

t0

rðtÞdt ; DT ¼ T � t0: ð20Þ

The simulation time interval (T) is set to 450 ms, which is a simulation time large enough

so that the model evolves repeatedly over its stable periodic orbit, while the initial transient (t0)

is 350 ms. We chose this value to discard the initial transitory phase, which we observed was

over well before t = 350 ms.

In order to be able to use the same analysis of the 3D slow-fast subsystem both in the

absence and presence of cAMP, we rewrite IHCN and IM as follows,

IHCN ¼ gHCN 1þ cAMP
DgHCN

gHCN

� �

r ðV � EHCNÞ ¼ gHCN ~r ðV � EHCNÞ; ð21Þ

IM ¼ gM 1þ cAMP
DgM
gM

� �

w ðV � EKÞ ¼ gM ~w ðV � EMÞ; ð22Þ

where we have introduced the scaled gating variables

~r ¼ 1þ cAMP
DgHCN

gHCN

� �

r ; ~w ¼ 1þ cAMP
DgM
gM

� �

w: ð23Þ

These super-slow scaled variables are then used as parameters in the slow-fast 3D model,

which is then—for fixed ð~r; ~wÞ—independent of cAMP. The same scaling operations are

applied to map the 5D trajectories onto the ð~w;~rÞ plane for comparison with 3D slow-fast sub-

system BDs, in order to interpret the 5D model dynamics with the analyses made for the 3D

model.

In conclusion, the reduced 3D model is

Cm
dV
dt

¼ � INaF � INaP � IKS � IL � IHCN � IM þ IApp

dp
dt
¼

p1ðVÞ � p
tpðVÞ

; p 2 fh; sg:
ð24Þ

This system has itself multiple time scales, specifically, V is fast and h and s are slow. In this

formulation, ~r and ~w are parameters that incorporate the value of cAMP.

Table 2. Translation of drug combinations applied in the various experiments into parameter sets used to simu-

late the model.

Drugs gM [mS/cm2] ΔgM [mS/cm2] gHCN [mS/cm2] ΔgHCN [mS/cm2] cAMP [ ]

Ctrl 50 50 23 12 0

CGS 50 50 23 12 1

ZD 50 50 0 0 0

ZD+CGS 50 50 0 0 1

XE 0 0 23 12 0

XE+CGS 0 0 23 12 1

FSK 50 50 23 12 1

FSK+Lin 50 20 23 12 1

https://doi.org/10.1371/journal.pcbi.1011559.t002
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Multiple time scale dynamical system

As noted above, the 3D model is itself a slow-fast system with two slow and one fast variable. It

has the standard structure [8, 25]

�
dx
dt
¼ f x; y; zð Þ;

dx
dt
¼ f ðx; y; zÞ; ð25aÞ; ð25a’Þ

dy
dt
¼ g x; y; zð Þ;

dy
dt
¼ �gðx; y; zÞ; ð25bÞ; ð25b’Þ

dz
dt
¼ h x; y; zð Þ;

dz
dt
¼ �hðx; y; zÞ: ð25cÞ; ð25c’Þ

where 0< �� 1 so x is the fast, and y and z are the slow. t and τ = �t are the fast and slow time

scales, respectively. The associated solutions of the ODEs systems are known as slow and fast

flows, respectively. Taking the limit �! 0 yields

0 ¼ f ðx; y; zÞ;
dx
dt
¼ f ðx; y; zÞ; ð26aÞ; ð26a’Þ

dy
dt
¼ g x; y; zð Þ;

dy
dt
¼ 0; ð26bÞ; ð26b’Þ

dz
dt
¼ h x; y; zð Þ;

dz
dt
¼ 0: ð26cÞ; ð26c’Þ

These are called reduced (26a–26c) and layer (26a’–26c’) problems, respectively. In the for-

mer, the system evolves according to the slow flow subject to the algebraic constraint 0 = f(x, y,

z), while in the latter, the trajectory is governed by the fast dynamics.

The critical manifold C0 is the set of all points (x, y, z) in the phase space where f(x, y, z) = 0.

This set represents the equilibrium points of the layer problem. The points in C0 are attracting

(respective, repelling) if @x f is negative (respective, positive). Points with @x f = 0 are said to be

non-hyperbolic. The manifold C0 is split into attracting and repelling submanifolds, consisting

of the attracting/repelling points, denoted Sa and Sr, respectively. Generally, a set of non-

hyperbolic points known as fold curves L delimits these submanifolds,

L ¼
n
ðx; y; zÞ 2 C0j@x f ¼ 0

o
: ð27Þ

For positive but small �, away from the fold, C0 perturbs to a slow manifold C�, which is

Oð�Þ close to C0 [25, 29]. Similarly, Sa and Sr perturb to Sa;� and Sr;�. This relaxation perturbs

the solutions of the reduced and the layer problems. Specifically, the trajectory is dominated

by the slow (respective, fast) dynamics when it is close to (respective, away from) C0. A method

to understand the dynamics near the fold, where the system becomes singular, consists in

deriving the desingularized model. This model results from applying the total differentiation

theorem, using the explicit expression of C0, and performing a time-rescaling known as desin-

gularization, which yields [8, 25],

dx
dt
¼ @y f g þ @z f h;

dz
dt
¼ � @x f h:

ð28Þ
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where C0 is expressed (locally) as y = γ(x, z). Singularities of the desingularized system that sat-

isfy g(x, γ(x, z), z) = h(x, γ(x, z), z) = 0 are also equilibria of the non-desingularized system and

are called ordinary singularities. Instead, folded singularities satisfy @x f = 0 and @y fg +

@z fh = 0. The first condition imposes that the point lies on L. A folded singularity is classified

as a folded node (FN), folded saddle, or folded foci according to the eigenvalues of the Jacobian

of the desingularized system. The solution of the desingularized system passing tangentially to

the eigendirection of the FN associated with the eigenvalue with the highest modulus is known

as the strong canard. When the singular limit �! 0 is relaxed, the strong canard persists and

bounds, together with the fold line L, a region on S�a;�, known as the funnel, where trajectories

experience SAOs. These can lead to MMOs when combined with an appropriate return mech-

anism [8]. Some special solutions, known as secondary canards, cross L with non-zero speed

and evolve close to Sr;� for a finite amount of time. These secondary canards organize the FN

funnel into rotational sectors Ri, where i denotes the number of SAOs of orbits starting in Ri.

We note that any solution of the system of ODEs that crosses L with non-zero speed and fol-

lows the repelling slow manifold Sr;� for a finite amount of time is a canard. However, in this

paper, when we use the term canard we will refer to the strong and the secondary canards

only.

For the model analyzed here, the critical manifold can be written

C0 ¼
n
ðV; h; sÞ 2 R3

�
�
�s ¼ gðV; hÞ

o
; gðV; hÞ ¼ g0 þ g

t
r þ g

t
w þ g

y
r ; ð29Þ

where the last expression presents a decomposition to understand better how variation in (~w,

~r) moves C0. The terms are

g0 ¼ �
INaFðV; hÞ þ INaPðVÞ þ ILðVÞ � IApp

gKSðV � EKÞ
; ð30Þ

gtr ¼ �
gHCN

gKS
~r; gtw ¼ �

gM
gKS

~w; gyr ¼
gHCN

gKS

EHCN � EK

V � EK
~r: ð31Þ

Here γ0 defines the basic structure of C0 when both channels are inhibited. Instead, gtr and

gtw are shifting factors, representing how activation of HCN and M channels move C0. Finally,

gyr applies a shift inversely proportional to V, but still proportional to ~r .

To split C0 into its submanifolds, the fold L is computed,

L ¼
n
ðV; h; sÞ 2 C0

�
�
�h ¼ cðVÞ

o
; cðVÞ ¼ c0 þ cr: ð32Þ

Again, the definition decomposes the fold line to evaluate how modification of HCN and M

channel activation move L,

c0 ¼ �
½ðV � EKÞ@VINaP � INaP� þ gLðEL � EKÞ þ IApp

ðV � EKÞ@VðgNaF m3
1
ðVÞ ðV � ENaÞÞ � gNaF m3

1
ðVÞ ðV � ENaÞ

; ð33Þ

cr ¼ �
gHCNðEHCN � EKÞ

ðV � EKÞ@VðgNaF m3
1
ðVÞ ðV � ENaÞÞ � gNaF m3

1
ðVÞ ðV � ENaÞ

~r: ð34Þ

We see that the HCN gating variable ~r translates the fold line, whereas the h component of

L is M channel (~w) independent. However, because the fold is constrained to live on C0 by

construction, the s component of L does depend on ~w (as well as on ~r) through γ, which con-

siders the shift caused by the M channel activity.
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Finally, the desingularized 3D model is

dV
dt

¼ @hINaF
h � h1ðVÞ
thðVÞ

þ @sIKS
gðV; hÞ � s1ðVÞ

tsðVÞ
;

dh
dt
¼ �

h � h1ðVÞ
thðVÞ

X

i2X

@VIi;

X ¼ fNaF;NaP;KS; L;M;HCNg:

ð35Þ

This system has two types of singularities. The ordinary singularities are obtained as the

numerical solutions of γ(V, h1(V)) = s1(V). These points correspond to the equilibriums of

the non-desingularized 3D model. Instead, the folded singularities are obtained by considering

those points belonging to L where

@hINaF½cðVÞ � h1ðVÞ�tsðVÞ ¼ @sIKS½s1 � gðV;cðVÞÞ�thðVÞ: ð36Þ

Solving this equation numerically provides the V coordinates of those points in L classifi-

able as folded singularities. Numerically, we found that the desingularized system possesses a

folded node singularity.

To reconstruct the slow manifold shown in Fig 12, we exploit an idea similar to the one pre-

sented in [30], see also [15]. It relies on evolving in forward and backward time the system

starting on a grid of initial conditions along two lines located in S�a and Sþa of C0, respectively,

to obtain a set of curves lying in, respectively, a strip of S�a;� and Sr,�. The solutions of the system

are terminated when they reach a plane SFS perpendicular to the s-axis and slightly perturbed

from the position of the folded node. The forward and backward solutions are then projected

onto this plane to find the intersections between the repelling and the attracting slow mani-

folds, which correspond to canard orbits. The remaining canards were computed with brute

force, exploiting the fact that the canards of interest are those trajectories separating the FN

funnel in different rotational sectors.
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