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Abstract: Citizens in urban areas are affected by the urban heat island (UHI) effect, resulting
in increased thermal heat compared to rural areas. This threat is exacerbated by global climate
change. Therefore, it is necessary to assess human thermal comfort and risk for decision making.
This is important for planners (climate resilience), the health sector (information for vulnerable
people), tourism, urban designers (aesthetics), and building architects. Urban structures modify local
meteorological parameters and thus human thermal comfort at the microscale. Knowledge of the
pattern of a city’s UHI is typically limited. Based on previous research, generalized additive models
(GAMs) were built to predict the spatial pattern of the UHI in the city of Karlsruhe. The models were
trained with administrative, remotely sensed, and land use and land cover geodata, and validated
with measurements in Freiburg. This identified the hot and cold spots and the need for further urban
planning in the city. The model had some limitations regarding water bodies and anthropogenic heat
production, but it was well suited for applications in mid-latitude cities which are not topographically
characterized. The model can potentially be used for other cities (e.g., in heat health action plans) as
the training data are freely available.

Keywords: urban heat island; generalized additive model; normalized air temperature; thermal
comfort; bioclimate

1. Introduction

By 2050, 6.7 billion people (68 % of the world’s population) will live in cities [1]. Urban
environments, determined by climatic effects from the prevailing mesoscale down to the
microscale, affect the urban quality of life. This mainly refers to the urban bioclimate, air
quality, traffic, and noise pollution in street canyons at the microscale [2–4]. Therefore, the
bioclimate, and hence human thermal comfort, is severely threatened by the urban heat
island (UHI) effect, global climate change, increasing heat waves and heat events, further
sealing, and the densification of urban areas [5,6]. In order to make appropriate decisions, it
is essential to obtain detailed information on the spatial pattern of the UHI to identify areas
where action is needed. Detailed information should be used for climate-adapted resilient
urban planning to cover nature-based as well as artificial solutions for heat mitigation
(e.g., unsealing, green facades, green roofs, white roofs, PV-equipped roofs, new unsealed
surfaces, cool shelters, cool fountains, the optimization of street configurations and parks,
etc.) [7–11].

Many studies have focused on the quantification of the UHI effect by remote sensing
analyses, particularly on the evaluation of the land surface temperature (LST). Unfortu-
nately, these methods themselves are insufficient for human-biometeorological purposes.
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The spatial and temporal resolution of satellite imagery is usually insufficient for the micro-
scale analyses of urban areas (e.g., 30 m resolution of Landsat 7 and 8 and 20 m resolution
of Sentinel-2 for the assessment of infrared) [12,13]. The temporal resolution is restricted to
the overpass time of the spaceborne platform and the cloud cover of the surface; i.e., a full
assessment of the diurnal cycle of the surface UHI (S-UHI) is not possible [13]. The energy
conversions on the vertical surfaces or facades are angular in function of the surface’s
position with regard to the sun and towards the sensor, and thus it cannot be fully captured
by remote sensing instruments due to effective anisotropy [14]. For example, off-nadir
observations were up to 3.5 K cooler on average than nadir LST, as shown in a case study
by [15]. In addition, the complexity of the human thermal bioclimate cannot be reduced
to the assessment of the land surface temperature, but requires the assessment of all at-
mospheric conditions (air temperature, relative humidity or vapor pressure, wind speed,
and long- and shortwave radiation in terms of mean radiant temperature) and human
thermoregulation (based on the parameters of the human body) in urban environments
[16]. At the same time, it is not possible to directly measure air temperature or humidity by
space-borne remote sensing platforms, but it is possible to measure LST resulting in S-UHI
in urban environments [17]. To overcome this limitation, attempts were made to determine
the statistical correlation between LST and near-surface air temperature (Ta) [18]. Correla-
tions were found on a regional or global scale (1–2 km), especially under cloudy conditions,
which are not present during extreme heat events. In a complex urban environment, at the
microscale, this is even more challenging, as horizontal surfaces are mostly observed by
satellites, but the global radiation is trapped in vertical three-dimensional street canyons in
particular. At the same time, surface properties (albedo and emissivity) vary greatly in a
city and lead to a modified energy balance and surface temperatures. In order to determine
the air temperature in the urban canopy layer (UCL), further analyses were carried out
based on LST by Moderate Resolution Imaging Spectroradiometer (MODIS) installed on
the Terra and Aqua satellites [19]. These approaches were supplemented by additional
information regarding the vegetation, water, and course of the sun (enhanced vegetation
index, normalized difference water index, solar zenith angle, and distance to coast) to
determine the mean Ta in Shanghai during the period 2000–2013 with an root mean square
error (RMSE) of 1.6–2.6 ◦C [20].

In situ observations, spatial surveys, traverses, long-term urban networks, and citizen
weather stations have been used by others, as opposed to remotely sensed measurements,
to determine the characteristics of the UHI or rather the urban heat archipelago based on
mobile air temperature measurements. Based on these measurements, statistical machine
learning (ML) approaches have been used in the past to determine the UHI with high
spatial resolution over the entire study area [21–25]. In order to spatially analyze the urban
microclimate, at the very least, data on the land use, building morphology, and vegetation
are mandatory [12]. The combination of satellite data (LST from Sentinel-2 or Landsat 8) and
in situ measurements by a statistical model is not new either [26–28]. In those studies, the air
temperature observations from a citizen science-driven measurement campaign were used
to predict the UHI extremes using ML (random forest (RF)). The used algorithm was trained
with descriptors for land use and land cover (LULC), derived from the survey imagery.
Other authors also used RF and extreme gradient boosting to predict the UHI pattern
and trained the models based on multi-platform observations [29,30]. Crowd-sourced
data (e.g., Netatmo) were also used in other studies to obtain a comprehensive, urban-
wide dataset with further ML models (RF, gradient boosting, and model averaged neural
network) [31–33]. Gradient boosting was used to predict the maximum air temperature
at a spatial resolution of 1 km2 using urban wide LST, normalized difference vegetation
index (NDVI), digital elevation model (DEM), Julian day, and solar zenith angle [34]. In
addition to the aforementioned predictors, others used urban heatwave thermal index
(UHTI) maps based on LST, vegetation fraction cover (VFC), and sky view factor (SVF)
to predict the spatially resolved physiologically equivalent temperature (PET) at a 10 m
resolution [35,36]. They used linear regression to link LST, VFC, or SVF to air temperature.
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The calculation of PET was based on the combination of ENVI-met simulations and Bio-
met tool. However, it remains questionable whether LST, VFC, and NDVI can be used
simultaneously as predictors, as they are linearly dependent on each other, and whether
the respective relationship between LST, VFC, SVF, and Ta can be represented by single
linear regressions without interactions.

In this study, the intention was to spatially quantify the pattern of the UHI for the
whole city and throughout the day. The quantification was based on remotely sensed data, in
situ observations, and the administrative data of the municipality of Karlsruhe to describe
the microscale effects of the urban morphological surroundings on the normalized air
temperature in 2 m as well as on the bioclimate (Section 2). Urban morphology represents
the size, shape, and physical structure of a city [37] and can be studied from different
perspectives with different foci. The consideration of the urban morphology by means of
land use classification (e.g., Urban Atlas 2018 (UA 2018), local climate zones (LCZ), CORINE
land cover (CLC), and urban climate zones (UCZ)) provides a summarizing overview of
the distribution of urban, industrial, and green areas in a city [38–41]. Each type of land
use is characterized by a different degree of building development, sealing, and greening,
resulting in different (thermal) environments. Each environment, in turn, is characterized
by different resulting meteorological conditions depending on the energy balance of the
immediate surroundings, i.e., the thermal properties (heat storage capacity), radiative
properties (albedo, emissivity), and thus, sensible, latent, and radiative heat fluxes [42,43].
In order to evaluate the thermal effects of individual urban trees and buildings at the
microscale in an open system (such as the urban environment), it is not sufficient to only
consider land use, as the diversity (of buildings and trees) cannot be represented by these
classes. In particular, vertical surfaces cannot be resolved by these classes. The morphology
of the urban gray infrastructure can be defined by the arrangement of buildings, surface
materials, and the degree of sealing. The real estate cadasters of the city of Karlsruhe
contained information on spatially resolved 3D buildings in CityGML format. These data
provided additional detailed information on the density and heights of the buildings, which
were missing in the land use classes. The morphology of the urban green infrastructure
describes the allometry, species composition, and spatial arrangement of the vegetation in
the city. The cooling potential of green infrastructure depends on the allometric parameters
(crown dimension, tree height, and leaf area) as well as the density and composition of
different tree species in a group of trees [44,45]. The urban blue infrastructure includes all
water bodies (lakes and rivers) in the city. It is generally assumed that, depending on their
depth, these bodies of water have a cooling effect during the day and rather a warming
effect at night [46].

The spatial thermal impact of individual urban structures is initially unknown and
dependent on the dynamics of the urban atmosphere. Many models tried to reproduce
the dynamics with the help of computational fluid dynamics (CFD) [47–53]. For this study,
the assumption was made that there is no horizontal air mass exchange, so that the UHI
forms a typical spatial pattern. This assumption only holds for clear sky conditions, with
calm air and absent cloud formation. During the summer in Europe, when high-pressure
systems are generally present, the formation of a heatwave usually depends on the latitude
shift of the African anticyclone: hot air advection from lower latitudes causes descending
dry and warm air under clear skies. Clear skies allow for the radiative heating of the
underlying surfaces, which exchanges heat adiabatically with the overlying air. The normal
warming cycle becomes stagnated when slow-moving anticyclones stay for a long time and
extend the heating cycle (e.g., Omega Block). Throughout the modeling, it was assumed
that a spatial pattern of the UHI develops due to the calm wind (typical situation during a
heat event).

Mobile measurements were spatially and temporally aggregated and normalized to
detect air temperature anomalies along a spatial survey [54]. The data obtained were used
to build a generalized additive model (GAM) based on the representative descriptors of
the neighborhood. GAM was used because it is easy to use and provides accurate results
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[55]. Meanwhile, GAM utilizes machine learning approaches (fREML) for smoothing the
parameter estimation. The main advantage of GAMs is their flexibility in modeling complex
nonlinear relationships in the data. Unlike many other models, GAMs can capture the
nonlinear effects of variables without having to make specific assumptions about the shape
of these nonlinearities. This makes GAMs particularly well suited to datasets where the
relationship between variables is not simply linear. In addition, GAMs have also been
used more frequently in the environmental sector [56]. GAMs were also used for UHI
assessments, but only for time series and not in a spatial manner [57].

The representative descriptors were the proportions of UA 2018 classes, building
height, sealing, tree cover density (TCD), and NDVI in Karlsruhe. The models were then
used to predict the urban heat archipelago with a spatial resolution of 10 m for four time
intervals for the city of Karlsruhe. Furthermore, the derived models were then used to
address the research questions: How can spatial measurements be used to obtain a gener-
alized picture of the UHI. What is the effect of vegetation and sealing on the normalized
UHI. How can local observations, remote sensing, and administrative data be combined.
Finally, the model was applied to a second study area in Freiburg for validation and testing
purposes. The final test was based on new data (mobile MeteoBike data) that were com-
pletely independent of the training dataset, and showed that the model is transferable to
similar cities. The models were applied to Freiburg because this city is similar in size to
Karlsruhe and is located in proximity to Karlsruhe. In addition, both cities have similar
climatic characteristics, as they are both located in the Upper Rhine Rift Valley.

This research demonstrates the thermal risk of a city under local microscale conditions
due to green and gray infrastructure. The predicted maps showed areas with a need for
action for climate-adapted urban planning. At the same time, the developed models can be
part of a future heat health action plans (HHAPs) and thus contribute to the protection of
vulnerable groups in combination with other risk and protection factors.

2. Materials and Methods

In this study, the pre-processed and normalized observations of air temperature in
combination with the descriptors of urban morphology were used to build statistical
models which can predict the UHI for different time intervals. The derived models can
thus partially explain the observed normalized air temperature with the help of the urban
descriptors (Ta,norm ∼ NDVI + Sealing + Buildings + LULC + ...) without the impact of
the prevailing weather.

The data preparation process of the observations (Ta,norm) encompasses the normaliza-
tion of meteorological data to link urban morphology with meteorological data [54]. The
normalization procedure of the observations was necessary because the measurements
took place during different years under comparable conditions (Section 2.3).

The urban descriptors originate from various freely available sources (Copernicus
program, City Administration, OpenStreetMap, Landsat 8) and had to be homogenized
and processed for use in a GAM. As it was not initially clear which descriptors should be
used for the models to best predict the normalized air temperature and to avoid concurvity,
a principal component analysis was performed (Section 2.4).

The models were then trained based on the observed normalized air temperature and
the processed descriptors. Since all the descriptors of the models were available for the
entire study area (city of Karlsruhe), the constructed GAMs was able to predict the UHI
spatially throughout the whole urban area (Section 2.5).

Due to the large number of descriptors, numerous models were created, which were
filtered using statistical measures (Akaike information criterion (AIC) and Bayesian in-
formation criterion (BIC)) (Section 2.6).

To demonstrate the quality of the model, it was applied to a second study area (city
of Freiburg) at a comparable latitude (≈120 km distance). The trained model was applied
to new descriptors of the city of Freiburg, and the predicted UHI was compared with
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independent on-site measurements. This comparison was performed to demonstrate the
generalizability of the model and to show that the model is not overfitted (Section 2.7).

2.1. Study Area in Karlsruhe, Germany—Training Data to Build the Model

Karlsruhe is located in the Upper Rhine Rift Valley, one of the warmest regions in the
southwest of Germany (Figure 1).

Figure 1. Study area in Karlsruhe with the detailed locations of points of interest (POIs) like urban
parks, urban forests, water bodies, and industrial areas. These locations are required for later discus-
sion. Main basemap: TopPlusOpen © Federal Agency for Cartography and Geodesy (2023); Aside
basemap: made with Natural Earth.

The city center is located at 49.0◦ N and 8.4◦ E at an altitude of approximately 115 m
above the mean sea level. The regional climate of Baden-Württemberg is characterized by a
number of extreme meteorological events such as heat waves and heavy thunderstorms
due to its exposed location [58,59]. The Upper Rhine Rift Valley has specific climatic
conditions, such as high air temperatures and low wind speeds due to the wind shading
by the adjacent mountain ridges [60]. These result in warm and humid air and high solar
radiation combined with low wind speeds, reflecting the Köppen–Geiger class Cfb for a
warm temperate climate [61]. In 2019, 312,060 inhabitants lived in an area of 173.5 km2

(1798 inhabitants/km2) in Karlsruhe [62]. In 2003, the German air temperature record of
40.2 ◦C, valid until 2015, was recorded at the meteorological station in Karlsruhe. Also,
in terms of global climate change, air temperature, summer days, hot days, and tropical
nights (under RCP2.6-RCP8.5) are expected to increase by the end of the 21st century [63].

2.2. Study Area in Freiburg, Germany—Test Data to Validate the Model

The city of Freiburg is located in southwestern Germany at 47.6◦ N, 7.5◦ E in the Upper
Rhine Rift Valley (Figure 2).

With approximately 230,000 inhabitants (as of 2021) and an area of 153.4 km2, it is
the third-largest city in the federal state of Baden-Württemberg following Stuttgart and
Karlsruhe [64]. The city is located at 278 m above the mean sea level. The annual average
air temperature is 11.5 ◦C and the average precipitation is 934.0 mm [65,66]. To the east of
the city center, there is the Schlossberg, a tree-covered hill. In addition, the Dreisam river
flows through the city from the southeast of the city center to the northwest end of the city.
In terms of parks, Freiburg has several smaller parks in the city center, but two larger green
areas are the Hauptfriedhof (main cemetery) in the northern part of the city and the Seepark
in the northwest of Freiburg, which also includes a lake. A special feature of Freiburg is
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the Höllentäler, a mountain–valley wind system that occurs at night and brings cooler air
from the east into the city [67]. This wind occurs at night and comes from the Dreisam
valley in the east of the city and ventilates the city center. For this analysis, this study was
limited to the city center, the city districts of Freiburg, and the adjacent areas such as open
fields and forests. The total study area is 41.7 km2. The air temperature, summer days, hot
days, and tropical nights are expected to increase by the end of the 21st century (under
RCP2.6-RCP8.5) [68].

For the later comparison of the model forecast, mobile measurement data from
Freiburg were used. These measurement data were collected with the MeteoBike system
and then spatially interpolated and aggregated over several days (Figure 3) [69].

Figure 2. Study area in Freiburg, Germany, to test and validate the model. Additional landmarks are
shown for later discussion. Main basemap: TopPlusOpen © Federal Agency for Cartography and
Geodesy (2023), Aside basemap: made with Natural Earth.

Figure 3. Normalized UHI in Freiburg based on the inverse distance weighting (IDW) interpolation
of MeteoBike measurements. This is considered and treated as a ground truth in the subsequent
analyses. Basemap: TopPlusOpen © Federal Agency for Cartography and Geodesy (2023).
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2.3. Processing of Normalized Observational Data from Spatial Neighborhood Analysis for
Modeling

In the years 2019 and 2020, 52 measurement runs were spread over two routes with
an average duration of 20 min in Karlsruhe (Figure 4) [54]. All measurement runs in 2019
and 2020 took place in June, with calm wind and no clouds on hot summer days. The
measuring instruments used rehearsed the route at 1 Hz resulting in different densities of
the observations due to different driving speeds. Descriptive statistics for the observations
of the air temperature in 2 m are given in Tables 1 and 2 for the years 2019 and 2020,
respectively.

Figure 4. Measurement routes in Karlsruhe. Route 1 (red) covers the area from the city center to
Karlsruhe Durlach. Route 2 (blue) starts in the city center and goes to Rheinstetten. Both routes have
the same starting point and cover urban and rural areas. Basemap: TopPlusOpen © Federal Agency
for Cartography and Geodesy (2023).

Table 1. Descriptive statistics for the observations of air temperature in 2 m AGL in Karlsruhe in 2019.

Time (LT) Time (UTC) Min (°C) Mean (°C) Max (°C)

0–6 22–4 13.9 18.3 22.0

6–12 4–10 19.5 23.3 28.7

12–18 10–16 26.3 29.4 33.1

18–24 16–22 18.9 25.1 29.3

Table 2. Descriptive statistics for the observations of air temperature in 2 m AGL in Karlsruhe in 2020.

Time (LT) Time (UTC) Min (°C) Mean (°C) Max (°C)

0–6 22–4 12.3 17.8 21.7

6–12 4–10 19.4 23.7 27.6

12–18 10–16 26.4 28.5 31.3

18–24 16–22 17.2 24.4 29.5

The mobile data from the measurement runs (pobs) were each initially filtered, and
then related to the nearest official meteorological station (pstation) (Equation (1)), min–max
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normalized (Equation (2)), and spatially aggregated to create one standardized dataset
for each of four time intervals (00:00–06:00; 06:00–12:00; 12:00–18:00; 18:00–24:00 local time
(LT)). After this pre-processing, each of these four datasets consisted of 7597 data points
with a regular spacing of 5 m and included the normalized air temperature and further
urban covariates [54].

The pre-processing started with the filtering of outliers that were smaller or larger
than three times the standard deviation of the raw data. This was followed by filtering
according to the wind speed, whereby the observations were filtered out if the wind speed
of the nearest official meteorological station was <0.5 m s−1 or >3 m s−1.

prel = pobs − pstation [unit(pobs)] (1)

pnorm =
prel − min(prel)

max(prel)− min(prel)
[0, 1] (2)

The min–max normalization transformed each filtered measurement run from the
Celsius scale (◦C) to the dimensionless scale [0, 1]. As the measurement routes were driven
several times per time interval, several normalized datasets were available for each time
interval. The measurements were spatially referenced via Global Positioning System (GPS),
which meant that the measurement points of the individual measurement runs were not
congruent. The positioning in street canyons deviated on average by 9 m from the streets of
OpenStreetMap (OSM). To obtain a uniform dataset, the normalized measurement runs
were spatially aggregated (mean and median) according to the OSM roads with 5 m spacing.
This spatial aggregation per time interval transferred the measurements from a temporal
resolution (1 Hz) to a spatial resolution (1 observation/5m). At the same time, the number
of measurement runs was reduced due to the aggregation, resulting in a total of four
normalized aggregated datasets from 52 measurement runs.

Technically, the software environment for statistical computations R version 4.2.0 and
the open source GIS systems System for Automated Geoscientific Analyses (SAGA) and
Quantum GIS-3.30 (QGIS) were applied for filtering, normalization, and spatial aggrega-
tion [70,71].

These pre-processed datasets are used in this study to train four different GAMs, one
per each time interval. The main idea of this study was to explain and model the observed
and normalized air temperature by the descriptors of the urban morphology.

2.4. Preparation and Pre-Processing of Descriptors for Modeling and Prediction

At the beginning of this study, many different descriptors were available to describe
the urban environment (administrative and remotely sensed). The predictors were classified
in the following tables for administrative geodata for the built-up environment (Table 3)
for UA 2018 classes for land use assessment (Table 4), as well as further remotely sensed
data covering vegetation and sealing (Table 5).

Table 3. List of available administrative geodata describing the built-up conditions. All datasets were
resampled to 10 m spatial resolution.

Name Description

Buildings_Official_Dens
Density of buildings within 25 m and within

0.1 km2 with a radius of 178 m—Buildings are
provided by the municipality

Buildings_OSM_Dens
Density of buildings within 25 m and within

0.1 km2 with a radius of 178 m—Buildings are
provided by OpenStreetMap

BuildingHeights_Official_Dens
Density of building heights within 25 m and

within 0.1 km2 with a radius of 178 m
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Table 4. List of selected and available Urban Atlas descriptors. Only the descriptors that occurred
along the original measurement route were selected [54]. The focus was placed in particular on areal
predictors (in contrast to streets). All descriptors were resampled to 10 m spatial resolution.

Name Description

UA2018_12100_Dens
Density of the industrial, commercial,

public, military, and private units
within 25 m and 0.1 km2

UA2018_14100_Dens
Density of the urban green space

within 25 m and 0.1 km2

UA2018_14200_Dens Density within 25 m and 0.1 km2

UA2018_21000_Dens
Density of the arable land (annual crop)

within 25 m and 0.1 km2

UA2018_31000_Dens
Density of the forests within

25 m and 0.1 km2

UA2018_50000_Dens
Density of water bodies within

25 m and 0.1 km2

UA2018_12210_Dens
Density of fast transit roads and

associated land within
25 m and 0.1 km2

UA2018_12230_Dens
Density of railways and associated

land within 25 m and 0.1 km2

Table 5. List of available remotely sensed descriptors.

Name Description Resolution

NDVI_MEDIAN_2020
Median NDVI derived from
Google Earth Engine by [72]

based on Landsat 8 data
15 m
(pan-sharpened)

IMD_2018_010m IMD by Copernicus program [38] 10 m

TCD_2018_010m TCD by Copernicus program [38] 10 m

The UA 2018 classes, the high-resolution layers for imperviousness density (IMD), and
TCD were provided by [38]. The official buildings (and their heights) originate from the
municipality of Karlsruhe, but additional buildings by OSM were also considered in the
model [73]. NDVI was calculated from Landsat 8 data based on the Google Earth Engine
script by [72]. The resulting NDVI originally had a resolution of 30 m but was sharpened
by PAN-sharpening to 15 m and later resampled to 10 m to align the spatial resolutions
of all descriptors. PAN-sharpening was performed with QGIS based on the NDVI output
of [72] and the gray bands of Landsat 8. A total of 53 gridded datasets for NDVI and LST
were calculated for the summer months from 1 June to 30 September during the period
2016–2020. The resulting gridded datasets were then aggregated (mean and median). NDVI
was then used to train the GAMs and LST was used for further validation (Figure A4).
The NDVI and LST maps were derived from Landsat 8 imagery with an overpass time of
12:20 LT.

In order to consider the spatial effect, the density of all descriptors was calculated
for radii of 25 m and 178 m (0.1 km2) by SAGA GIS-7.8.2 simple filter function [70]. The
densities were calculated to incorporate two different aspects in the subsequent model. On
the one hand, the distance to the urban structure (e.g., park, forest, or water body) should
be included. On the other hand, the quality and the size of the structure should be included
as well (e.g., small park vs. large park or area of dry grass vs. area of irrigated grass).
This was also the reason why the density for two radii was calculated – 25 m to assess the
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microscale effects; and 178 m to cover the mesoscale effects and to include the size of the
structure. Subsequent geoprocessing (cropping to the study area and resampling to 10 m)
was applied by QGIS [71]. All predictors were resampled to 10 m to obtain a uniform grid
and a comparable order of magnitude to the air temperature measurements. However, the
spatial resolution of some predictors was lower (Table 5) or not provided due to the vector
data format (Tables 3 and 4).

A selection of all descriptors was carried out in order to find the optimal GAM. The
requirements for the selection included that the predictors must be independent and
available for the whole study area. Principal component analysis (PCA) was applied to
the urban morphology descriptors to reduce the number of descriptors and to find the
most important principal components (PCs). Later on, the PCs were used to train different
GAMs. The whole process is shown in Figure 5.

Figure 5. Pipeline for the model generation: the path for model training is illustrated in green; the
path for prediction in red. Both paths are involved in the PCA. The GAM is not directly trained by
the descriptors (Tables 3–5), but rather based on the PCs of the preceding PCA.

The descriptors of the lists (Tables 3 and 4) were applied to the PCA. The PCA resulted
in five main PCs describing the thermal regime of the urban environment. The PCA was
used to improve the quality of the later model and to reduce intercorrelation among the
descriptors.

2.5. Spatial Neighborhood Modeling with Generalized Additive Models

The processed, observed data were related to the neighborhood’s descriptors using
GAMs. Compared to a normal linear model (e.g., generalized linear model (GLM)), a GAM
replaces the assumption of linearity with a sum of smooth continuous functions for each
descriptor [55] (Equation (3)):

g(E(Y)) = β0 + f1(x1) + f2(x2) + ... + fm(xm), (3)

A model (mgcv :: bam) was built for each time period (0–6, 6–12, 12–18, and 18–24 LT)
and applied to both study areas. The models were trained based on mobile observations,
and spatially predicted the UHI. This definition of the model represents the main idea of
this study. The computations were conducted with mgcv :: bam instead of mgcv :: gam to allow
for the fast parallel computation on the HPC. Each model related the normalized Ta at 2 m
to the descriptors of the neighborhood (in terms of PCs) which correspond to the predictors
of the model (Listing 1). The PCs were linked as thin-plate splines with shrinkage (" ts ").
The initial basis of each spline was set to k <− 128 , but due to automatic shrinkage, all
splines shrunk.

The models were used to predict the normalized Ta at 2 m for the entire study area of
Karlsruhe and Freiburg, as all predictors were spatially available. One model was built for
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Listing 1. GAMs linking normalized Ta at 2 m and PCs to describe the adjacent neighborhood. The
models were trained based on mobile observations, and spatially predicted the UHI. This definition
of the model represents the main idea of this study.

1 k <− 128
2 # thin plate spline with shrinkage
3 basis <− " ts "
4 selection <− TRUE
5 gamModel <− mgcv :: bam( formula = Ta_Norm ~
6 # smooth term for each principal component
7 s (PC1, k = k , bs = basis ) + s (PC2, k = k , bs = basis ) +
8 s (PC3, k = k , bs = basis ) + s (PC4, k = k , bs = basis ) +
9 s (PC5, k = k , bs = basis ) ,

10 data = trainSet , family = gaussian () , method = "fREML",
11 select = selection , gamma = 1.4, scale = 1, control = ctrl , cluster = cl ,
12 discrete = TRUE, nthreads = 31)

each time period and applied separately for each prediction. Each model was constructed
with the aid of R-4.2.0 and the mgcv package in particular [74].

2.6. Model Selection

The AIC and the BIC were used to select and quantify the quality of each model. The
AIC was calculated according to the following Equation (4).

AIC = 2 · k − 2 · ln(L̂), (4)

ln(L̂) represents the natural logarithm of the maximum likelihood estimate of the
model and k is the number of estimated parameters in the model. AIC rates models with
lower values as better. It combines the goodness of fit of the model (through the first term)
with a penalty term for model complexity (through the second term). By adding 2 · k to the
first term, the number of parameters in the model is taken into account. The model with
the lowest AIC value was selected.

In addition, BIC was applied to the model to obtain a simple model with a small
number of descriptors to reduce the overfitting of the model (Equation (5)).

BIC = k · ln(n)− 2 · ln(L̂), (5)

In addition to the number of parameters (k), BIC also takes into account the number
of observations (n) and, just like the AIC, the natural logarithm of the maximum likelihood
estimate of the model (ln L̂).

2.7. Validation and Application in Freiburg, Germany

In addition to Karlsruhe, the model was applied to the city of Freiburg. The result was
then statistically compared with separate observations. The prediction of the model was
compared with the spatial interpolation of mobile measurements which were observed
in Freiburg during autochthonous weather conditions. The spatial interpolation was per-
formed using IDW, nearest neighbor (NN), and Kriging methods. IDW gave the best results
and was used for further comparison with the GAM. Unfortunately, the comparison of the
GAM with the measured data can only be carried out for the period of 18:00–24:00 because
the measurements in Freiburg only covered this time period. However, this was also the
time when the UHI was most pronounced (Table 6).
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Table 6. List of quality measures for all generated GAMs. Coefficient of determination (R2) is related
to the model output and the original observations. The quality of the models was best during the
night, and worst during the day.

Time Interval of
GAM (LT) AIC BIC R2

00:00–06:00 −12,361 −12,314 75.9 %
06:00–12:00 −6607 −6564 37.7 %
12:00–18:00 −8013 −7960 17.4 %
18:00–24:00 −13,380 −13,355 76.5 %

The following error measures were used:

• Mean error
The mean error (ME) measures the error between the modeled and the observed value
[75]. The following equation was applied:

ME =
1
N

N

∑
i=1

(Si − Oi) (6)

with N being the number of observations, Si being the modeled value, and Oi being
the observed value.

• Root mean square error
The RMSE is a measure of accuracy and gives the standard deviation of the model
prediction error. This indicates how concentrated the samples are around the best-fitted
curve [75]. Smaller values indicate a better model performance.
The following equation was applied:

RMSE =

√√√√ 1
N

N

∑
i=1

(Si − Oi)2 (7)

with N being the number of observations, Si being the modeled value, and Oi being
the observed value.

• Percent bias
The average tendency of the modeled values to be larger or smaller than the measured
values is given by the percent bias (PBIAS). Negative values indicate an underestima-
tion bias, positive values indicate an overestimation bias [75]. The bias is expressed in
percentage and calculated using the following formula:

PBIAS = 100.0 ·

N
∑

i=1
(Si − Oi)

N
∑

i=1
Oi

(8)

with N being the number of observations, Si being the modeled value, and Oi being
the observed value.

In addition to the comparison with another independent model domain, it is also
useful to compare the modeled spatial pattern of the normalized UHI (based on Ta) with the
spatial pattern of the LST. For this purpose, the mean intensity of the S-UHI was calculated
for Karlsruhe based on the Google Earth Engine Script by [72]. The script was first used to
calculate 53 raster datasets of LST for the summer months of 1 June to 30 September for the
years 2016–2020. The satellite images were automatically selected by the script according to
cloud cover. Finally, the 53 raster datasets were aggregated with QGIS (mean and median).
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3. Results
3.1. Spatial Prediction of the Urban Heat Island on the Normalized Scale

The spatial UHI pattern of Karlsruhe was predicted throughout the whole study area
based on different descriptors (Listing 1). The spatial prediction for the evening conditions
(18–24 LT) showed the spatial heterogeneity of the UHI due to the cooling effects of urban
vegetation and the heating effects of sealing (Figure 6).

The evening UHI effect was most pronounced and clearly observable. The map showed
the UHI on the normalized scale; the range of the data was transformed to min and max
of 0 and 1, respectively. The hot spots of the UHI were located in the city center (e.g.,
Marketplace and Palace) and the industrial area Grünwinkel in the western part of the city.
The cool spots of the city were located in the urban parks (e.g., Günther-Klotz-Anlage,
Zoologischer Stadtgarten, Alter Flugplatz, main cemetery and along Albbach River, while the
coldest area was found in the urban forest Hardtwald. The hot and cold spots were caused
due to the cooling effects of urban vegetation and the heating effects caused by sealed
surfaces. Besides Karlsruhe, one could also observe that the smaller towns and villages
around Karlsruhe formed their own small UHI.

Figure 6. Spatial prediction of the UHI in Karlsruhe. The UHI is depicted as normalized Ta (at 2 m)
between 18:00 and 24:00 LT. Cooling was particularly observed in the northern areas of the Hardtwald
and in the urban parks (e.g., Zoologischer Stadtgarten, Günther-Klotz-Anlage, main cemetery, and Alter
Flugplatz). Basemap: TopPlusOpen © Federal Agency for Cartography and Geodesy (2023).

The results for the morning and midday conditions are shown in Figures A1–A3.
In Figure A1, the impact of urban vegetation is limited due to limited global radiation. With
increasing global radiation, the radiation related processes within the city are intensifying.
The cooling effect of water bodies, as well as transpirational cooling, is especially evident
in Figure A2.

The proposed model for the evening condition was the best among the others. The
model for the afternoon prediction had the worst performance and accuracy in terms of
AIC, BIC and R2 (Table 6). The structure of the UHI pattern was not observed, as no
difference between urban and rural areas was visible in the afternoon. But the cooling effect
by water bodies was distinctive (Figure A3).

Smaller AIC and BIC indicate better models with fewer parameters and improved
generalizability, while higher values of R2 indicate better models with an improved predic-
tion accuracy. Additional information on the individual models regarding F-statistics are
listed in Tables A1–A4.
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It appeared that the influence of urban parks (e.g., Günther-Klotz-Anlage, Zoologischer
Stadtgarten, Hardtwald) had different effects on the normalized air temperature during the
day. The impact was enforced during the day, while it was almost absent during the night
after midnight. In any case, the maps showed the importance of urban green spaces and
urban forests in reducing the thermal load in inner-city areas. On the other hand, it can
be seen that completely sealed areas (e.g., Industrial area Grünwinkel and Industrial area
Oststadt—without green roofs) heated up the most and also contributed the most to the
formation of the UHI.

3.2. Validation and Error of the Model Output

The developed models were applied to a second study area as described in Section 2
to prove and demonstrate the generalizability and transferability of the model. The pre-
diction for the city of Freiburg showed a reasonable typical formation of the UHI with hot
spots in the core of the city and in the industrial areas in the southwest and northeast of
Freiburg (Figure 7).

Figure 7. The application of the GAM for Freiburg resulted in the predicted and normalized UHI
at 2 m throughout the second study area. Multiple hotspots were observed in industrial areas (e.g.
Gewerbegebiet Haid and Industriegebiet Nord) as well as in the city center. Basemap: TopPlusOpen ©
Federal Agency for Cartography and Geodesy (2023).

The cold spots, according to the model, were areas with urban green space and areas
in the outskirts of the city. In particular, these were the main cemetery (Hauptfriedhof ), local
recreation areas (Seepark), and allotment gardens. Multiple hot spots were observed in
industrial areas (e.g., Gewerbegebiet Haid and Industriegebiet Nord) as well as in the city center.
The pattern also included a gradient from the city center to the rural areas.

The spatial differences between the model output for 18:00–24:00 LT and the reference
dataset differed especially in terms of the topographically characterized regions (Schlossberg)
as well as in the areas with flowing water and water bodies (Dreisam River) (Figure 8).

The spatial model output for the other time periods is shown in Figures A5–A7. The
cooling effect by urban parks during the night (Figure A5) was limited in comparison to
daytime predictions (Figure A7). In contrast to nighttime conditions, the cooling effect
by urban parks (e.g., in main cemetery, Seepark, and Dietenbachpark) was observed in the
morning hours (Figure A6). The main hot spot was located in the industrial area in the
north. The model for the daytime prediction had the worst performance and accuracy
(Figure A7). The structure of the UHI pattern was mainly modified by water bodies and
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buildings. The cooling effect by urban parks was reinforced in comparison to the nighttime
conditions.

The statistical validation could only be performed for the time period 18:00–24:00 LT
because the mobile measurement data from MeteoBikes in Freiburg were only available
for this time period. Based on the prediction of the GAMs and the interpolated mobile
measurements, the quality measures (ME, RMSE and PBIAS) were calculated for the
evening conditions (18:00–22:00 LT) (Table 7).

Figure 8. Comparison of the GAM and mobile measurements in Freiburg. The difference is calculated
between the GAM model and the observations for the time interval between 18:00 and 24:00 LT.
Positive values (green) occur in areas with a predicted normalized Ta greater than the observed Ta.
Negative values (pink) are observed in areas where the observed and normalized Ta is greater than
the predicted one. Basemap: TopPlusOpen © Federal Agency for Cartography and Geodesy (2023).

Table 7. List of error measures for the prediction of the evening conditions, including ME, RMSE,
and PBIAS. All measures compared the model output (Figure 7) with the interpolated observations
(Figure 3).

ME RMSE PBIAS R2

0.03 0.12 4.6 % 69.0 %

The link between the GAM output of the evening condition in relation to the observa-
tions in Freiburg are depicted in Figure 9.

The point cloud of this linear regression was based on both raster datasets (each point
represents one pixel of the model and the observation). The model and the observations
were highly linearly correlated, with a coefficient of determination of 0.69. In addition,
it was observed that the model and observations agreed the best for higher values and
differed for lower values. This means that the model performed better in urban than rural
areas. At the same time, this also showed the heteroscedasticity (the heterogenicity of the
variance) in the data, which should be further investigated in the future.

In addition to applying the model to another model area, the modeled normalized
UHI (based on Ta) can be compared with the observed S-UHI in Karlsruhe (Figure A4).
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Figure 9. Linear regression analysis showed the correlation between the observed and modeled
values of the normalized Ta at 2 m in Freiburg. The data points refer to the period 18:00–24:00 LT. The
red and green lines correspond to the linear regression and identity line, respectively.

4. Discussion

The model has some limitations regarding the missing coverage of specific land covers.
For example, the model was not explicitly trained on water bodies. Furthermore, the model
was not trained on regions with distinctive elevation and underlying local meteorological
effects (sea breeze, mountain breeze and valley breeze, cold airflow). Data on the anthro-
pogenic heat release and soil moisture were also not incorporated and were therefore not
considered. But, in comparison with interpolated, mobile measurements in Freiburg, it
was shown that the model is suitable for predicting the normalized pattern of the UHI
for comparable mid-latitude cities. The output is static and independent of the prevailing
weather and local spatial influences, and yet the model can provide valuable information
for long-term urban planning. This is particularly evident in the visual comparison of the
modeled UHI with the observed S-UHI from remotely sensed LST-data (Figures 6 and A4).

It is based on GAMs, while others have applied various statistical or ML algorithms
(e.g., RandomForest or Tensorflow) [27]. In the future, new methods such as NN can be
considered [76]. However, this may require additional measurement runs and data.

The model is not yet sufficient for human-biometeorological analyses, as information
on the radiation budget, humidity, wind speed, and win direction are missing. In the
future, the model could perhaps be compared directly with a PET—which would have to
be derived from the aforementioned variables [77,78]. Unfortunately, wind speed was not
available from the mobile measurements. The mobile measurements of wind speed are, in
general, quite difficult to obtain, because of the turbulence caused by the surroundings and
different driving speeds of the car in the city [79].

Determining the radiation budget poses also a challenge, since shading depends on
small-scale structures. For example, the choice of the roadway during mobile measurements
influenced the observation of global radiation due to shading. Cooling by transpiration and
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shading is related to global radiation, in particular to photosynthetically active radiation
(PAR). PAR is absent during the night, resulting in the limited stomatal conductance of the
leaves [80]. Therefore, cooling by transpiration cannot be observed because transpiration is
limited by closed stomata [44,81]. Cooling by shading was also absent due to the absence
of global radiation. At night, cooling mainly occurs due to the emission of longwave
(thermal) radiation from black (or better gray) bodies with prevailing surface temperature.
Alternatively, the SVF could be included in the model as an additional descriptor. SVF is a
metric used to quantify the proportion of visible sky from a point on the ground. It provides
information about the openness and visibility of the sky in the urban environment. SVF can
be obtained from numerical models (e.g., SkyHelios or RayMan), and directly influences
PET because of mean radiant temperature (Tmrt) [82]. Unfortunately, the calculation of SVF
for the entire urban area was not possible either, as the model area was too large for this.
Furthermore, SVF can only be calculated for areas, for which the necessary morphological
data are available (e.g., which is possible for inner-city areas; but not for the Hardtwald),
which is why SVF was not added to the model as an additional descriptor. In addition, it was
also shown that Tmrt can also be assessed by deep convolutional encoder–decoder, without
the need to run computationally expensive models [83]. On the other hand, additional data
would be needed for the spatial, three-dimensional resolution of small-scale structures
within the city. For example, 3D light detecting and ranging (LIDAR) data could provide
additional information about individual tree canopies and surfaces as digital twins in
general [84–86].

Unfortunately, the comparison of the spatial interpolation of Freiburg with the pre-
diction for Freiburg was also subject to errors because the spatial IDW interpolation itself
contained errors. In particular, the spatial interpolation was based on measurements made
with a different measuring system (measurement cart of German meteorological service
(DWD) and MeteoBike). However, care was taken to ensure that the meteorological con-
ditions were similar (autochthonous weather conditions with a low wind speed), and the
goal was to model the physical quantity of air temperature at 2 m which should have the
identical or similar values regardless of the measurement system.

4.1. Missing Coverage of Specific Land Cover

The urban area of Karlsruhe is not strongly topographically shaped (unlike other cities
such as Freiburg or Stuttgart) [87,88]. A digital terrain model was integrated into the model,
but the combination of the elevation with the observations was not representative because
the variance of the altitude in Karlsruhe is not significant. Thus, the topography poses
a challenge to the model, which was particularly evident in the validation for Freiburg
(Figure 8). The largest errors were found for the topographically shaped Schlossberg (pink).
Since the topography is not very important for Karlsruhe itself, the model can still be ap-
plied to Karlsruhe, but has limitations and implications for topographic cities like Freiburg.
The same is true for water bodies in urban areas. The mobile measurements passed by
a quarry pond, but not directly along flowing water bodies such as the Rhine or the Alb.
This severely limits the significance of the model in the area of flowing waters, which was
also shown by the validation along the Dreisam River (green). Nevertheless, the thermal
effects of standing water on the urban atmosphere can be observed (Figures 7 and A5).
At night, lakes can be considered as heat sources, as has already been shown by other
authors [46,89]. However, the model could be improved by additional measurement runs
in topographically dominated areas or near rivers and lakes.

In addition to the aforementioned issues, the model heavily relies on the land use
classification of UA 2018. According to [90], the UA 2018 classification has better accuracy
than CLC and will therefore lead to more accurate results. The classification according to
UA 2018 in Karlsruhe and Freiburg was mostly correct, but some parts were misclassified,
which then led to inaccurate predictions by the model in these areas.
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4.2. Missing Data on Anthropogenic Heat Production and Soil Moisture

Furthermore, the model is missing data on soil moisture and water availability to urban
trees. Soil moisture has a large influence on the cooling potential through transpiration.
Moreover, these factors change throughout the year and especially during prolonged
periods of heat and drought.

Unfortunately, the anthropogenic heat production and emission from individual
transportation were also not available in sufficient resolution. With vehicle counts and
information on heat-emitting processes in the city, a more accurate map of the UHI in street
canyons, in residential areas, and in industrial areas could be obtained. There are some
datasets about anthropogenic heat production, but mainly at the city level [91]. Google
Environmental Insights Explorer also provides data on individual traffic, but also only at
the city level, with incoming and outgoing traffic and not within individual streets [92].

4.3. Concurvity Shows the Dependency of Various Predictors

Concurvity describes the interdependence of multiple descriptors to explain a target
variable. It cannot be completely avoided in the model, but has been reduced as much as
possible by selecting thin-plate splines with shrinkage and using the selection option in
the model. In addition, the descriptors were not directly applied to the GAM, but were
analyzed with the PCA as described in Section 2.4. If the concurvity is too severe, the model
would become numerically unstable. This was not the case with the presented models.

4.4. Applications and Implications of Spatial UHI Modeling in Resilient Urban Planning, Health
Sector, Tourism, and Architecture

The models can be used to assess the UHI with spatial and temporal resolution. In
particular, the hot spots in the city represent areas of increased thermal risk. The UHI alone,
however, is not sufficient to capture the thermal risk of the urban population. Rather, it is
necessary to combine the thermal component with the socioeconomic and infrastructural
factors (e.g., age structure, income and wealth, accessibility of urban green spaces, etc.).
With this knowledge, urban planners and decision makers can react appropriately and
implement local measures to mitigate the UHI. Climate-adapted urban planning increases
the quality of life in cities, improves people’s health and productivity, and is responsive
to people’s needs [2,93,94]. For example, during the coronavirus pandemic, the desire of
urban dwellers for urban green spaces was demonstrated [95]. Climate-adapted urban
planning means reducing sealing in the city, creating, maintaining, and where possible,
expanding urban green space (UGS). Permeable surfaces (permeable tiles) also contribute
to this, as do facade greening and green roofs [8,10,96–99]. It is particularly important to
implement the measures on a large scale to counteract the effects of sealing. In addition,
artificial measures should also be considered in places where nature-based solutions are
not possible (e.g., water fountains, sources of drinking water, white roofs, and shadow
casting infrastructure) [11,46,89]. This can also promote the well-being of people in areas
that are characterized by tourism (e.g., drinking water fountains near Karlsruhe Palace or
in Freiburg’s old town). Measures that can be controlled depending on the season (e.g., that
provide shade in summer and not in winter) would also be ideal. In addition to planning
measures, other acute heat protection measures relating to communication and behavioral
adaptation are also conceivable. As a result of adapted urban planning, the financial land
value of a city can also increase with the increasing UGS and a decline with a lack of UGS
[100,101]. If all these implications are addressed, then this also contributes to the objectives
of the Sendai Framework for Disaster Risk Reduction and the Sustainable Development
Goals for sustainable cities and communities [102,103].

5. Conclusions

The combination of official administrative geospatial data, remotely sensed data, and
in situ observations offer great potential to assess the spatial pattern of a city’s UHI or its
urban heat archipelago. The model has some limitations in topographically shaped regions,
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but this could be resolved in the future if the additional measurements and observations of
such regions are included in the model. Such data may already be available in scientific
data repositories (e.g., Zenodo), but are difficult to use due to different data structures
and formats. The derived GAM is generally applicable to cities of similar latitude and
character. The model is an additional tool for adapted urban planning and can contribute
to the improvement of climate resilience and improved urban planning. Furthermore, it is
fast and easy to use, but local conditions, e.g., local wind systems—such as Höllentäler in
Freiburg—cannot be resolved because it is a static and not process-based numerical model.
However, this was not the intention of the model, as it was mainly designed to analyze
the UHI pattern during autochthonous weather conditions with low wind speed. With
the help of the model, local microscale heat health warning systems could be developed
in the future that consider the local conditions of a city and the thermal risk of the urban
environment. In combination with the protective factors (e.g., accessibility of urban green
spaces, hospitals, pharmacies, and doctors), vulnerable people could be protected. If the
thermal risk (assessed as the UHI) in combination with protective factors is incorporated
into urban plans and strategies (HHAP and climate adaptation plans), this information and
the actions for UHI mitigation can also be implemented in practice and fulfill the objectives
of national and international strategies for UHI mitigation (e.g., Sendai Framework for
Disaster Risk Reduction and the Sustainable Development Goals for sustainable cities
and communities).
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Appendix A. Additional Results of the F-Statistic of the Trained Models

Table A1. Approximative significance of smooth terms for the time interval of 00:00–06:00 LT.

Smooth-Term k-Index χ2 p-Value

s(PC1) 0.80 189.7 < 2 × 10−16

s(PC2) 0.76 2.0 0.0877
s(PC3) 0.79 18.0 9.82 × 10−6

s(PC4) 0.78 2.0 0.0815
s(PC5) 0.81 20.1 2.2 × 10−6

Table A2. Approximative significance of smooth terms for the time interval of 06:00–12:00 LT.

Smooth-Term k-Index χ2 p-Value

s(PC1) 0.74 58.2 < 2 × 10−16

s(PC2) 0.76 7.1 0.0043
s(PC3) 0.83 3.2 0.0358
s(PC4) 0.79 5.9 0.0078
s(PC5) 0.77 31.3 < 2 × 10−16

Table A3. Approximative significance of smooth terms for the time interval of 12:00–18:00 LT.

Smooth-Term k-Index χ2 p-Value

s(PC1) 0.80 11.6 0.0070
s(PC2) 0.82 11.6 0.0003
s(PC3) 0.81 0.1 0.2752
s(PC4) 0.77 0.0 0.3753
s(PC5) 0.80 6.1 0.0066

Table A4. Approximative significance of smooth terms for the time interval 18:00–24:00 LT.

Smooth-Term k-Index χ2 p-Value

s(PC1) 0.80 215.0 < 2 × 10−16

s(PC2) 0.70 0.0 0.6450
s(PC3) 0.77 0.0 0.6610
s(PC4) 0.75 0.0 0.3590
s(PC5) 0.77 23.5 1.17 × 10−6
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Appendix B. Spatial Prediction of the UHI Pattern in Karlsruhe for Different
Time Intervals

Figure A1. Prediction of the UHI in Karlsruhe in the time between 00:00 and 06:00 LT. The predicted
UHI is similar to the time interval between 18:00 and 24:00 LT. The UHI was clearly observable,
but remains rather homogeneous. Basemap: TopPlusOpen © Federal Agency for Cartography and
Geodesy (2023).

Figure A2. Prediction of the UHI in Karlsruhe in the time between 06:00 and 12:00 LT. Basemap:
TopPlusOpen © Federal Agency for Cartography and Geodesy (2023).
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Figure A3. Prediction of the UHI in Karlsruhe in the time between 12:00 and 18:00 LT. Basemap:
TopPlusOpen © Federal Agency for Cartography and Geodesy (2023).

Appendix C. Mean Intensity of the S-UHI Pattern Based on LST in Karlsruhe

Figure A4. Mean intensity of the S-UHI pattern based on the aggregated LST maps in Karlsruhe.
Multiple LST maps between 2016 and 2020 of the summer time (1 June–30 September) were aggreg-
ated. The LST maps origin from Landsat 8 imagery with an overpass time of 12:20 LT. Basemap:
TopPlusOpen © Federal Agency for Cartography and Geodesy (2023).
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Appendix D. Spatial Prediction of the UHI Pattern in Freiburg for Different
Time Intervals

Figure A5. Prediction of the UHI in Freiburg in the time between 00:00 and 06:00 LT. The city center
with its old town marks the hotspot of the UHI, but the industrial areas were also warm. Basemap:
TopPlusOpen © Federal Agency for Cartography and Geodesy (2023).

Figure A6. Prediction of the UHI in Freiburg in the time between 06:00 and 12:00 LT. Basemap:
TopPlusOpen © Federal Agency for Cartography and Geodesy (2023).
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Figure A7. Prediction of the UHI in Freiburg in the time between 12:00 and 18:00 LT. Basemap:
TopPlusOpen © Federal Agency for Cartography and Geodesy (2023).

References
1. United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision;

United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2019.
2. Gehl, J. Cities for People; Island Press: Washington, DC, USA, 2010.
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8. Šenfeldr, M.; Maděra, P.; Kotásková, P.; Fialová, J.; Kundrata, M.; Rieger, V. The Green Roofs and Facades as a Tool of Climate
Cooling in the Urban Environment. In Management of Water Quality and Quantity; Zelenakova, M., Hlavínek, P., Negm, A.M., Eds.;
Springer International Publishing: Cham, Switzerland, 2020; pp. 39–75. https://doi.org/10.1007/978-3-030-18359-2_3.

9. Akbari, H.; Pomerantz, M.; Taha, H. Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas.
Sol. Energy 2001, 70, 295–310. https://doi.org/10.1016/S0038-092X(00)00089-X.

10. Eingrüber, N.; Domm, A.; Korres, W.; Löhnert, U.; Schneider, K. Climate change adaption potentials of unsealing strategies in
cities – An assessment during heat and drought events based on microclimatic simulations. In Proceedings of the EMS Anual
Meeting 2023, Bratislava, Slovakia, 3–8 September 2023. https://doi.org/10.5194/ems2023-525.

11. Wang, L.; Huang, M.; Li, D. Where Are White Roofs More Effective in Cooling the Surface? Geophys. Res. Lett. 2020,
47, e2020GL087853. https://doi.org/10.1029/2020GL087853.

12. Masson, V.; Heldens, W.; Bocher, E.; Bonhomme, M.; Bucher, B.; Burmeister, C.; de Munck, C.; Esch, T.; Hidalgo, J.; Kanani-Sühring,
F.; et al. City-descriptive input data for urban climate models: Model requirements, data sources and challenges. Urban Clim.
2020, 31, 100536. https://doi.org/10.1016/j.uclim.2019.100536.

13. Sobrino, J.; Oltra-Carrió, R.; Sòria, G.; Bianchi, R.; Paganini, M. Impact of spatial resolution and satellite overpass time on
evaluation of the surface urban heat island effects. Remote. Sens. Environ. 2012, 117, 50–56. https://doi.org/10.1016/j.rse.2011.04.
042.

14. Voogt, J.A.; Oke, T.R. Effects of urban surface geometry on remotely-sensed surface temperature. Int. J. Remote Sens. 1998,
19, 895–920. https://doi.org/10.1080/014311698215784.

15. Wang, D.; Chen, Y.; Hu, L.; Voogt, J.A.; He, X. Satellite-based daytime urban thermal anisotropy: A comparison of 25 global cities.
Remote. Sens. Environ. 2022, 283, 113312. https://doi.org/10.1016/j.rse.2022.113312.

https://doi.org/10.1016/j.cities.2016.05.016
https://doi.org/10.3390/atmos11121283
https://doi.org/10.1146/annurev-environ-012320-083623
https://doi.org/10.1177/09754253221083206
https://doi.org/10.1007/978-3-030-18359-2_3
https://doi.org/10.1016/S0038-092X(00)00089-X
https://doi.org/10.5194/ems2023-525
https://doi.org/10.1029/2020GL087853
https://doi.org/10.1016/j.uclim.2019.100536
https://doi.org/10.1016/j.rse.2011.04.042
https://doi.org/10.1016/j.rse.2011.04.042
https://doi.org/10.1080/014311698215784
https://doi.org/10.1016/j.rse.2022.113312


Atmosphere 2024, 15, 125 25 of 28

16. Parsons, K.C. Human Thermal Environments: The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort, and
Performance, 3rd ed.; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2014.

17. Voogt, J.; Oke, T. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. https://doi.org/10.1016/S0
034-4257(03)00079-8.

18. Gallo, K.; Hale, R.; Tarpley, D.; Yu, Y. Evaluation of the Relationship between Air and Land Surface Temperature under Clear-
and Cloudy-Sky Conditions. J. Appl. Meteorol. Climatol. 2011, 50, 767–775. https://doi.org/10.1175/2010JAMC2460.1.

19. Pichierri, M.; Bonafoni, S.; Biondi, R. Satellite air temperature estimation for monitoring the canopy layer heat island of Milan.
Remote Sens. Environ. 2012, 127, 130–138. https://doi.org/10.1016/j.rse.2012.08.025.

20. Huang, W.; Li, J.; Guo, Q.; Mansaray, L.; Li, X.; Huang, J. A Satellite-Derived Climatological Analysis of Urban Heat Island over
Shanghai during 2000–2013. Remote Sens. 2017, 9, 641. https://doi.org/10.3390/rs9070641.

21. Romero Rodríguez, L.; Sánchez Ramos, J.; Sánchez de la Flor, F.J.; Álvarez Domínguez, S. Analyzing the urban heat Island:
Comprehensive methodology for data gathering and optimal design of mobile transects. Sustain. Cities Soc. 2020, 55, 102027.
https://doi.org/10.1016/j.scs.2020.102027.

22. Kotharkar, R.; Surawar, M. Land Use, Land Cover, and Population Density Impact on the Formation of Canopy Urban
Heat Islands through Traverse Survey in the Nagpur Urban Area, India. J. Urban Plan. Dev. 2016, 142, 04015003. https:
//doi.org/10.1061/(ASCE)UP.1943-5444.0000277.

23. Saaroni, H.; Ben-Dor, E.; Bitan, A.; Potchter, O. Spatial distribution and microscale characteristics of the urban heat island in
Tel-Aviv, Israel. Landsc. Urban Plan. 2000, 48, 1–18. https://doi.org/10.1016/S0169-2046(99)00075-4.

24. Chandler, T.J. Temperature and Humidity Traverses across London. Weather 1962, 17, 235–242. https://doi.org/10.1002/j.1477-8
696.1962.tb05125.x.

25. Straub, A.; Berger, K.; Breitner, S.; Cyrys, J.; Geruschkat, U.; Jacobeit, J.; Kühlbach, B.; Kusch, T.; Philipp, A.; Schneider, A.; et al.
Statistical modelling of spatial patterns of the urban heat island intensity in the urban environment of Augsburg, Germany. Urban
Clim. 2019, 29, 100491. https://doi.org/10.1016/j.uclim.2019.100491.

26. Shandas, V.; Voelkel, J.; Williams, J.; Hoffman, J. Integrating Satellite and Ground Measurements for Predicting Locations of
Extreme Urban Heat. Climate 2019, 7, 5. https://doi.org/10.3390/cli7010005.

27. Voelkel, J.; Shandas, V. Towards Systematic Prediction of Urban Heat Islands: Grounding Measurements, Assessing Modeling
Techniques. Climate 2017, 5, 41. https://doi.org/10.3390/cli5020041.

28. Zumwald, M.; Knüsel, B.; Bresch, D.N.; Knutti, R. Mapping urban temperature using crowd-sensing data and machine learning.
Urban Clim. 2021, 35, 100739. https://doi.org/10.1016/j.uclim.2020.100739.

29. Zumwald, M.; Baumberger, C.; Bresch, D.N.; Knutti, R. Assessing the representational accuracy of data-driven models: The case
of the effect of urban green infrastructure on temperature. Environ. Model. Softw. 2021, 141, 105048. https://doi.org/10.1016/j.
envsoft.2021.105048.

30. Chen, S.; Yang, Y.; Deng, F.; Zhang, Y.; Liu, D.; Liu, C.; Gao, Z. A high-resolution monitoring approach of canopy urban heat
island using a random forest model and multi-platform observations. Atmos. Meas. Tech. 2022, 15, 735–756. https://doi.org/10.5
194/amt-15-735-2022.

31. Venter, Z.S.; Brousse, O.; Esau, I.; Meier, F. Hyperlocal mapping of urban air temperature using remote sensing and crowdsourced
weather data. Remote Sens. Environ. 2020, 242, 111791. https://doi.org/10.1016/j.rse.2020.111791.

32. Venter, Z.S.; Chakraborty, T.; Lee, X. Crowdsourced air temperatures contrast satellite measures of the urban heat island and its
mechanisms. Sci. Adv. 2021, 7, eabb9569. https://doi.org/10.1126/sciadv.abb9569.

33. Vulova, S.; Meier, F.; Fenner, D.; Nouri, H.; Kleinschmit, B. Summer Nights in Berlin, Germany: Modeling Air Temperature
Spatially With Remote Sensing, Crowdsourced Weather Data, and Machine Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens. 2020, 13, 5074–5087. https://doi.org/10.1109/JSTARS.2020.3019696.

34. Dos Santos, R.S. Estimating spatio-temporal air temperature in London (UK) using machine learning and earth observation
satellite data. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102066. https://doi.org/10.1016/j.jag.2020.102066.

35. Fiorillo, E.; Brilli, L.; Carotenuto, F.; Cremonini, L.; Gioli, B.; Giordano, T.; Nardino, M. Diurnal Outdoor Thermal Comfort
Mapping through Envi-Met Simulations, Remotely Sensed and In Situ Measurements. Atmosphere 2023, 14, 641. https://doi.org/
10.3390/atmos14040641.

36. Nardino, M.; Cremonini, L.; Crisci, A.; Georgiadis, T.; Guerri, G.; Morabito, M.; Fiorillo, E. Mapping daytime thermal patterns of
Bologna municipality (Italy) during a heatwave: A new methodology for cities adaptation to global climate change. Urban Clim.
2022, 46, 101317. https://doi.org/10.1016/j.uclim.2022.101317.

37. D’Acci, L. (Ed.) The Mathematics of Urban Morphology; Modeling and Simulation in Science, Engineering and Technology Series;
Springer International Publishing: Cham, Switzerland, 2019. https://doi.org/10.1007/978-3-030-12381-9.

38. European Environment Agency (EEA). Copernicus Land Monitoring Service 2018; European Environment Agency: Copenhagen,
Denmark, 2018.

39. Stewart, I.D.; Oke, T.R. Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900.
https://doi.org/10.1175/BAMS-D-11-00019.1.

40. Oke, T.R. Initial Guidance to Obtain Representative Meteorological Observations at Urban Sites; World Meteorological Organization:
Geneva, Switzerland, 2004.

https://doi.org/10.1016/S0034-4257(03)00079-8
https://doi.org/10.1016/S0034-4257(03)00079-8
https://doi.org/10.1175/2010JAMC2460.1
https://doi.org/10.1016/j.rse.2012.08.025
https://doi.org/10.3390/rs9070641
https://doi.org/10.1016/j.scs.2020.102027
https://doi.org/10.1061/(ASCE)UP.1943-5444.0000277
https://doi.org/10.1061/(ASCE)UP.1943-5444.0000277
https://doi.org/10.1016/S0169-2046(99)00075-4
https://doi.org/10.1002/j.1477-8696.1962.tb05125.x
https://doi.org/10.1002/j.1477-8696.1962.tb05125.x
https://doi.org/10.1016/j.uclim.2019.100491
https://doi.org/10.3390/cli7010005
https://doi.org/10.3390/cli5020041
https://doi.org/10.1016/j.uclim.2020.100739
https://doi.org/10.1016/j.envsoft.2021.105048
https://doi.org/10.1016/j.envsoft.2021.105048
https://doi.org/10.5194/amt-15-735-2022
https://doi.org/10.5194/amt-15-735-2022
https://doi.org/10.1016/j.rse.2020.111791
https://doi.org/10.1126/sciadv.abb9569
https://doi.org/10.1109/JSTARS.2020.3019696
https://doi.org/10.1016/j.jag.2020.102066
https://doi.org/10.3390/atmos14040641
https://doi.org/10.3390/atmos14040641
https://doi.org/10.1016/j.uclim.2022.101317
https://doi.org/10.1007/978-3-030-12381-9
https://doi.org/10.1175/BAMS-D-11-00019.1


Atmosphere 2024, 15, 125 26 of 28

41. Keil, M.; Kiefl, R.; Strunz, G. CORINE Land Cover 2000—European-Wide Harmonised Update of Land Use Data for Germany; DLR:
Wessling, Germany , 2005.

42. Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. https:
//doi.org/10.1017/9781139016476.

43. ASHRAE. 2017 ASHRAE Handbook: Fundamentals; ASHRAE: Peachtree Corners, GA, USA, 2017.
44. Jones, H.G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology, 3rd ed.; Cambridge University

Press: Cambridge, UK, 2013. https://doi.org/10.1017/CBO9780511845727.
45. Ferrini, F.; van den Bosch, C.; Fini, A. (Eds.) Routledge Handbook of Urban Forestry; Routledge/Taylor & Francis: London, UK; New

York, NY, USA, 2017.
46. Solcerova, A.; van de Ven, F.; van de Giesen, N. Nighttime Cooling of an Urban Pond. Front. Earth Sci. 2019, 7, 156. https:

//doi.org/10.3389/feart.2019.00156.
47. Toparlar, Y.; Blocken, B.; Maiheu, B.; van Heijst, G. A review on the CFD analysis of urban microclimate. Renew. Sustain. Energy

Rev. 2017, 80, 1613–1640. https://doi.org/10.1016/j.rser.2017.05.248.
48. Antoniou, N.; Montazeri, H.; Neophytou, M.; Blocken, B. CFD simulation of urban microclimate: Validation using high-resolution

field measurements. Sci. Total Environ. 2019, 695, 133743. https://doi.org/10.1016/j.scitotenv.2019.133743.
49. Buccolieri, R.; Hang, J. Recent Advances in Urban Ventilation Assessment and Flow Modelling. Atmosphere 2019, 10, 144.

https://doi.org/10.3390/atmos10030144.
50. Kang, G.; Kim, J.J.; Choi, W. Computational fluid dynamics simulation of tree effects on pedestrian wind comfort in an urban

area. Sustain. Cities Soc. 2020, 56, 102086. https://doi.org/10.1016/j.scs.2020.102086.
51. Lenz, S.; Schönherr, M.; Geier, M.; Krafczyk, M.; Pasquali, A.; Christen, A.; Giometto, M. Towards real-time simulation of turbulent

air flow over a resolved urban canopy using the cumulant lattice Boltzmann method on a GPGPU. J. Wind Eng. Ind. Aerodyn.
2019, 189, 151–162. https://doi.org/10.1016/j.jweia.2019.03.012.

52. Mortezazadeh, M.; Wang, L.L.; Albettar, M.; Yang, S. CityFFD – City fast fluid dynamics for urban microclimate simulations on
graphics processing units. Urban Clim. 2022, 41, 101063. https://doi.org/10.1016/j.uclim.2021.101063.

53. Mortezazadeh, M.; Zou, J.; Hosseini, M.; Yang, S.; Wang, L. Estimating Urban Wind Speeds and Wind Power Potentials Based on
Machine Learning with City Fast Fluid Dynamics Training Data. Atmosphere 2022, 13, 214. https://doi.org/10.3390/atmos13020
214.

54. Gangwisch, M.; Saha, S.; Matzarakis, A. Spatial neighborhood analysis linking urban morphology and green infrastructure to
atmospheric conditions in Karlsruhe, Germany. Urban Clim. 2023, 51, 101624. https://doi.org/10.1016/j.uclim.2023.101624.

55. Hastie, T.; Tibshirani, R. Generalized additive models. In Generalized Additive Models, 1st ed.; Routledge: Abingdon-on-Thames,
UK, 2017; pp. 136–173. https://doi.org/10.1201/9780203753781-6.

56. Ravindra, K.; Rattan, P.; Mor, S.; Aggarwal, A.N. Generalized additive models: Building evidence of air pollution, climate change
and human health. Environ. Int. 2019, 132, 104987. https://doi.org/10.1016/j.envint.2019.104987.

57. Bassett, R.; Janes-Bassett, V.; Phillipson, J.; Young, P.; Blair, G. Climate driven trends in London’s urban heat island intensity
reconstructed over 70 years using a generalized additive model. Urban Clim. 2021, 40, 100990. https://doi.org/10.1016/j.uclim.20
21.100990.

58. Wagner, A. Zukünftige Klimaentwicklungen in Baden-Württemberg: Perspektiven aus Regionalen Klimamodellen, langfassung ed.;
Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg: Karlsruhe, Germany, 2013.

59. Gebhardt, H.; Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg. (Eds.) Climate Change in Baden-
Württemberg: Facts-Impacts-Perspectives, 2nd updated ed.; Ministry of the Environment, Climate Protection and the Energy Sector:
Stuttgart, Germany , 2012.

60. Hackenbruch, J. Anpassungsrelevante Klimaänderungen für Städtische Baustrukturen und Wohnquartiere; Number 77 in Wissenschaft-
liche Berichte des Instituts für Meteorologie und Klimaforschung des Karlsruher Instituts für Technologie; KIT Scientific
Publishing: Karlsruhe, Germany, 2018.

61. Rubel, F.; Kottek, M. Observed and projected climate shifts 1901-2100 depicted by world maps of the Köppen-Geiger climate
classification. Meteorol. Z. 2010, 19, 135–141. https://doi.org/10.1127/0941-2948/2010/0430.

62. Statistisches Landesamt Baden-Württemberg. Bevölkerung, Gebiet und Bevölkerungsdichte. 2020. Available online: https://www.
statistik-bw.de/BevoelkGebiet/Bevoelkerung/01515020.tab?R=KR212 (accessed on 18 November 2021).

63. Pfeifer, S.; Bathiany, S.; Rechid, D. Klimaausblick Karlsruhe und Angrenzende Landkreise; Climate Service Center Germany (GERICS),
Helmholtz-Zentrum Hereon GmbH: Hamburg Germany, 2021.

64. Statistisches Landesamt Baden-Württemberg. Statistische Berichte Baden-Württemberg; Statistisches Landesamt Baden-
Württemberg: Stuttgart, Germany 2021.

65. Deutscher Wetterdienst. Niederschlag: Vieljährige Mittelwerte 1981–2010; Deutscher Wetterdienst: Offenbach am Main, Germany,
2023.

66. Deutscher Wetterdienst. Temperatur: Vieljährige Mittelwerte 1981–2010; Deutscher Wetterdienst: Offenbach am Main, Germany,
2023.

67. Matzarakis, A.; Röckle, R.; Richter, C.J.; Höfl, H.C.; Steinicke, W.; Streifeneder, M.; Mayer, H. Planungsrelevante Bewertung des
Stadtklimas - am Beispiel von Freiburg im Breisgau. Gefahrstoffe Reinhalt. Der Luft 2008, 68, 334–340.

https://doi.org/10.1017/9781139016476
https://doi.org/10.1017/9781139016476
https://doi.org/10.1017/CBO9780511845727
https://doi.org/10.3389/feart.2019.00156
https://doi.org/10.3389/feart.2019.00156
https://doi.org/10.1016/j.rser.2017.05.248
https://doi.org/10.1016/j.scitotenv.2019.133743
https://doi.org/10.3390/atmos10030144
https://doi.org/10.1016/j.scs.2020.102086
https://doi.org/10.1016/j.jweia.2019.03.012
https://doi.org/10.1016/j.uclim.2021.101063
https://doi.org/10.3390/atmos13020214
https://doi.org/10.3390/atmos13020214
https://doi.org/10.1016/j.uclim.2023.101624
https://doi.org/10.1201/9780203753781-6
https://doi.org/10.1016/j.envint.2019.104987
https://doi.org/10.1016/j.uclim.2021.100990
https://doi.org/10.1016/j.uclim.2021.100990
https://doi.org/10.1127/0941-2948/2010/0430
https://www.statistik-bw.de/BevoelkGebiet/Bevoelkerung/01515020.tab?R=KR212
https://www.statistik-bw.de/BevoelkGebiet/Bevoelkerung/01515020.tab?R=KR212


Atmosphere 2024, 15, 125 27 of 28

68. Pfeifer, S.; Bathiany, S.; Rechid, D. Klimaausblick Freiburg im Breisgau und Angrenzende Landkreise; Climate Service Center Germany
(GERICS), Helmholtz-Zentrum Hereon GmbH: Hamburg Germany, 2021.

69. Christen, A. Meteobike—Mapping Urban Heat Islands with Bikes. 2023. Available online: https://github.com/achristen/Meteobike
(accessed on 28 June 2023).

70. Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated
Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. https://doi.org/10.5194/gmd-8-1991-2015.

71. Open Source Geospatial Foundation. QGIS Geographic Information System; Open Source Geospatial Foundation: Beaverton, OR,
USA, 2023.

72. Ermida, S.L.; Soares, P.; Mantas, V.; Göttsche, F.M.; Trigo, I.F. Google Earth Engine Open-Source Code for Land Surface
Temperature Estimation from the Landsat Series. Remote Sens. 2020, 12, 1471. https://doi.org/10.3390/rs12091471.

73. OpenStreetMap Contributors. Planet Dump. 2021. Available online: https://planet.osm.org (accessed on 17 May 2021).
74. Wood, S.N. Generalized Additive Models: An Introduction with R, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2017.

https://doi.org/10.1201/9781315370279.
75. Zambrano-Bigiarini, M. hydroGOF: Goodness-of-fit Functions for Comparison of Simulated and Observed Hydrological Time

Series. Available online: https://zenodo.org/records/3707013 (accessed on 24 May 2023).
76. Nosratabadi, S.; Mosavi, A.; Keivani, R.; Ardabili, S.; Aram, F. State of the Art Survey of Deep Learning and Machine Learning

Models for Smart Cities and Urban Sustainability. In Engineering for Sustainable Future; Várkonyi-Kóczy, A.R., Ed.; Springer
International Publishing: Cham, Switzerland, 2020; Volume 101, pp. 228–238. https://doi.org/10.1007/978-3-030-36841-8_22.

77. Höppe, P. The physiological equivalent temperature—A universal index for the biometeorological assessment of the thermal
environment. Int. J. Biometeorol. 1999, 43, 71–75. https://doi.org/10.1007/s004840050118.

78. Mayer, H.; Höppe, P. Thermal comfort of man in different urban environments. Theor. Appl. Climatol. 1987, 38, 43–49. https:
//doi.org/10.1007/BF00866252.

79. Miller, S.J.; Gordon, M. The measurement of mean wind, variances, and covariances from an instrumented mobile car in a rural
environment. Atmos. Meas. Tech. 2022, 15, 6563–6584. https://doi.org/10.5194/amt-15-6563-2022.

80. Gangwisch, M.; Fröhlich, D.; Christen, A.; Matzarakis, A. Geometrical Assessment of Sunlit and Shaded Area of Urban Trees
Based on Aligned Orthographic Views. Atmosphere 2021, 12, 968. https://doi.org/10.3390/atmos12080968.

81. Monteith, J.L.; Unsworth, M.H. Principles of Environmental Physics: Plants, Animals, and the Atmosphere, 4th ed.; Elsevier: Amsterdam,
The Netherlands, 2014.

82. Matzarakis, A.; Gangwisch, M.; Fröhlich, D. RayMan and SkyHelios Model. In Urban Microclimate Modelling for Comfort
and Energy Studies; Palme, M., Salvati, A., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 339–361.
https://doi.org/10.1007/978-3-030-65421-4_16.

83. Briegel, F.; Makansi, O.; Brox, T.; Matzarakis, A.; Christen, A. Modelling long-term thermal comfort conditions in urban
environments using a deep convolutional encoder-decoder as a computational shortcut. Urban Clim. 2023, 47, 101359. https:
//doi.org/10.1016/j.uclim.2022.101359.

84. Schrotter, G.; Hürzeler, C. The Digital Twin of the City of Zurich for Urban Planning. PFG J. Photogramm. Remote Sens. Geoinf. Sci.
2020, 88, 99–112. https://doi.org/10.1007/s41064-020-00092-2.

85. Guo, Y.; Zhang, H.; Li, Q.; Lin, Y.; Michalski, J. New morphological features for urban tree species identification using LiDAR
point clouds. Urban For. Urban Green. 2022, 71, 127558. https://doi.org/10.1016/j.ufug.2022.127558.

86. Wang, R.; Peethambaran, J.; Chen, D. LiDAR Point Clouds to 3-D Urban Models$:$ A Review. IEEE J. Sel. Top. Appl. Earth Obs.
Remote Sens. 2018, 11, 606–627. https://doi.org/10.1109/JSTARS.2017.2781132.

87. Ketterer, C.; Matzarakis, A. Human-biometeorological assessment of the urban heat island in a city with complex topography—
The case of Stuttgart, Germany. Urban Clim. 2014, 10, 573–584. https://doi.org/10.1016/j.uclim.2014.01.003.

88. Ketterer, C.; Matzarakis, A. Comparison of different methods for the assessment of the urban heat island in Stuttgart, Germany.
Int. J. Biometeorol. 2015, 59, 1299–1309. https://doi.org/10.1007/s00484-014-0940-3.

89. Theeuwes, N.E.; Solcerová, A.; Steeneveld, G.J. Modeling the influence of open water surfaces on the summertime temperature
and thermal comfort in the city. J. Geophys. Res. Atmos. 2013, 118, 8881–8896. https://doi.org/10.1002/jgrd.50704.

90. Aksoy, T.; Dabanli, A.; Cetin, M.; Senyel Kurkcuoglu, M.A.; Cengiz, A.E.; Cabuk, S.N.; Agacsapan, B.; Cabuk, A. Evaluation
of comparing urban area land use change with Urban Atlas and CORINE data. Environ. Sci. Pollut. Res. 2022, 29, 28995–29015.
https://doi.org/10.1007/s11356-021-17766-y.

91. Varquez, A.C.G.; Kiyomoto, S.; Khanh, D.N.; Kanda, M. Global 1-km present and future hourly anthropogenic heat flux. Sci. Data
2021, 8, 64. https://doi.org/10.1038/s41597-021-00850-w.

92. Google. Google Environment Insights Explorer. 2023. Available online: https://insights.sustainability.google/ (accessed on 28
June 2023).

93. World Health Organization. Urban Green Spaces: A Brief for Action; World Health Organization: Copenhagen, Denmark, 2017.
94. Flouris, A.D.; Dinas, P.C.; Ioannou, L.G.; Nybo, L.; Havenith, G.; Kenny, G.P.; Kjellstrom, T. Workers’ health and productivity

under occupational heat strain: A systematic review and meta-analysis. Lancet Planet. Health 2018, 2, e521–e531. https://doi.org/
10.1016/S2542-5196(18)30237-7.

https://github.com/achristen/Meteobike
https://doi.org/10.5194/gmd-8-1991-2015
https://doi.org/10.3390/rs12091471
https://planet.osm.org
https://doi.org/10.1201/9781315370279
https://zenodo.org/records/3707013
https://doi.org/10.1007/978-3-030-36841-8_22
https://doi.org/10.1007/s004840050118
https://doi.org/10.1007/BF00866252
https://doi.org/10.1007/BF00866252
https://doi.org/10.5194/amt-15-6563-2022
https://doi.org/10.3390/atmos12080968
https://doi.org/10.1007/978-3-030-65421-4_16
https://doi.org/10.1016/j.uclim.2022.101359
https://doi.org/10.1016/j.uclim.2022.101359
https://doi.org/10.1007/s41064-020-00092-2
https://doi.org/10.1016/j.ufug.2022.127558
https://doi.org/10.1109/JSTARS.2017.2781132
https://doi.org/10.1016/j.uclim.2014.01.003
https://doi.org/10.1007/s00484-014-0940-3
https://doi.org/10.1002/jgrd.50704
https://doi.org/10.1007/s11356-021-17766-y
https://doi.org/10.1038/s41597-021-00850-w
https://insights.sustainability.google/
https://doi.org/10.1016/S2542-5196(18)30237-7
https://doi.org/10.1016/S2542-5196(18)30237-7


Atmosphere 2024, 15, 125 28 of 28

95. Beckmann-Wübbelt, A.; Fricke, A.; Sebesvari, Z.; Yakouchenkova, I.A.; Fröhlich, K.; Saha, S. High public appreciation for the
cultural ecosystem services of urban and peri-urban forests during the COVID-19 pandemic. Sustain. Cities Soc. 2021, 74, 103240.
https://doi.org/10.1016/j.scs.2021.103240.

96. Alsaad, H.; Hartmann, M.; Hilbel, R.; Voelker, C. The potential of facade greening in mitigating the effects of heatwaves in Central
European cities. Build. Environ. 2022, 216, 109021. https://doi.org/10.1016/j.buildenv.2022.109021.

97. Peng, L.L.; Jiang, Z.; Yang, X.; He, Y.; Xu, T.; Chen, S.S. Cooling effects of block-scale facade greening and their relationship with
urban form. Build. Environ. 2020, 169, 106552. https://doi.org/10.1016/j.buildenv.2019.106552.

98. Abass, F.; Ismail, L.H.; Wahab, I.A.; Elgadi, A.A. A Review of Green Roof: Definition, History, Evolution and Functions. IOP Conf.
Ser. Mater. Sci. Eng. 2020, 713, 012048. https://doi.org/10.1088/1757-899X/713/1/012048.

99. Bowler, D.E.; Buyung-Ali, L.; Knight, T.M.; Pullin, A.S. Urban greening to cool towns and cities: A systematic review of the
empirical evidence. Landsc. Urban Plan. 2010, 97, 147–155. https://doi.org/10.1016/j.landurbplan.2010.05.006.

100. Wüstemann, H.; Kolbe, J. Der Einfluss städtischer Grünflächen auf die Immobilienpreise: Eine hedonische Analyse für die Stadt
Berlin. Raumforsch. Und Raumordn. Spat. Res. Plan. 2017, 75, 429–438. https://doi.org/10.1007/s13147-017-0485-0.

101. Astell-Burt, T.; Feng, X.; Mavoa, S.; Badland, H.M.; Giles-Corti, B. Do low-income neighbourhoods have the least green space? A
cross-sectional study of Australia’s most populous cities. BMC Public Health 2014, 14, 292. https://doi.org/10.1186/1471-2458-14
-292.

102. United Nations. Sendai framework for disaster risk reduction 2015–2030. In Proceedings of the Third United Nations World
Conference on Disaster Risk Reduction (WCDRR)—Resilient People, Resilient Planet, Sendai, Japan, 14–18 March 2015.

103. United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development—A/RES/70/1; United Nations: New York,
NY, USA, 2015.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.scs.2021.103240
https://doi.org/10.1016/j.buildenv.2022.109021
https://doi.org/10.1016/j.buildenv.2019.106552
https://doi.org/10.1088/1757-899X/713/1/012048
https://doi.org/10.1016/j.landurbplan.2010.05.006
https://doi.org/10.1007/s13147-017-0485-0
https://doi.org/10.1186/1471-2458-14-292
https://doi.org/10.1186/1471-2458-14-292

	Introduction
	Materials and Methods
	Study Area in Karlsruhe, Germany—Training Data to Build the Model
	Study Area in Freiburg, Germany—Test Data to Validate the Model
	Processing of Normalized Observational Data from Spatial Neighborhood Analysis for Modeling
	Preparation and Pre-Processing of Descriptors for Modeling and Prediction
	Spatial Neighborhood Modeling with Generalized Additive Models
	Model Selection
	Validation and Application in Freiburg, Germany

	Results
	Spatial Prediction of the Urban Heat Island on the Normalized Scale
	Validation and Error of the Model Output

	Discussion
	Missing Coverage of Specific Land Cover
	Missing Data on Anthropogenic Heat Production and Soil Moisture
	Concurvity Shows the Dependency of Various Predictors
	Applications and Implications of Spatial UHI Modeling in Resilient Urban Planning, Health Sector, Tourism, and Architecture

	Conclusions
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	References

