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Abstract: Tuberculosis (TB), caused by Mycobacterium tuberculosis, results in approximately 1.6 million
deaths annually. BCG is the only TB vaccine currently in use and offers only variable protection;
however, the development of more effective vaccines is hindered by a lack of defined correlates of
protection (CoP) against M. tuberculosis. Pulmonary vaccine delivery is a promising strategy since it
may promote lung-resident immune memory that can respond rapidly to respiratory infection. In
this study, CysVac2, a subunit protein previously shown to be protective against M. tuberculosis in
mouse models, was combined with either Advax® adjuvant or a mixture of alum plus MPLA and
administered intratracheally into mice. Peripheral immune responses were tracked longitudinally,
and lung-local immune responses were measured after challenge. Both readouts were then correlated
with protection after M. tuberculosis infection. Although considered essential for the control of
mycobacteria, induction of IFN-γ-expressing CD4+ T cells in the blood or lungs did not correlate
with protection. Instead, CD4+ T cells in the lungs expressing IL-17A correlated with reduced
bacterial burden. This study identified pulmonary IL-17A-expressing CD4+ T cells as a CoP against
M. tuberculosis and suggests that mucosal immune profiles should be explored for novel CoP.
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1. Introduction

Tuberculosis (TB) remains a major global health burden, and the currently used vaccine,
Mycobacterium bovis bacille Calmette-Guerin (BCG), provides only variable protection [1,2].
There are multiple vaccine strategies currently being pursued for the clinical development
of new TB vaccines, but the best efficacy achieved thus far in a human clinical trial has
been 49.7% protection against active pulmonary TB by the subunit vaccine candidate
M72/AS01E [3]. Many challenges complicate the development of new vaccines. For
example, protection against infection requires years-long, expensive clinical trials in high-
disease-burden settings. Furthermore, most adults in these regions are not immunologically
naïve (due to prior BCG immunisation and/or exposure to M. tuberculosis), meaning novel
vaccines must be effective as booster immunisations [2]. However, a major roadblock to the
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development of effective new vaccines is a lack of correlates of protection (CoP) against
M. tuberculosis infection. It is well established that IFN-γ is essential for the control of
mycobacterial infections, and primary immunodeficiency in the IFN-γ, IL-12 or STAT-1
pathways results in increased susceptibility to infection with mycobacteria or Salmonella [4].
Although the presence of multifunctional Th1-polarised CD4+ T cells co-expressing IFN-γ,
TNF and IL-2 has been considered a CoP against M. tuberculosis infection, vaccines inducing
these responses do not consistently protect against infection in human trials [5–8]. Thus,
new CoP are required for the development of effective vaccines against TB.

Whilst parenteral vaccine administration generates an adequate immune response
against most pathogens, thus far it has been insufficient to fully protect against M. tuberculosis.
Traditional vaccine delivery methods that target systemic immunity, such as parenteral
delivery of BCG, generate robust circulating antibody responses and cellular immune mem-
ory at the vaccine site-draining lymph node (LN). This strategy is sufficient in most cases
to protect against the miliary disseminated form of TB, but, since M. tuberculosis can delay
the response time for T cells to translocate from the LN to the lungs, BCG is often unable to
prevent pulmonary TB [9–11]. Thus, a strategy of interest is the delivery of vaccines directly
to the site of the infection, via either intranasal or intrapulmonary (i.e., intratracheal [IT])
administration. In particular, the induction of tissue-resident memory T cells (TRMs)
that can respond rapidly to inhaled pathogens is a primary goal of mucosal vaccination
and has been shown to be advantageous in protection against M. tuberculosis in animal
models [8,11,12]. Recent studies in rhesus macaques examining intravenous BCG admin-
istration revealed that the generation of pulmonary antigen-specific CD4+ T cells was
associated with protective efficacy [13,14]. The first clinical trial of an adenoviral-vectored
M. tuberculosis vaccine candidate administered via the aerosol route showed encouraging
results for the translation of pulmonary vaccines, primarily the induction of polyfunctional
CD4+ TRMs in the airways [15]. Therefore, mucosal delivery is a promising strategy to
generate effective immunity against M. tuberculosis.

Despite the evidence for the generation of TRMs as a promising CoP for M. tuberculosis
vaccines, the current TB vaccine pipeline primarily consists of parenterally administered
vaccines that promote a systemic Th1 response [16,17]. Thus, there is a need for more
diverse vaccine candidates to enter the clinical pipeline. In this study, a major aim was
to characterise the protective efficacy of a subunit TB vaccine combined with two differ-
ent adjuvants: a combination of alum and MPLA that models the adjuvant AS04 used
in the hepatitis B vaccine Fendrix®, and Advax®, a polysaccharide adjuvant based on
delta inulin and studied in multiple vaccine clinical trials [18–21]. Both vaccines con-
tained the fusion protein CysVac2, consisting of M. tuberculosis Ag85B and CysD, which
induces protection against M. tuberculosis challenge in animal models when administered
parenterally and to the mucosa [11,19,22]. In this study, intrapulmonary CysVac2 vac-
cines using different adjuvants promoted lung IL-17A-producing CD4+ T cells with a
similar phenotype after M. tuberculosis challenge. In addition, the presence of pulmonary
Th17 correlated with protection against M. tuberculosis infection, while systemic or lung-
local IFN-γ-expressing CD4+ T cells did not. Hence, these data identified pulmonary
CD4+ T cells expressing IL-17A as a CoP for M. tuberculosis infection and support the
progression of aerosol-delivered CysVac2 vaccines to clinical trials.

2. Materials and Methods
2.1. Mice and Immunisations

Female C57BL/6 mice 6–8 weeks of age were sourced from Animal Resources Centre
(Perth, WA, Australia) and were maintained in specific pathogen-free conditions at the
Centenary Institute (Sydney, NSW, Australia). For all experiments, mice were selected at
random for experimental groups and were administered treatment in random order. All
mouse experiments were approved by the Sydney Local Health District Animal Ethics and
Welfare Committee (protocol 2020-009). Advax particles were provided by Vaxine Pty Ltd.
(Adelaide, South Australia, Australia) at 50 mg/mL. Alum/MPLA-adjuvanted vaccines
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were prepared by mixing alum in the form of Alhydrogel® adjuvant 2% (InvivoGen,
San Diego, CA, USA) and monophosphoryl lipid A from S. minnesota R595 (InvivoGen).
CysVac2 protein was recombinantly expressed in E. coli by The University of Sydney Ana-
lytical Core Facility (Sydney, NSW, Australia). For IT vaccinations, mice were anaesthetised
with an intraperitoneal (IP) injection with ketamine (80 mg/kg) and xylazine (10 mg/kg)
in PBS followed by IT instillation with 10 µg CysVac2 antigen mixed with 1 mg Advax,
with 20 µg Alhydrogel® adjuvant 2% and 2 µg MPLA, or with 5 µg Alhydrogel® adjuvant
2% and 0.5 µg MPLA in a total volume of 50 µL in endotoxin-free PBS (Sigma-Aldrich) us-
ing the PennCentury Microsprayer Aerosoliser (PennCentury, Wyndmoor, PA, USA). In all
experiments, mice vaccinated with endotoxin-free PBS (Sigma-Aldrich, St. Louis, MO, USA)
alone served as controls.

2.2. Blood Sample Collection and Analysis

Blood samples were collected from the tail vein into tubes containing 10 µL heparin
(50 U, Sigma-Aldrich), centrifuged to separate plasma, and peripheral blood mononuclear
cells (PBMCs) isolated using Histopaque 1083 (Sigma-Aldrich). For antigen recall, PBMCs
were restimulated with a final concentration of 5 µg/mL CysVac2 in supplemented RPMI
1640 medium, HEPES (Life Technologies, Thermo Fisher Scientific, Carlsbad, CA, USA).
Cells were incubated for 4 h at 37 ◦C before the addition of Protein Transport Inhibitor
Cocktail (Life Technologies, Thermo Fisher Scientific) and then incubation overnight at
37 ◦C. Restimulated PBMCs were then stained for intracellular cytokine production. Alter-
natively, unstimulated PBMCs were stained intracellularly immediately after collection for
transcription factor expression.

2.3. Preparation of Tissue Samples for Flow Cytometry

Lungs were perfused with chilled PBS and then added to RPMI media (Life Tech-
nologies, Thermo Fisher Scientific) containing 10 U/mL DNAse I and Collagenase IV
(Sigma-Aldrich). Lungs were then mechanically dissociated using a GentleMACS disso-
ciator (Miltenyi Biotec, Sydney, NSW, Australia), before being incubated for 30 min at
37 ◦C. After incubation, lungs were further dissociated through a 70 µm nylon cell strainer,
washed and then resuspended in supplemented RPMI. Red blood cells were removed
from single-cell suspension through the addition of 1 mL ACK lysis buffer (Thermo Fisher
Scientific), incubation at room temperature (RT) for 45 s and quenching of the reaction
with RPMI with 5% FCS. Cells were then washed again with RPMI and resuspended in
FACS buffer prior to antibody staining. LNs were prepared with DNAse I and Collagenase
IV digestion (10 U/mL, Sigma-Aldrich) and incubation for 20 min at 37 ◦C. Following
incubation, LNs were dissociated through a 70 µm nylon sieve, washed with RPMI and
resuspended in FACS buffer prior to antibody staining. Samples were spiked with a known
number of Rainbow Calibration Beads (Becton Dickinson Macquarie Park, NSW, Australia),
filtered, then run on an LSRII 5L cytometer (BD Biosciences).

2.4. Staining of Cells for Flow Cytometry

Cell suspensions were first stained for cell surface markers using monoclonal anti-
bodies (mAbs) (detailed in Supplementary Table S1), Fixable Blue Dead Cell stain (Life
Technologies, Thermo Fisher Scientific) and anti-CD16/32 blocking antibody (clone 2.4G2;
Becton Dickinson) diluted in FACS buffer for 30 min on a shaker at 4 ◦C. Samples were
washed three times with FACS buffer and resuspended in 10% neutral buffered forma-
lin (NBF; Sigma-Aldrich) if only surface stained and fixed for at least 1 h. Samples to
be stained intracellularly for cytokine expression were first permeabilised using the BD
Cytofix/Cytoperm Fixation/Permeabilization Kit (Becton Dickinson) as per the manu-
facturer’s instructions. This entailed incubating the samples in permeabilisation solution
for twenty minutes at 4 ◦C, followed by washing twice in Perm/Wash buffer (Becton
Dickinson). Samples were stained with a cocktail of mAbs specific for various cytokines
for 45 min at 4 ◦C on a shaker. Cells were then washed and resuspended in 10% NBF
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(Sigma-Aldrich) prior to flow cytometric analysis. For analysis of transcription factor ex-
pression, after surface staining, cells were fixed and permeabilised using the eBioscienceTM

Foxp3/Transcription Factor Staining Buffer Set (Invitrogen, Thermo Fisher Scientific).
Following fixation and permeabilisation, cells were incubated with a mix of mAbs for tran-
scription factors for 45 min on a shaker at RT. Cells were then washed and resuspended in
10% NBF (Sigma-Aldrich) for flow cytometric analysis. For any samples that were exposed
to M. tuberculosis, after removal from the PC3 facility, additional 10% NBF was added to
the samples prior to analysis on the flow cytometer. All flow cytometry was performed on
an LSRII 5L cytometer (BD Biosciences, Franklin Lakes, NJ, USA).

2.5. Flow Cytometric Data Analysis

Flow cytometric data were analysed using FlowJo Software version 10.9.0 (Becton
Dickinson). Manual gating strategies are depicted in Supplementary Figure S1. For UMAP
analysis of myeloid cells in the lungs, 20,000 events per sample were concatenated and
clustered based on the expression of Ly6C, CD11c, B220, CD11b, Ly6G, CD103, Siglec-F
and CD64 using FlowJo Software (Becton Dickinson). UMAP gating was validated with
the manual gating strategy depicted in Supplementary Figure S1. For some experiments,
FlowJo Software was also used to perform Boolean gating on samples to determine co-
expression of cytokines. Flow cytometric data were normalised across experiments using
the formula z = (original value−mean o f biological replicates)

(standard deviation o f experiment) [23] (Jaadi, 2021). These data were
then input into the web tool ClustVis [24], which generates a heatmap and PCA plot.

2.6. Antibody Enzyme-Linked Immunosorbent Assays (ELISAs)

Plasma samples were analysed for anti-CysVac2 antibody titres by coating Corning 96-Well
Clear PVC Assay Microplates (Sigma-Aldrich) with 5 µg/mL CysVac2 in PBS overnight
at RT. The next day, ELISAs were performed as previously described [25]. Titres were
determined using GraphPad Prism 9 software (GraphPad Software Inc., Boston, MA, USA)
to fit a sigmoidal curve and calculate the intersection with three standard deviations above
the mean negative control value (average absorbances of unvaccinated mouse plasma).

2.7. Statistical Analysis

Statistical analysis was performed using GraphPad Prism® version 10 (GraphPad
Software Inc.). For multi-group datasets, 1-way ANOVA was used, and 2-way ANOVA
was used for time-course experimental data. For 1-way ANOVA, the Tukey post-hoc test
was used to correct for multiple comparisons, and for 2-way ANOVA, the Dunnett, Holm–
Sidak’s or Sidak’s multiple comparisons tests were used where appropriate. Correlates
analysis was also performed using GraphPad Prism software. Data were analysed using a
Spearman’s correlation test or correlation matrix, where p < 0.05 was considered significant.

3. Results
3.1. Intratracheal Vaccination with Differently Adjuvanted CysVac2 Vaccines Induces Similar
Circulating Immune Responses

The antigen-specific cytokine production of PBMCs is indicative of the memory re-
sponse being generated and is often used to measure immunogenicity in clinical trials
of TB vaccine candidates [16]. Mice were vaccinated three times, 2 weeks apart, and
then rested for 4 weeks before being challenged with aerosol M. tuberculosis (Figure 1A).
The vaccines used in this study were CysVac2 (10 µg) with a low dose of alum and
MPLA (5 µg alum mixed with 0.5 µg MPLA, denoted CysVac2/AlumMPLAlow), Cys-
Vac2 with a high dose of alum and MPLA (20 µg alum mixed with 2 µg MPLA, denoted
CysVac2/AlumMPLAhigh) and CysVac2 with 1 mg of Advax (CysVac2/Advax). Some
animals were immunised with PBS as a control, and all experimental mice were immu-
nised via the IT route. At time points after each immunisation outlined in Figure 1A, mice
were bled and plasma and PBMCs were separated. PBMCs were then restimulated with
CysVac2 protein to determine antigen-specific cytokine responses measuring IFN-γ, IL-2,
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TNF, IL-17A and IL-10 in both CD4+ and CD8+ T cells using the gating strategy depicted in
Supplementary Figure S1. As shown in Figure 1B–E, vaccination with CysVac2/Advax and
CysVac2/AlumMPLAhigh induced similar kinetics of cytokine expression across the vacci-
nation schedule. CD4+ IFN-γ expression for both vaccines peaked after early vaccinations
(either the first or second) (Figure 1B). CD4+ IL-2 and TNF expression were similar between
the CysVac2/Advax and CysVac2/AlumMPLAhigh groups, both peaking after the second
vaccination (Figure 1C,D). The kinetics of CD4+ IL-17A expression differed between the
two vaccines somewhat, with levels in CysVac2/AlumMPLAhigh mice remaining steady
throughout the immunisation schedule and CysVac2/Advax showing a more delayed
response, peaking after the third vaccination (Figure 1E). CysVac2/AlumMPLAlow vaccina-
tion showed a reduced peak in cytokine expression compared to CysVac2/AlumMPLAhigh
and CysVac2/Advax (Figure 1B–D), except for IL-17A expression, which peaked after the
second immunisation (Figure 1E). For all vaccines, antigen-specific CD4+ IL-10 expression
was not detected at any time point, nor was CD8+ T cell cytokine expression (Supplemen-
tary Figure S2). Thus, PBMC cytokine expression at time points after IT immunisation
reveals relatively similar kinetics of circulating CD4+ T cell functionality induced by two
differently adjuvanted vaccines.
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Figure 1. Intratracheal immunisation of CysVac2 with Advax or alumMPLA generates similar kinetics
of circulating adaptive immune responses. C57BL/6 mice were immunised intratracheally with
PBS (black), CysVac2/low-dose alumMPLA (orange), CysVac2/high-dose alum/MPLA (red) or
CysVac2/Advax (blue) three times two weeks apart, and blood was collected as per the schedule
outlined in (A). After each blood collection (indicated by the maroon blood symbol and arrow),
PBMCs were restimulated with CysVac2 protein overnight in the presence of protein transport
inhibitor cocktail and then stained for intracellular cytokine production (B–E). Plasma was also
collected for antibody analysis; IgA, IgG1 and IgG2c antibodies specific for CysVac2 protein were
measured with ELISAs (F–H). The ratio of IgG1 to IgG2c in paired samples was also calculated (I).
Dashed line indicates limit of detection for (G–I). Graphs depict the mean +/− SEM of pooled data
from two independent experiments with 5–6 mice per group. Statistical differences from PBS controls
were compared using a 2-way ANOVA with multiple comparisons, corrected using the Dunnett
post-hoc test, p < 0.05 (*), p < 0.005 (**), p < 0.0005 (***), p < 0.0001 (****).
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Recent studies have suggested that antibodies may play a role in protection against
TB and thus, may be important to measure as part of vaccine development studies [13,26].
Only CysVac2/AlumMPLAhigh generated significantly higher levels of plasma IgA one
week after the final booster vaccination (Figure 1F). IgG1 and IgG2c antibodies, indicative of
Th2 and Th1 responses, respectively, were also measured in the plasma at time points after
vaccination (Figure 1G–I). There were no significant differences among the three groups;
however, CysVac2/Advax and CysVac2/AlumMPLAhigh showed a trending increased
titre compared to CysVac2/AlumMPLAlow (Figure 1G,H). All vaccine groups had greater
IgG1 titres than IgG2c (Figure 1I), suggesting a more Th2-polarised response than Th1. For
all vaccines, antibodies were also detectable up to 7 weeks after the first immunisation,
indicating a lasting systemic humoral response. Thus, all the vaccines tested in this study
generated a robust antigen-specific IgG1 antibody response and a lesser IgG2c response
that was detectable at late time points after immunisation.

3.2. CysVac2/Advax and CysVac2/AlumMPLA Are Protective in the Lungs When Administered
Intratracheally, and Protection Is Associated with IL-17A Expression by Pulmonary CD4+ T Cells

Since vaccine-induced lung-resident TRMs have been previously identified to core-
late with protection against M. tuberculosis infection [11,12], this study aimed to investi-
gate if they are generated after IT vaccination with diverse adjuvants. Four weeks after
the final vaccination, mice were challenged with ~100 CFU M. tuberculosis H37Rv via
the aerosol route (as outlined in Figure 1A) and their immunity was examined 4 weeks
post-challenge. IT immunisation with CysVac2/AlumMPLAhigh and CysVac2/Advax sig-
nificantly reduced the bacterial load in the lungs compared to PBS-immunised controls,
while CysVac2/AlumMPLAlow did not (Figure 2A). None of the vaccines tested provided
protection in the spleen (Figure 2B).

To determine the functionality of CD4+ T cells in the lungs after challenge, lung single-cell
suspensions were restimulated with CysVac2 protein. Intracellular cytokine staining was
performed for IFN-γ, IL-17A, TNF and IL-2 expression after restimulation, and Boolean gating
was used to identify cells co-expressing combinations of multiple cytokines (Figure 2C). It was
observed that in PBS control mice infected with M. tuberculosis, the majority of CD4+ T cells
responding to CysVac2 restimulation expressed IFN-γ, either alone or in combination with
other cytokines, primarily TNF and/or IL-2 (Figure 2C,E,I, J). In contrast, a distinct shift
towards IL-17A expression was observed in the CD4+ T cells responding to CysVac2 from
the mice of vaccinated groups (Figure 2C,F,L). The majority of CD4+ T cells producing IL-17A
expressed it alone or in combination with TNF; however, there was also a subset CD4+ T cells
expressing IL-17A alongside TNF and IL-2 (Figure 2C,K). The pattern of CD4+ T cell cytokine
expression in all vaccinated groups was highly similar and in distinct contrast to unvacci-
nated PBS controls (Figure 2C). In CysVac2/AlumMPLAhigh and CysVac2/Advax-immunised
mice, the capacity for CD4+ T cells to express any of the cytokines measured was also en-
hanced compared to both PBS and CysVac2/AlumMPLAlow-vaccinated groups (Figure 2D).
Furthermore, the proportion of CD4+ T cells expressing IL-17A (either alone or in com-
bination with other cytokines) was enhanced in all vaccinated groups, particularly the
CysVac2/AlumMPLAhigh and CysVac2/Advax groups (Figure 2C). Conversely, the pres-
ence of multifunctional CD4+ T cells expressing IFN-γ, TNF and IL-2 was reduced in all vac-
cinated mice compared to PBS-immunised control mice (Figure 2J). Instead, there was a sig-
nificant increase in CD4+ T cells expressing IL-17A, TNF and IL-2 concurrently (Figure 2K). In
the lung CD8+ T cell compartment, the only experimental group that showed any change in cy-
tokine expression compared to PBS control mice was IT CysVac2/Advax-immunised animals
(Supplementary Figure S3A–D). In these animals, a significantly greater expression of IFN-γ
and IL-17A in lung CD8+ T cells was observed (Supplementary Figure S3B,D). In total, IT vac-
cination with CysVac2 vaccines caused a distinct shift in pulmonary CD4+ multifunctionality
from cells expressing IFN-γ towards IL-17A-producing cells after M. tuberculosis challenge,
irrespective of the adjuvant used.
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Figure 2. Intratracheal immunisation with CysVac2 vaccines promotes the presence of multifunctional
IL-17A-producing CD4+ T cells in the lungs of mice infected with M. tuberculosis. C57BL/6 mice
were immunised with PBS (white), CysVac2/low-dose alumMPLA (orange), CysVac2/high-dose
alumMPLA (red) or CysVac2/Advax (blue) and challenged with M. tuberculosis H37rV, as described
in Figure 1. Four weeks after challenge, lung single-cell suspensions were restimulated overnight
with CysVac2 protein in the presence of protein transport inhibitor cocktail and then stained in-
tracellularly for expression of IFN-γ, IL-17A, TNF and IL-2. Concurrent expression of cytokines
(A) was determined via Boolean gating as per the gating strategy defined in Supplementary Figure
S1. The proportion of total lung CD4+ T cells expressing any of the cytokines measured is shown
in (B). The proportion of lung CD4+ T cells expressing IFN-γ, IL-17A, IL-2 or TNF (alone or in
combination with other cytokines) is shown in (C). The frequency of CD4+ T cells expressing any of
the above cytokines is shown in (D), and individual cytokines are shown in (E–H). The frequency of
multifunctional cytokine-producing CD4+ T cells expressing IFN-γ, TNF and IL-2 concurrently is
shown in (J), and cells expressing IL-17A, TNF and IL-2 concurrently are shown in (K). Representative
FACS plots of gating strategies for lung CD4+ T cell cytokine expression are shown in (I,L). Graphs
are representative of two independent experiments, showing the mean +/− SEM of 5–6 mice per
group. Statistical differences were compared using a 1-way ANOVA with multiple comparisons and
the Tukey post-hoc test, p < 0.05 (*), p < 0.005 (**), p < 0.0005 (***), p < 0.0001 (****), ns refers to not
significant differences.
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RorγT is the master regulator transcription factor controlling Th17 and Tc17 cell
differentiation, while T-bet is the master regulator for Th1 and Tc1 differentiation [27].
M. tuberculosis infection is known to induce a Th1 response in the lung, and this was
confirmed in all the groups, with the PBS control group showing the highest percentage of
T-bet expression in both CD4+ and CD8+ T cells (Figure 3A,C). Conversely, in the vaccinated
groups, robust expression of RorγT in CD4+ T cells was observed in the lungs, coupled
with a downregulation of T-bet expression compared to PBS control mice (Figure 3A,B).
Interestingly, only CysVac2/Advax induced the upregulation of RorγT in lung CD8+ T cells,
which was not seen in any other group (Figure 3D). In these pulmonary CD8+ T cells,
there was a similar downregulation of T-bet in all vaccinated groups as was observed in
CD4+ T cells (Figure 3C). T cells in the lungs were also measured for TRM-like marker
expression (CD44+CD69+CD62L− for CD4+ T cells and CD103+CD44+CD69+CD62L− for
CD8+ T cells) (Supplementary Figure S3E,F). There were no significant changes compared to
PBS control mice in the proportions of T cells with TRM-like markers in the lungs at this time
point. Further, there were no significant changes in the proportion of B cells, germinal centre
B cells or memory B cells in the lungs at this time point (Supplementary Figure S4A,B,D).
However, the CysVac2/Advax-immunised mice showed a significant increase in class-
switched (IgM−IgD−) B cells in the lungs (Supplementary Figure S4C). Restimulation of
single-cell suspensions from the mLN showed that a similar Th17 response was induced in
IT-vaccinated mice, defined by CD4+ T cell IL-17A and TNF expression (Figure 4A) and
expression of RorγT (Figure 4B). Unlike the lungs, there was no significant decrease in the
expression of T-bet in mLN CD4+ T cells at this time point (Figure 4C). Thus, IT vaccination
with all vaccines induced a distinct upregulation of RorγT in the lungs and mLN, with
downregulation of T-bet in lung CD4+ T cells after challenge. However, CysVac2/Advax
additionally promoted the expression of RorγT and IL-17A in pulmonary CD8+ T cells and
the induction of local germinal centre B cells.

3.3. Intratracheal Vaccination with CysVac2/Advax and CysVac2/AlumMPLA Generates Similar
Myeloid Cell Recruitment to the Lungs after M. tuberculosis Challenge

Infiltrating cells such as neutrophils, monocytes and eosinophils are recruited to the lung af-
ter M. tuberculosis infection and have important roles in protection or immunopathology [28,29].
A multicolour flow cytometry panel was used to identify numerous myeloid cell subsets
using the gating strategy in Supplementary Figure S1. To visualise all the populations
identified concurrently, the nonlinear dimensionality-reduction technique known as uni-
form manifold approximation and projection (UMAP) was used to cluster the cells based
on multiple phenotypic markers (Figure 5A). The populations identified in Figure 5A
were verified using manual gating techniques. Like many of the T cell parameters ob-
served, the myeloid profile of the lungs 4 weeks after challenge was highly similar between
immunised animals irrespective of the vaccine administered (Figure 5B–I). There was
no significant difference in the recruitment of alveolar macrophages, eosinophils, neu-
trophils, cDC1s or MHCII-monocytes at this time point compared to unvaccinated control
mice (Figure 5B–D,F,I). However, there was a significant reduction in certain monocytic
and DC subsets in the lungs of vaccinated mice, including interstitial CD64+ macrophages,
cDC2s and Ly6Chi monocytes (Figure 5E,G,H).

The lung-draining mediastinal lymph nodes (mLN) were also examined for myeloid
cell recruitment; however, there were no significant changes compared to PBS controls
observed in the IT immunised mice (Supplementary Figure S5). Hence, at this time point,
there was not any significant recruitment of myeloid subsets associated with vaccine
protective efficacy.
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Figure 3. Intratracheal immunisation with CysVac2 vaccines induces significant RorγT expres-
sion in lung lymphocytes during M. tuberculosis infection. C57BL/6 mice were immunised with
PBS (white), CysVac2/low-dose alum/MPLA (orange), CysVac2/high-dose alumMPLA (red) or
CysVac2/Advax (blue) and challenged with M. tuberculosis H37Rv, as described in Figure 1. Four
weeks after challenge, lungs were collected for flow cytometric analysis. Lung CD4+ T cells and
CD8+ T cells were stained intracellularly for expression of RorγT (A,C) and T-bet (B,D) transcrip-
tion factors, respectively. Graphs are representative of two independent experiments, depicting the
mean +/− SEM of 5–6 mice per group. Statistical differences were compared using a 1-way ANOVA
with multiple comparisons and the Tukey post-hoc test, p < 0.05 (*), p < 0.005 (**), p < 0.0005 (***),
p < 0.0001 (****), ns refers to not significant differences. Data are shown as means +/− SEM.
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Figure 4. Intratracheal immunisation with CysVac2 vaccines generates Th17 cells in the lung-draining
lymph node. C57BL/6 mice were immunised with PBS (white), CysVac2/low-dose alum/MPLA
(orange), CysVac2/high-dose alumMPLA (red) or CysVac2/Advax (blue) and challenged with
M. tuberculosis H37rV, as described in Figure 1. Four weeks after challenge, lungs and mediastinal
lymph nodes (mLN) were collected for flow cytometric analysis. mLN cell suspensions were restimu-
lated overnight with CysVac2 protein in the presence of protein transport inhibitor cocktail and then
stained intracellularly for cytokine expression. The proportion of mLN CD4+ T cells expressing IFN-γ,
IL-17A, IL-2 or TNF (alone or in combination with other cytokines) is shown in (A). mLN single-cell
suspensions were also stained for transcription factor expression, with CD4+ T cell expression of
RorγT and T-bet shown in (B,C). Graphs are representative of two independent experiments, showing
the mean +/− SEM of 5–6 mice per group. Statistical differences were compared using a 2-way or
1-way ANOVA with multiple comparisons and the Tukey post-hoc test, p < 0.05 (*), p < 0.005 (**),
p < 0.0005 (***), p < 0.0001 (****).

3.4. Intratracheal CysVac2/Advax and CysVac2/AlumMPLAhigh Generate Distinct Immunological
Profiles after M. tuberculosis Challenge, but a Shared Th17 Signature

To define in detail the immune signatures of the lungs post-M. tuberculosis infection,
the flow cytometric data from independent experiments described above were standardised
using the formula z = (original value−mean o f biological replicates)

(standard deviation o f experiment) [23]. The data were then in-
putted into the web tool ClustVis [24], which generates a heatmap and principle component
analysis (PCA) plot. To understand the signatures associated with protective responses
compared to non-protective responses, the readouts of CysVac2/AlumMPLAhigh- and
CysVac2/Advax- versus PBS-vaccinated mice were compared (Figure 6). In the PCA plot,
the PBS control mice clustered separately from CysVac2/AlumMPLAhigh- and
CysVac2/Advax-immunised mice, which clustered closely (Figure 6A). The lungs of
PBS-immunised mice showed enriched cellular infiltration, including monocytes and
cDC2 cells (Figure 6B). Vaccinated animals, conversely, showed enhanced adaptive im-
mune responses but particularly the presence of RorγT+ and IL-17A expressing CD4+ T cells,
which were noticeably reduced in PBS control mice (Figure 6B). Interestingly, signatures as-
sociated with macrophage activation, such as increased T-bet+ CD4+ T cells, CD4+ IFN-γ ex-
pression and CD64+ interstitial macrophages, were more enriched in PBS control mice com-



Vaccines 2024, 12, 128 11 of 19

pared to IT immunised animals. Other readouts, such as B cell phenotypes and CD8+ T cells,
did not cluster distinctly with vaccination status and lung CFU. Overall, the signature asso-
ciated with reduced lung bacterial burden was a Th17, CD4+ T cell-enriched phenotype.
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Figure 5. Intratracheal CysVac2 vaccines reduce monocytic infiltration to the lungs 4 weeks post-
aerosol M. tuberculosis challenge. C57BL/6 mice were immunised with PBS (white), CysVac2/low-dose
alum/MPLA (orange), CysVac2/high-dose alumMPLA (red) or CysVac2/Advax (blue) and chal-
lenged with M. tuberculosis H37rV, as described in Figure 1. Four weeks after challenge, lungs were
collected for flow cytometric analysis. Uniform manifold approximation and projection for dimension
reduction (UMAP) analysis was performed on pooled flow cytometric samples from one experi-
ment with 5–6 mice per group. Representative samples from each group are shown in (A). UMAP
gating was confirmed using manual gating, shown in Supplementary Figure S1. Shown are the fre-
quency of myeloid cell subsets alveolar macrophages (B), eosinophils (C), neutrophils (D), interstitial
macrophages (E), cDC1s (F), cDC2s (G), Ly6C high monocytes (H) and MHCII− monocytes (I). Data
shown are pooled from two independent experiments, depicting the mean +/− SEM of 5–6 mice per
group. Statistical differences were compared using a 1-way ANOVA with multiple comparisons and
the Tukey post-hoc test, p < 0.05 (*), p < 0.005 (**), p < 0.0005 (***), p < 0.0001 (****).
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Figure 6. CysVac2 vaccines adjuvanted with Advax or alumMPLA induce different immunological
profiles after aerosol M. tuberculosis challenge, with a shared protective signature. C57BL/6 mice
were immunised with PBS (black), CysVac2/high-dose alumMPLA (red) or CysVac2/Advax (blue)
and challenged as described in Figure 1, and the pulmonary immune response after challenge was
characterised using flow cytometry. Flow cytometry data from two experiments were normalised
and then analysed using the web tool ClustVis to create a principal component analysis plot (A) and
a heatmap of the various parameters measured (B). Data shown are pooled from 2 independent
experiments each with n = 5–6 mice per group.

3.5. Pulmonary CD4+ T Cells Expressing IL-17A Correlate with Protection against
M. tuberculosis but IFN-γ-Expressing CD4+ T Cells Do Not

To further define CoP associated with effective TB vaccines, antigen-specific T cell
functionality was examined in PBMCs and was correlated with lung bacterial burden after
challenge using a Spearman’s correlation test, as described previously [30]. Shown in
Figure 7A–D are the data from the peak of the circulating T cell response in week 3 (1 week
post the first boost). In the blood, none of the cytokines measured expressed by CD4+ T cells
significantly correlated with protection; however, IL-17A expression approached signif-
icance with a p value of 0.0519 (Figure 7A–D). CD4+ T cell responses in the lungs after
infection were also analysed using Spearman’s correlation analysis with lung bacterial
burden 4 weeks after challenge (Figure 7E).

These data showed that the presence of CD4+ T cells in the lungs negatively correlated
with lung bacterial burden, especially IL-17A-expressing CD4+ T cells expressing IL-2,
RorγT and IL-17A (Figure 7E). Additionally, the presence of CD8+ T cells expressing
RorγT and CD19+ B cells also correlated with protection. When examining Boolean gating
of CD4+ T cell cytokine expression, the overall ability of CD4+ T cells to express cytokines
also significantly correlated with reduced bacterial burden, as did polyfunctional cells
co-expressing IL-17A, TNF and IL-2 (Figure 7F,H). Conversely, the presence of CD4+ T cells
expressing IFN-γ or co-expressing IFN-γ, TNF and IL-2 did not correlate with reduced
CFU in the lungs, and CD64+ macrophages correlated with increased bacterial burden
(Figure 7E,G). Thus, these data indicate that CoP against M. tuberculosis may be more reliable
when measured in the lungs compared to the blood and that pulmonary polyfunctional
IL-17A-expressing CD4+ T cells are a potential CoP for M. tuberculosis.
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Figure 7. Pulmonary CD4+ T cells expressing IL-17A correlate with protective efficacy of intratra-
cheally administered vaccines. C57BL/6 mice were immunised with PBS (black), CysVac2/low-dose
alumMPLA (orange), CysVac2/high-dose alumMPLA (red) or CysVac2/Advax (blue) and challenged
as described in Figure 1, and the peripheral and pulmonary immune response after vaccination or
challenge, respectively, was characterised using flow cytometry. The immunological data from indi-
vidual mice were paired with the lung bacterial load from 4 weeks post-challenge. Lung bacterial load
was correlated with the peak pre-challenge PBMC CD4+ T cell cytokine response taken from week 3 of
the experiment (one week after the first boost) for cytokines IFN-γ, IL-17A, IL-2 and TNF (A–D).
Black dots represent PBS-immunised mice, blue CysVac2/Advax-, orange CysVac2/AlumMPLAlow-,
and red CysVac2/AlumMPLAhigh-immunised mice. Correlation analysis was also performed for
lung immune responses measured 4 weeks after aerosol challenge with M. tuberculosis (E–H). A
Spearman’s correlation test was performed using GraphPad Prism Software to determine correlation
and p values, where p < 0.05 were considered significant. For individual plots, data are representa-
tive of 2 independent experiments with n = 5–6 mice per group, and for (E), data are pooled from
2 independent experiments each with n = 5–6 mice per group.
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4. Discussion

The peripheral antigen-specific T cell cytokine response is routinely analysed as a
measure of immunogenicity in the assessment of TB vaccine candidates. A comparison of
six TB vaccines that had advanced to clinical trials showed that they all induced primarily a
Th1-polarised response; thus, there is a need for more diversity in the clinical pipeline [16].
In this study, IT immunisation with CysVac2/Advax and CysVac2/AlumMPLAhigh both
induced CD4+ T cells expressing IL-2, TNF and/or IL-17A (Figures 1 and 2). Th17 cells
are generated in the presence of IL-6, TGF-β and IL-23 [31], and it appears that mucosal
immunisation favours Th17 cell polarisation even for vaccines that promote Th1 responses
after parenteral administration [32]. In the current study, all the vaccines tested also
promoted higher levels of CysVac2-specific IgG1 than IgG2c in the plasma of vaccinated
animals (Figure 1). This phenotype after intrapulmonary vaccination has been observed in
previous studies [33], and the combined expression of IL-17A and IL-21 (both expressed
by Th17 cells) has been shown to preferentially promote IgG1 class switching [34]. Also
associated with pulmonary vaccine delivery is the induction of IgA, the antibody class
most found at mucosal sites, including the lungs [33]. In the current study, only modest IgA
responses were observed in week 5 of the experiment (after the second boost), and this was
only in the CysVac2/AlumMPLAhigh mice. In contrast, previous investigations of Advax in
IT administered vaccines have shown the induction of IgA both in the respiratory tract and
in the circulation [11,35]. It is possible that some CysVac2-specific IgA was generated in the
respiratory mucosa that was unable to be detected in the blood. Thus, both AlumMPLA and
Advax promote circulating Th17 responses and IgG1-skewed humoral immune responses;
the exact mechanism by which this occurs is of interest for future studies.

Historically, the generation of Th1 cells has been a focus of TB vaccine develop-
ment, owing to their ability to secrete IFN-γ, activating macrophages for enhanced mi-
crobial killing. BCG, the currently used tuberculosis vaccine, induces significant levels
of IFN-γ-expressing CD4+ T cells when administered intradermally [36]. Polyfunctional
CD4+ T cells co-expressing IL-2, TNF and IFN-γ, like those generated by BCG, were his-
torically considered a key CoP against M. tuberculosis; however, in an efficacy clinical
trial, parenteral MVA85A induced multifunctional CD4+ T cells but did not protect against
disease [7]. In the current study, we did not include a comparison with BCG. This is because
we have previously shown that IT CysVac2/Advax generates equivalent protection in the
lungs compared to subcutaneous BCG in C57BL/6 mice [11]. Furthermore, given that the
mechanisms of protection induced by mucosal and parenteral vaccination are thought to
be substantially different, we did not consider subcutaneous BCG an appropriate control
in the current study. Other studies have examined pulmonary BCG delivery and found
that lung IL-17A is a central mediator of protection [30,37,38]. Similarly, in the current
study, it was observed that induction of Th1 cells did not correlate with protection, and
in fact, a reduced Th1 phenotype was observed in the protected animals (Figures 2 and 3).
This was replaced with a robust Th17 signature, with the cytokine expression profiles of all
vaccinated groups almost identical irrespective of the adjuvant used (Figure 2). The route
of delivery appears to be a major contributing factor to the observed immune signature
induced by CysVac2/Advax and other TB vaccines administered mucosally [25,32,37,39].
Previously, we have shown that intramuscular delivery of CysVac2/Advax generates mul-
tifunctional CD4+ T cells expressing IFN-γ, TNF and IL-2 but IT administration instead
promotes a lung-local Th17 signature [11,19]. It would be of interest to examine if the im-
mune signature we have identified here correlates with protective efficacy after parenteral
vaccination, or if it is specific to pulmonary vaccine models.

In this study, IFN-γ expression by CD4+ T cells from the blood or in the lungs after
challenge did not correlate with reduced lung bacterial burden (Figure 7). Recent studies
in mice have indicated that excessive Th1 polarisation may result in overly differentiated
T cells unable to efficiently migrate to the parenchyma of the lungs, thus hindering effective
immune memory responses [40,41]. Th17 cells, conversely, can become TRMs in the lungs
and enhance the early recruitment of Th1 cells into the tissue [33,42]. In this study, robust
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expression of the master regulator of Th17 cells, RorγT, was observed in lung CD4+ T cells
in all IT immunised mice (Figure 3). Additionally, distinct RorγT expression was present in
a subset of CD8+ T cells in the lungs of CysVac2/Advax-immunised animals after challenge,
which was not present in any other study group (Figure 3). These cells could be Tc17 cells or
MAIT cells; this experiment did not include the required markers to distinguish the two cell
types, and the cytokine expression patterns of Tc17 and MAIT cells are very similar [43,44].

A notable finding from immune phenotyping was the relative enrichment of mono-
cytes, cDC2 cells and CD64+ macrophages in the lungs of PBS control mice that were
challenged with M. tuberculosis compared to vaccinated animals (Figure 5). While some
monocytes can destroy M. tuberculosis, others are permissive to infection and may act as
a niche for bacterial replication [45]. Thus, it is possible that high M. tuberculosis bacte-
rial loads may recruit macrophages to the lungs that are less capable of controlling the
infection; one study found that circulating monocytes isolated from TB patients were less
capable of differentiating into DCs and stimulating T cell responses [46]. Another study ob-
served that M. tuberculosis infection was able to inhibit antigen presentation to CD4+ T cells
in myeloid DCs, despite high expression of MHC-II and costimulatory factors in these
cells [47]. Given the broad heterogeneity of monocytes and myeloid DCs during infection
and inflammation, it would be of interest in future studies to explore the functional capacity
of the monocytes recruited to the lungs of vaccinated versus unvaccinated animals during
M. tuberculosis infection.

Interestingly, despite very similar T cell polarisation to the other two vaccine groups,
CysVac2/AlumMPLAlow was not protective in the lungs (Figure 2). Lower cytokine
expression of CD4+ T cells in the lungs of CysVac2/AlumMPLAlow-immunised mice was
observed, but the magnitude of cytokine responses does not necessarily correlate with
protection against M. tuberculosis infection [48,49]. Notably, IL-2 and TNF expression by
CD4+ T cells in the lungs of CysVac2/AlumMPLAlow-immunised mice was not increased
compared to PBS control mice. IL-2-expressing CD4+ T cells have been proposed as
crucial effector cells in the pulmonary anti-M. tuberculosis response [48,50]. It would be of
interest in future studies to further dissect the differences between the low- and high-dose
CysVac2/AlumMPLA vaccine groups that may shed light on the immune requirements
for protection.

T cells are essential for the control of mycobacterial infection, and in line with this,
a prominent CD4+ T cell signature was observed in the vaccinated mice compared to
PBS control mice (Figure 6). Despite their importance in controlling mycobacterial infec-
tions, IFN-γ or TNF expression by lung CD4+ T cells after challenge did not correlate with
protective efficacy (Figure 7). Antigen-specific CD4+ T cells in the circulation also did
not correlate with reduced bacterial burden; Darrah et al. also observed that pulmonary
immune readouts in rhesus macaques were more predictive of protection than those of
the blood [14]. In contrast, CD4+ T cells expressing IL-17A, IL-2 or RorγT or co-expressing
IL-17A, IL-2 and TNF in the lungs all significantly correlated with reduced bacterial burden
and circulating CD4+ T cells expressing IL-17A showed a trending correlation. The presence
of B cells and CD8+ cells expressing RorγT in the lungs also significantly correlated with re-
duced bacterial burden, perhaps reflective of the initiation of inducible bronchus-associated
lymphoid tissue formation and possible recruitment of Tc17 or MAIT cells, shown in
previous studies to be activated after intrapulmonary or IV immunisation [11,13,51,52].
Recent rhesus macaque studies demonstrated IV administration of BCG led to sterilising
protection in some animals [13,14]. Analysis of these studies showed that in protected
animals, there were increased numbers of antigen-specific T cells in the broncho-alveolar
lavage. In particular, the study of Dijkman et al. showed that lung polyfunctional Th17 cells,
IL-10 and IgA correlated with protective efficacy after pulmonary BCG immunisation in
NHPs [30].

Altogether, these data demonstrate the importance of generating immune memory at
the site of infection and support the progression of intrapulmonary TB vaccine candidates.
Despite using adjuvants with diverse proposed mechanisms of action, an almost identical
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circulating immune phenotype following IT vaccination and a highly similar response in the
lungs was observed after M. tuberculosis challenge. This phenotype was highly divergent
from that of unvaccinated mice, and correlations analysis corroborated a CoP for TB: the
presence of pulmonary polyfunctional antigen-specific CD4+ T cells expressing IL-17A. In
total, this study supports the progression of pulmonary subunit vaccines, particularly those
adjuvanted with Advax or alum/MPLA, to clinical trials.

5. Conclusions

In conclusion, these data demonstrate the efficacy of IT vaccination with CysVac2 vaccines
adjuvanted with Advax or alum/MPLAhigh in a mouse model of M. tuberculosis infection.
In addition, this study supports the characterisation of antigen-specific Th17 cells in the
lungs as a potential novel CoP for M. tuberculosis infection. Finally, this study highlights
the importance of measuring mucosal immune responses to vaccination in the pursuit of
novel CoP against M. tuberculosis.
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mLN post-infection with M. tuberculosis.; Table S1: Monoclonal antibodies used for flow cytometry.
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