

International Journal of Plant & Soil Science

Volume 36, Issue 3, Page 35-44, 2024; Article no.IJPSS.112819 ISSN: 2320-7035

Impact Possibility of Organic, Inorganic and Integrated Production Systems for Crop Productivity and Soil Fertility

L. J. Desai ^{a++}, K. M. Patel ^{b#*}, P. K. Patel ^{a†}, Vidhi K. Patel ^{a‡} and J. K. Gami ^{a^}

^a Centre for Research on IFS, S.D.A.U., Sardarkrushinagar, India. ^b Department of Agronomy, Centre for Research on IFS, S.D.A.U., Sardarkrushinagar, India.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/IJPSS/2024/v36i34396

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/112819

Original Research Article

Received: 25/11/2023 Accepted: 01/02/2024 Published: 03/02/2024

ABSTRACT

A field experiment was conducted from 2015-16 to 2021-22 at the Centre for Research on IFS, S.D. Agricultural University, Sardarkrushinagar to study the Impact possibility of organic, inorganic and integrated production systems for crop productivity and soil fertility. Crop sequence Groundnut-wheat-greengram recorded significantly highest groundnut equivalent yield (4886 kg/ha) with application of RDF + 10 t/ha FYM once in year, The percent increase in average of three cropping sequences was about 39.1 % in soil organic carbon, 4.1 % in soil available nitrogen, 1.6 % in

⁺⁺ Research Scientist;

[#] Assistant Research Scientist;

[†] Assistant Research Scientist (Soil);

[‡] SRF;

[^] Agril. Officer;

^{*}Corresponding author: E-mail: drkmpatelagronomist@sdau.edu.in;

Int. J. Plant Soil Sci., vol. 36, no. 3, pp. 35-44, 2024

available phosphorus, 7.2 % in available soil potash, 26.1% in Fe, 22% in Mn, 15.1% in Zn and 64.7% in Cu, while 9.9 % increase in soil water holding capacity and 2.1 % decrease in bulk density, highest microbial counts (bacteria, Actinomycetes and Fungi) under 100 % organic treatment over treatment of State recommendations + 10 FYM/ha once in a year.

Keywords: Bjamrut; ghanjvamrut; jivamrut; microbial counts.

1. INTRODUCTION

Organic agriculture is a production system, which avoids or largely excludes the use of synthetic fertilizers. compounded pesticides, arowth regulators and livestock feed additives. To the maximum extent possible, organic farming system relies on crop rotations, crop residues, animal manures, legumes, green manures, offfarm organic wastes and aspects of biological pest control to maintain soil productivity and tilth, to supply plant nutrients and to control insects, weeds and other pests. Growing of high vielding varieties within discriminate use of fertilizers, poor water management practice sand in efficient plant-protection measures in modern chemical agriculture intensive has resulted into degradation of lands owing to low crop yields with poor quality of produce [1]. Conversion of modern chemically intensive agriculture to a more sustainable form of agriculture like organic farming appears obey an option for maintaining the desirable agricultural production in future [2]. Generally, it is common thinking that yields of several crops reduce during the initial years under organic farming, but high market value of organically grown produces may be able to compensate the losses in yields Mahapatra et al. [3]. Food crops grown using organic inputs having less or no chemicals are being preferred over conventionally produced food by the end users. Food materials produced organically has got it place in food market in developed and developing countries [4]. Crop based nutrient requirement studies are also going on. But so far no work has been carried out on Integrated Nutrient Management (INM) for crops and cropping systems to address various issues on soil, water and air pollution. Saving of chemicals, improvement in soil health and quality, is also alarming need of this region as well as This, calls for an urgent need to nationwide. study the performance of predominant cropping systems with various nutrient management options in order to increase the profitability and productivity of crops and cropping systems as well as to enhance farm input use efficiency. Keeping this in view a research problem on "study of effect of organic, inorganic and

integrated production systems on crop productivity and soil fertility under North Gujarat condition" has been planned to conduct the experiment at Centre for Research on IFS, SDAU, Sardarkrushinagar.

2. MATERIALS AND METHODS

A field experiment was conducted during 2015-16 to 2021-22 at Centre for Research on IFS. S.D.A.U., Sardarkrushinagar to study the effect of organic, inorganic and integrated production systems on crop productivity and soil fertility with different crop sequences under north Gujarat condition. The soil was very low in organic carbon and available nitrogen (141 kgha⁻¹) and medium in available P (13.47 kg ha-1) and available K (180 kg ha⁻¹). Total six treatments viz; T1:100 % organic (50% N through FYM + 25% N through vermicompost + 25% N through castor cake), T₂: 75 % organic + Innovative organic practices (Panchgavya and Jivamrut spray @ 2 %), and from 2020-21 onward IOP was application of Beejamrit + Ghanjeevamrit @ 250 kg/ha + Jeevamrit @ 500 lit/ha/irrigation twice in a month), T₃:100 % inorganic package, T₄: State recommendations (10 t FYM once in a year + RDF), T₅: 50 % organic package + 50 % inorganic package, T₆: 75 % organic package + 25 % inorganic package with three cropping sequences viz:CS1: Groundnut - wheat - green gram, CS₂:Green gram - coriander - vegetable cowpea, CS₃:Green gram - fennel - fennel continue were executed in strip plot design. The soil was very low in organic carbon and available nitrogen (141 kgha-1) and medium in available P (13.47 kg ha⁻¹) and available K (180 kg ha⁻¹). The all crops were fertilized as per treatments details and sown as per recommended spacing for each crops by using recommended varieties and seed rate. The castor cake was applied 10 days before sowing of crops.

3. RESULTS AND DISCUSSION

3.1 Groundnut Equivalent Yield (kg/ha)

Data presented in Table 1 showed that crop sequence C_1 (Groundnut- wheat-greengram)

significantly hiahest recorded aroundnut equivalent yield (4886 kg/ha) with application of RDF + 10 t/ha FYM once in year (T₄), while crop C₃(Greengram- fennel- continue) sequence registered significantly lower GEY (1364 kg/ha) under T₂(75 % organic+ innovative organic (application of Beejamrit practices + Ghanjeevamrit @250 kg/ha + Jivamrut @500 lit/ha/ irrigation twice in month). Data revealed that year has significant effect on crop sequences and treatment. The significantly highest GEY (5011 kg/ha) has been recorded under C1 during first year (after conversion period) of experiment. Crop sequences expressed its significantly lower response over years. In case of treatments, T₄ registered significantly higher GEY (4225 kg/ha) during second, which was at par with first year also (4103 kg/ha). The interaction among treatments and crop sequences over years had fails to exert its significant effect on ground nut equivalent vield. but crop sequences C1 recorded numerically higher GEY with application RDF + 10 t/ha FYM once in year during all the years after conversion period with all different nutrient management. Nitrogen application through organic manures significantly augmented the onion equivalent yield. This is due to greater availability of nutrients in soil, improved soil physical condition and higher total uptake of nutrients because of better root penetration leading to better absorption of nutrients and moisture [5].

3.2 System Gross Profit (₹/ha)

Data presented in Table 2 revealed that crop sequence C1 registered significantly highest system gross profit of 2,90,945₹/ha under T1 (100 % organic sources), while all the crop sequences registered at par system gross profit with application of 75 % organic+ innovative organic practices (application of Bijmrit + Ghanjivamrut @250 kg/ha + Jivmrit @500 lit/ha/ irrigation twice in month, T_2) and 50% organic package + 50 % inorganic package(T_5). The lowest system gross profit was recorded under crop sequence C_3 with T_3 treatment. The crop sequences interaction with years was found significant. The significantly highest system gross profit was recorded in C1 (2,75,729₹/ha) during all the years after conversion period. The treatment interaction also was found significant. Application of 100 % organic sources (T₁) registered significantly highest system gross profit of 2,29,029₹/ha over rest of treatments during all four years. The treatment $T_3(1,91,036)$

₹/ha and $T_5(2,01,168$ ₹/ha) was at par in case of system gross profit during 2018-19. The interaction among treatments and crop sequences over years had fails to exert its significant effect on system gross profit, but crop sequences C₁ recorded numerically higher system gross profit/ha with application of 100 % organic source during all the years after conversion period with all different nutrient management.

3.3 System Net Profit (₹/ha)

Data presented in Table 3 indicated that significantly highest net profit was recorded under T₁ with C₁ crop sequence (153222 $\overline{\ast}$ /ha), while the system net profit of C1 cropping sequence was at par under treatment T₄(144185). The lowest system net profit was recorded under crop sequence C₃ with T₃treatment (33023). The crop sequences interaction with years was found significant. The significantly highest system net profit was recorded in C₁ (124979 ₹/ha) in mean of all four vears after conversion period. The treatment and years interaction was found non significant. Application of 100 % organic sources (T1) registered numerically highest system net profit of 144165₹/ha over rest of treatments. The treatments and crop interaction among sequences over years had fails to exert its significant effect on system net profit, but crop sequences C₁ recorded numerically higher system net profit/ha with application of 100 % organic source during all the years after conversion period with all different nutrient management.

3.4 Effect of Cropping System and Different Nutrient Management on Soil Properties

The cropping sequences and the nutrient management treatments showed significant influence on soil properties. Soil quality indices for the various cropping sequences and various nutrient management treatments were computed key indicators viz., pH, EC, OC, usina micronutrients, Water holding capacity and bulk density. The detail introspection of the soil residual status after completion of seven years sequence presented in Table 4 clearly revealed that, there was improvement in major and minor soil available nutrients (N, P, K, Fe, Mn, Zn and Cu) and physical properties of soil (soil water holding capacity and bulk density of soil at the end of seventh years cycle over its initial value

	(Crop sequences x T	reatments				
Treatments x Crop sequence	T ₁	T ₂	T ₃	T ₄	T₅	T ₆	Mean
C ₁	4214	3650	4230	4886	4585	3629	4199
C ₂	3485	2934	3348	4117	3735	2947	3427
C ₃	1606	1364	1485	1882	1780	1463	1597
Mean	3105	2649	3021	3628	3366	2680	
S.Em.±	66.66						
CD at 5%	186						
CV%	9.03						
		Year x Crop seq	uences				
Crop sequences/ Year	C ₁			C ₂	C	3	Mean
Y ₁	5011			3456	2	485	3651
Y ₂	4807			3829	1	500	3370
Y ₃	3365			3256	1	185	2602
Y ₄	3615			3169	1	217	2668
Mean	4199			3427	1	597	
S.Em.±	54.43						
CD at 5%	152						
CV%	9.20						
		Year x Treatm	ents				
Year/Treatments	T 1	T ₂	T ₃	T ₄	T₅	T ₆	Mean
Y ₁	3590	3242	3745	4103	3944	3280	3651
Y ₂	3381	2805	3214	4225	3811	2835	3370
Y ₃	2682	2256	2546	3043	2819	2267	2602
Y ₄	2754	2295	2579	3142	2892	2338	2667
Mean	3105	2649	3021	3628	3366	2680	
S.Em.±	76.97						
CD at 5%	215						
CV%	9.03						

Table1. Effect of different treatments and cropping sequences on groundnut equivalent yield in pooled (2018-19 to 2021-22)

Year/		2018-19			2019-20			2020-21			2021-22		
Crop sequences/ Treatments	C ₁	C ₂	C ₃	C ₁	C ₂	C ₃	C ₁	C ₂	C ₃	C ₁	C ₂	C ₃	
T ₁	4978	3358	2434	4793	3849	1501	3408	3377	1260	3677	3356	1229	
T ₂	4471	3074	2181	4083	3130	1202	2906	2852	1009	3142	2680	1065	
T ₃	5175	3507	2552	4757	3482	1404	3340	3219	1080	3648	3184	906	

T ₄	5544	3986	2781	5888	4903	1884	3943	3769	1416	4169	3809	1449
T ₅	5388	3764	2679	5394	4379	1659	3669	3468	1321	3888	3329	1461
T ₆	4507	3048	2286	3924	3231	1349	2923	2851	1026	3164	2658	1193
S.Em.±	133.32											
CD at 5%	NS											
CV%	8.38											

Table 2. Effect of different treatments and cropping sequences on gross profit in pooled (2018-19 to 2021-22)

		Crop seque	nces x Treatm	ents					
Treatments/Crop sequence	T ₁	T ₂	T ₃	T₄	T₅	T_6		Mean	
C ₁	290945	251669	233877	274064	255895	197928		25073	6
C ₂	222339	187191	170778	209993	190522	150301		18872	
C ₃	102448	87028	75771	96014	90791	74644		87782	
Mean	205244	175296	160142	193357	179069	140157			
S.Em.±	3766								
CD at 5%	10501								
CV%	9.03								
		Year x C	rop sequences	6					
Crop sequences/ Year	C ₁		C ₂		C ₃			Mean	
Y ₁	275729		1900)11	136618			20078	6
Y ₂	264141		2101	92	82257			18553	0
Y ₃	185083		1793		65295			16960	
Y ₄	198909		1745	514	66960			14679	4
Mean	230958		1885	521	87782				
S.Em.±	3075								
CD at 5%	8574								
CV%	9.13								
			Treatments						
Year/Treatments	Τ ₁	T ₂	T ₃	T ₄	T₅	T ₆		Mean	
Y ₁	229029	206852	191036	209312	201168	167318		20078	-
Y ₂	215701	178950	163983	215538	194406	144601		18553	
Y ₃	200548	168947	153982	188303	173165	132659		16160	
Y ₄	175698	146435	131567	160275	147537	119251		14679	4
Mean	205244	175246	160142	193357	179069	140957			
S.Em.±	4348								
CD at 5%	12125								
CV%	9.03								
		Year		ice x Treatments					
Year/Crop sequences/	2018-19		2019-20		2020-21			2021-22	
Treatments	C ₁ C ₂	C ₃ C ₁	C ₂	C ₃ C ₁	C ₂	C₃	C ₁	C ₂	C₃
T ₁	317567 214261	155259 305803	245568	95734 305803	215439	80403	234609	214090	78396

T ₂	285260	196136	139161	260489	199712	76648	260489	181973	64380	200438	170945	67923
T ₃	263998	178907	130203	242708	177618	71623	242708	164184	55055	186095	162403	46202
T_4	282790	203317	141830	300415	250106	96092	300415	192257	72237	212635	194294	73897
T₅	274846	191999	136660	275216	223372	84632	275216	176909	67370	198305	169806	74501
T ₆	229915	155445	116595	200212	164774	68816	200212	145441	52326	161371	135544	60839
S.Em.±	7531											
CD at 5%	NS											
CV%	8.86											

Table 3. Effect of different treatments and cropping sequences on net profit inpooled (2018-19 to 2021-22)

		Crop sequen	ces x Treatments				
Treatments/Crop sequence	T ₁	T ₂	T ₃	T ₄	T₅	T ₆	Mean
C ₁	153222	12206	7 122549	144185	129365	78487	124979
C ₂	138268	10605	1 92965	122182	109580	67794	106140
C ₃	43269	33221	33023	46600	39827	19573	35918
Mean	111587	87113	82846	104322	92924	55285	
S.Em.±	3746						
CD at 5%	10446						
CV%	17.74						
		Year x Cro	op sequences				
Crop sequences/ Year	C ₁		C ₂	(\sum_{3}		Mean
Y ₁	173257		107630	8	34754		121880
Y ₂	96515		127811	3	30394		84907
Y ₃	82612		96986	1	3431		64343
Y ₄	147533		92133	1	5096		84921
Mean	124979		106140	3	35919		
S.Em.±	3058						
CD at 5%	8529						
CV%	17.54						
		Year x	Treatments				
Year/Treatments	T ₁	T ₂	T ₃	T ₄	T₅	T ₆	Mean
Y ₁	144165	126839	120842	129675	123640	86122	121880
Y ₂	105042	76599	71346	109057	94143	53253	84907
Y ₃	86216	63893	59670	75575	66282	34422	64343
Y ₄	110923	81121	79525	102982	87630	47342	84921
Mean	111587	87113	82846	104322	92124	55285	
S.Em.±	4325						
CD at 5%	NS						
CV%	16.68						

				Year x C	rop sequenc	e x Treatme	nts					
Year/Crop sequences/		2018-19			2019-20			2020-21		2021-22		
Treatments	C ₁	C ₂	C₃	C ₁	C ₂	C₃	C ₁	C ₂	C ₃	C ₁	C ₂	C₃
T ₁	206226	130190	96080	161497	117075	36555	131368	106054	21225	183533	130019	19218
Γ2	180166	114995	85355	118572	88384	22841	100832	80275	10574	139444	89804	14116
Γ ₃	173977	101094	87455	99805	85358	28875	86372	80331	12307	150531	84591	3454
Γ ₄	181103	115505	92416	162294	118198	46678	104445	99458	22823	177981	106482	24483
Γ₅	174165	111058	85697	142430	106332	33669	95967	86474	16406	150488	88864	23538
Г _б	123904	72939	61524	82267	63746	13746	62934	43078	-2746	83222	53038	5768
S.Em.±	7492											
CD at 5%	NS											
CV%	17.54											

Table 4. Effect of cropping sequences and different nutrient management treatments on soil properties after completion of crop sequence 2021-22 (Summer 2022)

Crop sequences	uences		SOC (%)	N (kg/ha)	P (kg/ha)	K (kg/ha)	рН	EC (dSm-1)	Fe (mg/ kg)	Mn (mg/ kg)	Zn (mg/ kg)	Cu (mg/ kg)	MWHC (%)	BD (gm/cc)
		Treatments												
CS ₁	Organic	100% Organic	0.40	163	18.48	187	7.95	0.203	5.90	12.06	0.62	0.76	32.9	1.440
(G.nut-wheat-		75% organic+ IP	0.37	160	17.64	178	8.03	0.185	6.88	12.36	0.54	0.84	31.8	1.437
g.gram)	Inorganic	100% inorganic	0.26	151	17.08	164	7.95	0.178	4.76	9.90	0.70	0.58	30.0	1.481
		State reco.	0.28	154	16.80	181	7.93	0.178	4.28	10.36	0.54	0.50	29.7	1.471
	INM	50% organic+50% inorganic	0.32	160	19.32	184	7.96	0.199	4.76	10.90	0.42	0.80	31.6	1.443
		75% organic+25% inorganic	0.34	163	20.44	182	8.01	0.190	5.74	10.56	0.48	0.84	31.7	1.442
		Initial status	0.21	141	13.47	180	7.22	0.150	3.50	5.26	0.30	0.42	29.5	1.540
	% increase	e/decrease of T1 over T4	40.9	6.1	10.0	3.5	0.3	14.1	37.9	16.4	14.8	52.0	10.7	-2.1
CS_2	Organic	100% Organic	0.37	151	16.52	184	8.03	0.204	5.42	12.32	0.52	1.04	31.6	1.441
(G.gram-		75% organic+ IP	0.35	169	16.24	179	7.98	0.186	3.62	9.82	0.30	0.80	31.0	1.445
coriander-	Inorganic	100% inorganic	0.25	154	15.96	172	8.04	0.184	3.96	9.38	0.52	0.58	29.6	1.477
veg. cowpea)		State reco.	0.27	151	17.64	163	8.02	0.175	3.96	8.64	0.38	0.54	29.2	1.476
	INM	50% organic+50% inorganic	0.32	154	19.60	187	7.89	0.184	5.26	10.00	0.16	0.88	32.0	1.434
		75% organic+25% inorganic	0.34	154	17.64	170	7.88	0.204	4.60	10.16	0.22	0.66	32.1	1.455
		Initial status	0.21	141	13.47	180	7.22	0.150	3.50	5.26	0.30	0.42	29.5	1.540
	% increase	e/decrease of T1 over T4	40.6	0.0	-6.3	12.7	0.1	16.4	36.9	42.6	36.8	92.6	8.2	-2.4

CS ₃	Organic	100% Organic	0.36	163	19.60	182	8.01	0.180	3.62	9.04	0.70	0.72	33.1	1.445
(G.gram-		75% organic+ IP	0.35	144	19.32	185	7.96	0.208	5.08	9.86	0.76	0.66	31.7	1.447
funnel- fellow)	Inorganic	100% inorganic	0.25	151	17.92	163	8.07	0.184	2.82	8.02	0.50	0.50	29.8	1.468
		State reco.	0.27	154	19.32	172	7.93	0.211	3.62	8.40	0.66	0.50	29.9	1.471
	INM	50% organic+50% inorganic	0.3	154	20.44	181	7.97	0.239	4.12	8.70	0.56	0.58	31.2	1.474
		75% organic+25% inorganic	0.33	157	19.60	173	7.78	0.199	6.56	10.20	0.70	0.62	31.6	1.463
	Initial statu	S	0.21	141	13.47	180	7.22	0.150	3.50	5.26	0.30	0.42	29.5	1.540
	% increase	e/decrease of T1 over T4	35.3	6.1	1.4	5.8	1.0	-14.5	0.0	7.6	6.1	44.0	10.7	-1.8

Table 5. Effect of nutrient management and crop sequences on microbial counts at end of the cropping sequence (2018-19 to 2021-22)

Crop	Microbial count	Organ	ic management	Inorganic management	Inorganic management	Tow	ards organic management
Seq.	(per gram of soil)	T ₁	T ₂	T₃	T ₄	T₅	T ₆
CS₁	Bacteria(×10 ⁶)	146.7	66.78	15.0	48.48	35.5	56.80
	Actinomycete(x10 ⁵)	184.7	142.2	27.6	46.47	95.2	65.30
	Fungi(×10 ⁴)	117.8	132.5	50.1	83.63	46.8	99.88
CS ₂	Bacteria(×10 ⁶)	51.38	44.53	4.81	13.87	25.8	22.10
	Actinomycetes ×10 ⁵)	167.6	137.0	17.4	40.51	81.8	64.66
	Fungi(x10 ⁴)	60.72	48.48	11.39	12.76	35.5	32.14
CS₃	Bacteria(×10 ⁶)	75.63	116.1	10.8	198.7	53.0	215.70
	Actinomycete (×10 ⁵)	190.8	190.1	27.4	43.06	119.4	94.63
	Fungi (×10 ⁴)	114.0	96.25	25.00	17.45	39.23	33.30

Table 6. Details of inputs used, purchase price and sale price

Α	25% premium price			Normal price	
1.	Selling price of groundnut pod	₹ 63.8/kg	1.	Selling price of groundnut pod	₹ 51.01/kg
2.	Selling price of wheat	₹ 27.6/ kg	2.	Selling price of wheat	₹ 22.10/ kg
3.	Selling price of kharif green gram	₹ 45.1/kg	3.	Selling price of kharif green gram	₹ 36.05/kg
4	Selling price of coriander	₹105.10/kg	4.	Selling price of coriander	₹ 84.05/kg
5	Selling price of cowpea(veg)	₹18.80/kg	5.	Selling price of cowpea(veg)	₹15.00/kg
6	Selling price of fennel	₹68.80/kg	6.	Selling price of fennel	₹55.0/kg
7	Selling price of summer green gram	₹52.50/kg	7.	Selling price of summer green gram	₹ 42.0/kg
а	FYM	₹ 0.6/kg	С	Labour charge	₹ 340/day
b	Vermi compost	₹ 6/kg ັ	d	Castor cake	₹ 7.8/kg

of 2014-15 due to different nutrient management and three cropping sequences. The percent increase in average of three cropping sequences was about 39.1 % in soil organic carbon, 4.1 % in soil available nitrogen, 1.6 % in available phosphorus, 7.2 % in available soil potash, 26.1% in Fe, 22% in Mn, 15.1% in Zn and 64.7% in Cu, while 9.9 % increase in soil water holding capacity and 2.1 % decrease in bulk density under 100 % organic treatment(T_1) over treatment of State recommendations + 10 FYM/ha once in a year(T_4). Application of organic manure along with significantly improved the physical properties of soil. Maximum decrease in bulk density an increase in porosity were recorded with application of organic manure over the initial value due to addition of large amount of bulky organic manure in the field. These results are in close conformity with the findings of Pradhan and Mondal [1]; Varalakshmi et al. [6]. Continuous application of organic manures in sufficient quantities to improve the soil organic carbon in soil thereby sustaining the soil health have been reported by Tiwari et al. [7]; L.J. Desai et al. [8].

3.5 Microbial Population

Data presented in Table 5 indicated that highest numbers of bacteria, Actinomycetes and Fungi were found under 100 % organic sources and also in integrated nutrient management in all three crop sequences, while the lowest bacteria, actinomycetes and fungi were found under 100 % inorganic in all three crop sequences. Similar improvement in microbial properties of soil with organic nutrition has been reported by Dubey and Agrawal [9]; Saini et al. [10]. Shanmei et al. [11] also reported favorable effect of organic manures on soil biological properties [12].

4. CONCLUSION

It is concluded that groundnut - wheatgreengram crop sequence with recommended dose of nitrogen to each crop in the ratio of 50:25:25 through FYM: vermicompost: castor cake (based on 0.5%, 1.5% and 3.9% nitrogen content in respective organic source), in groundnut-wheat-green gram for obtaining higher system equivalent yield and net return and also improves soil health.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- 1. Pradhan BK, Mondal SS. Integrated nutrient management for sustaining productivity and fertility building of soil under rice-based cropping system. Indian Journal of Agricultural Sciences. 1997;67 (7):307-310.
- 2. Modgal SC, Singh Y, Gupta PC. Nutrient management in rice-wheat cropping system. Fertilizer News. 1995;40(4):49-54.
- 3. Mahapatra BS, Singh SP, Rajesh A, Vishwakarma VK, Kumar Anil, Singh RK, Kumar Ajay, Chilanda Kishor, Pandey CS. Performance of lentil, chickpea and wheat under organic mode during initial years of conversion in relation to nutrient management practices. Journal of Eco-Friendly Agriculture. 2006;1(2):105-116.
- Urkurkar JS, Chitale Shrikant, Tiwari Alok. Effect of organic v/s chemical nutrient packages on productivity, economics and physical status of soil in rice (*Oryza sativa*) – potato (*Solanum tuberosum*) cropping system in Chhattisgarh. Indian Journal of Agronomy. 2010;55(1):6–10.
- Meena RN, Singh SP, Singh K. Effect of organic nitrogen nutrition on yield, quality, nutrient uptake and economics of rice-table pea- onion cropping sequence Indian Journal of Agricultural Sciences. 2010; 80:1003–6.
- Varalakshmi LR, Shrinivasa murthy CA, Bhaskar S. Effect of integrated use of organic manures and inorganic fertilizers on organic carbon, available N, P and K in sustaining productivity of groundnut-finger millet cropping system. Journal of the Indian Society of soil Science. 2005;53 (3):351-318.
- 7. Tiwari A, Dwivedi AK, Diskhit PR. Long term influence of organic and inorganic fertilization on soil fertility and productivity of soybean–wheat system in a vertisols. Journal of the Indian Society of Soil Science. 2002;50(4):472–5.
- Desai LJ, Patel KM, Patel PK, Patel VK, Patel RR. Evaluation of response of different varieties of major crops for organic farming under North Gujarat Condition. International Journal of Plant & Soil Science. 2023;35(20):1-7.
- Dubey SK, Agrawal S. Effect of phosphatesolubilizing microorganisms as single and composite inoculants on *rainfed* soybean. Indian Journal of Agricultural Sciences. 1999;69(8):611-613.

- Saini VK, Bhadari SC, Sharma SK, Tarafdar JC. Assessment of microbial biomass under integrated nutrients management in soybean-winter maize cropping sequence. Journal of the Indian Society of Soil Sciences. 2005;53(3):346-351.
- 11. Shanmei Wu, Elaine Ingham, Dunxiano Hu. (In) 17th World congress of soil

science held during 14–21 August 2002, at Bangkok, Thailand. Abstract. 2002;5: 1756.

12. Gangwar B, Katyal V, Anand KV. Stability and efficiency of different cropping systems in Western Himalaya region. Indian Journal of Agricultural Sciences. 2006;76(2):135-139.

© 2024 Desai et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: https://www.sdiarticle5.com/review-history/112819