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Abstract: Hand gesture recognition (HGR) is a rapidly evolving field with the potential to revolution-
ize human–computer interactions by enabling machines to interpret and understand human gestures
for intuitive communication and control. However, HGR faces challenges such as the high similarity
of hand gestures, real-time performance, and model generalization. To address these challenges, this
paper proposes the stacking of distilled vision transformers, referred to as SDViT, for hand gesture
recognition. An initially pretrained vision transformer (ViT) featuring a self-attention mechanism is
introduced to effectively capture intricate connections among image patches, thereby enhancing its
capability to handle the challenge of high similarity between hand gestures. Subsequently, knowledge
distillation is proposed to compress the ViT model and improve model generalization. Multiple
distilled ViTs are then stacked to achieve higher predictive performance and reduce overfitting. The
proposed SDViT model achieves a promising performance on three benchmark datasets for hand
gesture recognition: the American Sign Language (ASL) dataset, the ASL with digits dataset, and
the National University of Singapore (NUS) hand gesture dataset. The accuracies achieved on these
datasets are 100.00%, 99.60%, and 100.00%, respectively.

Keywords: hand gesture recognition; sign language recognition; vision transformer; knowledge
distillation; stacking

1. Introduction

Hand gestures are powerful tools for communication, and they are often used in
conjunction with speech to enhance the expression of intentions and convey information.
They also serve as a standalone method of communication, particularly in sign language,
especially for individuals who are mute or deaf. This research paper primarily focuses on
American Sign Language (ASL), which is recognized as the most commonly utilized sign
language. Despite the general awareness of sign language, few people understand it and
can effectively communicate using it. To address this issue, a hand gesture recognition
(HGR) system is needed.

HGR models hold significant promise for a wide range of applications. In interactive
computing interfaces, HGR can enable intuitive and hands-free control, finding applications
in gaming, virtual reality (VR), and augmented reality (AR) systems. In the healthcare
domain, HGR can be utilized for developing assistive technologies, allowing individuals
with mobility impairments to control devices through hand gestures. HGR also plays a
crucial role in human–robot interactions, where robots can interpret and respond to human
gestures, enhancing collaboration and communication in various settings. Moreover,
HGR has potential applications in sign language interpretation, contributing to improved
communication accessibility for individuals with hearing impairments. The technology
can also be applied in security and surveillance, allowing for gesture-based commands for
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monitoring and controlling security systems. As HGR technology advances, its applications
are expected to expand, offering innovative solutions in diverse fields.

HGR can be broadly categorized into two types: static HGR [1–8] and dynamic
HGR [9–13]. The former involves classifying hand gestures from images, while the latter
involves classifying hand gestures from videos. Dynamic hand gesture recognition is
more complex than static HGR due to the numerous possibilities and combinations of
hand gestures that can occur in a video. Static HGR can be further divided into two main
types. The first type relies on vision, where images are captured using a camera. The
second type involves wearable devices such as data gloves, which can capture hand gesture
information more accurately but are inconvenient and expensive. Identifying hand gestures
in both scenarios poses numerous obstacles, such as fluctuations in lighting circumstances,
intricate backgrounds, resemblances between different hand gestures, and differences in
hand dimensions and skin complexion. This research will specifically focus on vision-based
static HGR.

Vision-based static HGR can be categorized into two main approaches: hand-crafted
and deep learning. The hand-crafted approach involves applying various feature extraction
techniques, such as discrete wavelet transform (DWT) [14–17], histogram of oriented gra-
dient (HOG) [18–20], and scale invariant feature transform (SIFT) [21], to extract features
from the hand gestures. These extracted characteristics are subsequently input into a
classification algorithm for the purpose of gesture categorization. Alternatively, the deep
learning approach utilizes deep learning networks, such as convolutional neural networks
(CNNs) [1–6,22–29], artificial neural networks (ANNs) [30], and autoencoders [31,32], to
automatically extract features from the hand gestures. Deep learning networks show-
case adaptability to various challenges in static hand gesture recognition, learning from
extensive datasets and accommodating diverse environmental factors such as lighting con-
ditions, complex backgrounds, and variations in hand size and skin tone. However, existing
methods encounter several limitations that present research gaps to be addressed. One
common challenge is the limited capacity of current models to effectively capture global
dependencies and intricate relationships among different parts of static hand gestures.
Additionally, variations in hand pose and lighting conditions pose difficulties for existing
models, impacting their robustness in real-world scenarios. The sensitivity of models
to background complexity, especially when distinguishing hand gestures from intricate
or cluttered backgrounds, is another notable limitation. Furthermore, the generalization
capabilities of existing models across different hand sizes and skin tones remain as an
ongoing concern. Discriminating between visually similar gestures, where subtle differ-
ences may be challenging to discern, poses a significant obstacle. Moreover, some existing
models, particularly those based on complex architectures, may suffer from computational
inefficiency and large model sizes, limiting their practical deployment.

In order to address the research gaps, the proposed SDViT model incorporates the vision
transformer (ViT) model along with a self-attention mechanism that empowers the model to
grasp intricate connections among image sections, ultimately enhancing its capability to recog-
nize these gestures effectively. To reduce the size of the ViT model, a knowledge distillation
process is applied to obtain a smaller yet equally accurate distilled student ViT model. The final
prediction is obtained through ensemble learning stacking, which combines the predictions of
four distilled student ViT models. This approach reduces the risk of overfitting and improves
prediction accuracy, resulting in better overall performance.

The primary contributions of this research paper can be outlined as follows:

• The ViT model, equipped with a self-attention mechanism, effectively captures com-
plex relationships among image patches, enhancing its capability to handle challenges
such as variations in pose, lighting, background, occlusions, and the issue of similarity
between hand gestures.

• Knowledge distillation is employed to distill the knowledge from a larger, more
complex model into a smaller, computationally efficient version, enabling accurate
and efficient hand gesture recognition with a reduced model size.
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• Ensemble learning, through the combination of multiple models, effectively reduces
the risk of overfitting and enhances the accuracy of HGR predictions.

2. Related Work

Researchers have addressed the issue of static hand gesture recognition by adopting
various approaches over the years. These approaches can be broadly categorized into
the traditional hand-crafted approach and the more recent deep learning approach. In
the hand-crafted approach, features of hand gesture images were extracted using prede-
fined techniques such as the local histogram feature descriptor (LHFD), discrete wavelet
transform (DWT), K convex hull, localized contour sequence (LCS), block-based technique,
HOG, SIFT, and non-negative matrix factorization (NMF). These features were then utilized
for hand gesture classification.

The LHFD feature extraction method proposed by Reddy et al. [33] involved dividing
the pre-processed image of hand gestures into 16 blocks, calculating the histogram for each
block, and concatenating the histograms to form a feature vector. However, LHFD was
sensitive to image scaling and rotation, limiting its effectiveness for images with different
sizes and orientations. DWT was then introduced as an alternative, capturing the frequency
domain information of an image more efficiently than LHFD. Several authors [14,16,17]
utilized DWT for feature extraction in hand gesture image classification with slight vari-
ations in implementation. For example, Sahoo et al. [14] used the F-ratio to select DWT
coefficients, reducing dimension and computation time while achieving higher accuracy
than LCS and block-based methods. Candrasari et al. [16] employed a four-step process
to extract features using DWT, selecting sub-bands and decomposition levels for accuracy
improvement. Parvathy et al. [17] combined 2D-DWT for feature extraction with a mod-
ified speeded up robust features (SURF) algorithm and bag of feature (BoF) method for
classification using a support vector machine (SVM).

Later, the K convex hull method emerged as a replacement for DWT, capturing the con-
tour and shape information of hand gestures. Islam et al. [34] proposed the K convex hull
method, combining K curvature and convex hull algorithms. The convex hull algorithm
was applied to the segmented hand region, drawing a polygon around the hand gesture
image, while the Sobel edge detection algorithm was used to detect the contour. The K cur-
vature algorithm found the angle between two points for fingertip detection. The method
also incorporated automatic pixel segmentation, eccentricity, elongatedness, and rotation
algorithms to diversify the number of features and increase image samples for improved
accuracy. However, the K convex hull method only captured contour information and may
not have considered regional characteristics, limiting its effectiveness in distinguishing
between similar hand gestures. LCS and block-based methods captured both contour and
regional information, providing a more comprehensive feature representation for hand ges-
tures. Ghosh et al. [35] proposed a combination of LCS and block-based feature extraction
methods along with a genetic algorithm (GA)-based feature subset selection method. The
GA selected the optimal feature subset using a chromosome bit pattern, and classification
was performed using a K-means and least mean square (LMS)-based improved radial basis
function (RBF) neural network.

HOG was proposed as a replacement for LCS and block-based methods as they may
not have captured the fine-grained details of hand gestures. HOG captures gradient
information in localized regions, enabling the detection of finer details and a more robust
feature extraction process. Gupta et al. [18] utilized a combination of HOG and SIFT
for feature extraction and employed K-nearest neighbors (KNNs) for classification. They
created a dataset consisting of hand gestures performed with one or two hands, presenting
a unique approach. Lahiani et al. [19] combined local binary patterns (LBPs) and HOG
for feature extraction and used adaptive boosting (AdaBoost) for classification, achieving
improved accuracy compared with individual feature extractors. Bamwenda et al. [20]
described HOG as a histogram-based technique unaffected by changes in object geometry
and illumination, making it suitable for real-time hand gesture detection. However, the
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HOG approach was sensitive to changes in illumination and contrast, affecting recognition
accuracy, especially in real-world scenarios. SIFT was more robust to illumination and
contrast changes, detecting scale, rotation, and illumination invariant key points and
extracting local features based on gradient directions. Ma et al. [21] proposed a method that
combined SIFT for feature extraction with a sparse autoencoder neural network. NMF was
later introduced as an alternative to SIFT, extracting features robust to changes in lighting
and noise. Zhuang et al. [36] proposed using NMF for the subspace analysis of hand
gesture images, achieving robust feature extraction. However, these handcrafted feature
extraction methods required extensive domain expertise, trial and error for optimal feature
selection, and may not be generalized well to new datasets. Additionally, handcrafted
features may not capture complex relationships and patterns in the data necessary for
accurate classification.

In contrast, deep learning approaches are capable of automatically learning high-level
representations of the data through multiple layers of abstraction, reducing the need for
manual feature engineering and improving performance in complex tasks. Consequently, re-
searchers shifted towards employing deep learning approaches such as CNNs [1–6,22–27],
artificial neural networks (ANNs) [30], and autoencoders [31,32] instead of traditional
hand-crafted methods. Tan et al. [3] proposed a CNN model with spatial pyramid pooling
(CNN-SPP), utilizing SPP instead of max pooling or average pooling to capture more spatial
information and facilitate better learning. The CNN-SPP model with two layers of SPP
demonstrated an increased average test accuracy for both augmented and non-augmented
datasets compared with the typical CNN without SPP. In another work, Tan et al. [6]
introduced an improved iteration of DenseNet known as EDenseNet by modifying the
transition layer of the original DenseNet. The adjustment entailed altering the initial layer
within the transition layer and introducing a fresh layer preceding the pooling layer, which
led to enhanced feature transmission and a decrease in undesirable features. EDenseNet
showed performance improvements of 0.6% and 0.45% for non-augmented and augmented
data, respectively, compared with the original DenseNet.

Gao et al. [22] proposed a parallel CNN architecture consisting of RGB-CNN and
Depth-CNN networks for HGR. The predictions from both channels were combined using a
probability equation to achieve the final prediction. This approach improved the recognition
accuracy of hand gestures by 3% to 11.9% compared with a single-channel CNN approach.
Similarly, Khari et al. [1] utilized transfer learning and the refinement of a pretrained
VGG19 CNN model for RGB and depth images in ASL classification. Both the RGB
and depth VGG19 models underwent training on an expanded ASL dataset, and for the
purpose of classification, the color and depth information were combined. In addition,
they also applied early stopping to prevent overfitting during training. In a later work
by Sahoo et al. [23], the fully connected layer of a pretrained CNN model (AlexNet) was
used for feature extraction, and principal component analysis (PCA) was applied to reduce
the feature dimension before being classified by an SVM. The aim of reducing the feature
dimension was to eliminate redundant and unnecessary features from data with higher
dimensions while preserving crucial information within the feature vector.

A similar work by Ozcan et al. [2] proposed an HGR approach, which applied transfer
learning with a pretrained AlexNet CNN model and refined the model using the artificial
bee colony (ABC) algorithm. The ABC algorithm was chosen for its ability to explore local
solutions, handle objective costs, and provide flexibility. Cheng et al. [24] proposed a joint
network comprising a superposed network of multiple restricted Boltzmann machines
(RBMs) for unsupervised feature extraction and a CNN for supervised feature extraction.
The features extracted from both networks were combined and classified to achieve the
best performance. Mujahid et al. [4] proposed an HGR model based on the YOLOv3
and DarkNet-53 CNN neural network. The dataset was labeled using YOLO annotation,
and the YOLOv3 algorithm extracted values from the bounding box formed in the im-
age. These values underwent a sigmoid function before being passed to classification.
Dadashzadeh et al. [25] presented a two-stage HGR method called HGR-Net, which con-
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sisted of three CNN models. In the initial phase, a CNN model was trained to delineate
hand gesture areas by separating them from the image background. Subsequently, in the
second phase, two CNN models underwent training: one on the resulting image from
the first phase and the other on the original hand gesture image. The outcomes from
both models were combined using a fusion function. In [26], Alani et al. proposed an
adapted deep CNN model for HGR. They used He uniform initialization for the ReLU
layers and Xavier uniform initialization for the SoftMax layer along with L2 regulariza-
tion. Xie et al. [27] introduced a fine-tuning method based on InceptionV3 for static HGR.
Their method involved transfer learning and fine-tuning of InceptionV3 in a two-stage
process along with feature concatenation of RGB and depth images. Early stopping callback
and data augmentation were implemented to avoid overfitting and improve the model’s
recognition ability.

A later work by Ewe et al. [5] proposed a lightweight VGG16-RF ensemble classifier
for vision-based HGR. They used VGG16 as the feature extractor due to its ability to extract
low- and high-level features and prevent underfitting. To optimize the balance between
accuracy and training time, they removed the fifth convolutional block. The random forest
classifier was chosen for its ability to grow up to 100 trees, providing optimal performance
and processing time. Badi et al. [30] presented two models for hand gesture classification:
hand contour-based neural networks and complex moments-based neural networks. The
hand contour-based networks consisted of five networks, while the region-based complex
moments networks consisted of four networks. Both models were tested sequentially,
and the testing process stopped when one network recognized the gesture. The hand
contour-based networks were faster, while the complex moments-based networks were
more accurate. In [31], Oyedotun et al. proposed a method called stacked denoising
autoencoders (SDAEs) for learning distributed and hierarchical features of the training
data. They employed the denoising autoencoder (DAE) to acquire meaningful features
by reconstructing flawed input data at the output layer. The fine-tuning of the DAE for
classification tasks was conducted using the backpropagation algorithm. Another work
by Bobic et al. [32] introduced a sparse autoencoder with five hidden layers to discover
interesting structures within data. They gradually reduced the parameters from 2500 to 800
to 400 to 200 to 100 and all the way down to 50 to extract features from the training set. After
each dimension reduction, the SoftMax layer was trained for hand gesture classification.
Among the five layers, the second layer with 400 parameters performed the best.

In the realm of static hand gesture recognition, prevailing deep learning methods,
particularly those reliant on CNN-based networks, grapple with distinct challenges, in-
cluding limited receptive fields, constrained adaptability, and susceptibility to overfitting.
The inherent limitation of a limited receptive field in CNNs hampers their ability to cap-
ture extensive spatial relationships in static hand gestures. Moreover, the adaptability
of CNNs is often constrained, posing challenges when confronted with diverse datasets
and varying environmental conditions. The issue of overfitting, a common concern in
CNN-based models, necessitates innovative approaches to enhance their generalization
capabilities. To address these research gaps, this paper introduces the SDViT model as a
promising solution. The ViT model leverages self-attention mechanisms, facilitating global
interactions among all input features and mitigating the limited receptive field problem
inherent in CNNs. Furthermore, the proposed knowledge distillation technique serves as a
remedy to the generalization constraints of CNNs. By distilling knowledge from a larger
and more complex model to a smaller and simpler network, the ViT model gains improved
generalization abilities across diverse tasks and input data. The utilization of stacking
further contributes to overcoming overfitting concerns, enhancing model performance by
amalgamating predictions from multiple distilled ViT models. This multifaceted approach
addresses critical limitations in existing CNN-based methods, positioning the SDViT model
as a robust alternative for advancing static hand gesture recognition.
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3. Stacking of Distilled Vision Transformers (SDViT)

This paper proposes stacking of distilled vision transformers, named as SDViT, for
hand gesture recognition. The proposed SDViT method leverages transfer learning and
fine-tuning of pretrained vision transformers to capture the global dependencies in a hand
gesture image. Knowledge distillation is then employed, with the pretrained ViTs serving
as both teacher and student models. The larger fine-tuned ViT model acts as the teacher,
while the smaller fine-tuned ViT model acts as the student. Through this method, the
distilled knowledge helps the smaller student model to generalize better. In addition,
stacking is proposed to ensemble multiple distilled student models. The design of the
proposed SDViT approach is illustrated in Figure 1.

Figure 1. Network architecture of the proposed SDViT approach.

3.1. Vision Transformer

The vision transformer (ViT) is a modified version of the original transformer archi-
tecture, initially designed for natural language processing (NLP) tasks, adapted to solve
vision-based tasks. It operates by dividing input images into patches, which are then
linearly embedded and passed through the transformer. This treatment of image patches
as tokens resembles the processing of text sequences in NLP applications, where tokens
are fed into the transformer to predict class labels for images. The modifications to the
original transformer architecture to create ViT were introduced by the Google Research
Brain team [37]. The architecture of the ViT model in the proposed SDViT, as depicted in
Figure 2, comprises several key components: the linear projection, transformer encoder,
multi-head self attention (MSA) layer, and the multi-layer perceptron (MLP) layer. Accord-
ing to the researchers in [37], ViT offers significant improvements in both computational
efficiency and accuracy compared with state-of-the-art (SOTA) CNN models. Nonetheless,
ViT demonstrates a lesser inclination for translation equivariance and locality in its induc-
tive bias compared with CNN models. This implies that ViT may not generalize well when
trained on small datasets, and the authors recommend training ViT on at least 14 million
images to mitigate this weakness. To address this limitation, the ViT model implemented in
this paper utilizes the ViT model pretrained on the ImageNet21k + ImageNet2012 dataset.
The transfer learning of the pretrained ViT model helps to mitigate the weak inductive bias
issue associated with the ViT model.
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Figure 2. Network architecture of the vision transformer in the proposed SDViT approach.

Given the hand gesture image, the initial step involves resizing it to a dimension
of 256 × 256 to ensure that it can be subdivided into patches measuring 32 × 32. The
resized image is subsequently divided into patches of consistent size, resulting in a series of
flattened 2D patches denoted as xP ∈ RN×(P2·C). The number of patches N is determined
by the image dimensions and patch size, with N = HW

P2 . Here, H and W represent the
height and width of the image, while C signifies the channel count and P denotes the patch
size. N also serves as the effective sequence length applicable to the transformer.

3.1.1. Linear Projection of Flattened Patches

Before feeding the patches into the transformer encoder blocks, the image patches
undergo a linear projection process. Each individual patch is transformed into a vector
and associated with a lower-dimensional embedding through the utilization of a trainable
matrix denoted as E. In order to incorporate positional details and support the learning
process, one-dimensional positional embeddings denoted as Epos, which are acquired
through training, are incorporated. The role of positional embedding is to inject information
about the relative or absolute position of each patch in the image by using sine and cosine
functions with different frequencies to encode positional information. As ViTs do not have a
built-in understanding of the spatial arrangement of pixels, positional embedding helps the
model differentiate between different regions of the image and capture spatial relationships.
Without positional embedding, the model might treat all patches equally, neglecting the
essential spatial structure of the input. Additionally, a trainable class embedding xclass is
included in the sequence of embedded patches, similar to the concept of the class token
used in bidirectional encoder representations from transformers (BERT). The outcome of
this linear projection process, labeled as z0, can be expressed as follows:

z0 =
[
xclass; x1

pE; x2
pE; . . . ; xN

p E
]
+ Epos, (1)

where E ∈ R(P2·C)×D, Epos ∈ R(N+1)×D, and xn
p represents the flattened patch vector

for the nth patch. The patch embeddings are employed as the input for the transformer
encoder, enabling the ViT model to grasp overall patterns and relationships within the
image. Simultaneously, it retains a degree of spatial information by utilizing patches.
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3.1.2. Transformer Encoder

The transformer encoder plays a crucial role in the transformer model. It comprises
several layers, denoted as L, each of which consists of an MSA layer and a position-wise
feedforward layer (MLP), as depicted in Figure 3. Layer normalization (LN) is employed
before the commencement of each block, and residual connections are implemented fol-
lowing the conclusion of each block. LN is applied to stabilize the model representations.
Following the MSA layer, another layer normalization step is performed, and the resulting
sequence is passed through the MLP layer. Equations (2) and (3) represent the flow of infor-
mation within the transformer encoder block. Overall, the transformer encoder leverages
self-attention mechanisms and MLPs to effectively grasp global interdependencies and
efficiently handle representation processing.

z′` = MSA(LN(z`−1)) + z`−1, ` = 1 · · · L (2)

z` = MLP
(
LN
(
z′`
))

+ z′`, ` = 1 · · · L (3)

Figure 3. The design of the transformer encoder.

• Multi-head Self-Attention

The MSA layer in the ViT model captures contextual relationships among patch
embeddings through self-attention. It utilizes numerous self-attention heads to assess the
significance of patch embeddings by considering their interactions. Within the MSA layer,
there are query, key, and value projections; dot product attention; and linear projection
layers. It takes the patch embeddings as its input, carries out linear projections to produce
query, key, and value matrices, and computes attention scores. These attention scores
are employed to weigh the values, resulting in a weighted summation. The outcomes of
this self-attention process are aggregated along the dimension of heads and subsequently
subjected to a linear projection to return them to their original dimension. This process
enables the MSA layer to capture patch relationships and produce the final output.
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• Multi-Layer Perceptron

Within the ViT encoder, there is an MLP block responsible for modifying the represen-
tations acquired from the MSA layer. This block is composed of two linear transformations
separated by a Gaussian error linear unit (GELU) activation function. The inclusion of
the MLP introduces non-linear characteristics, enabling the model to capture intricate
connections. The result of the MLP block is obtained through a series of operations, which
involve multiplying the input by a weight matrix, adding a bias, applying the GELU
activation function, and then repeating the process with another weight matrix and bias.
This sequence of operations is iterated multiple times within the ViT encoder to learn
progressively more abstract features from the input image.

The transformer encoder extracts features using self-attention in the MSA layer to
capture global interdependencies among patch embeddings. Attention scores computed
through query, key, and value projections facilitate the weighing of values, capturing
contextual relationships. The resulting representations pass through the MLP block, intro-
ducing non-linear characteristics to progressively learn more abstract features. This feature
extraction process enables the ViT model to capture intricate patterns and relationships
within images, making it well suited for a variety of computer vision tasks.

In the encoder block, the first token z0
L is then selected and normalized to generate the

image representation y.
y = LN

(
z0

L

)
. (4)

This representation is subjected to pooling in order to derive a solitary feature vector.
Afterwards, it is flattened, normalized through batch normalization, and passed through a
fully-connected layer with SoftMax activation for the ultimate classification. While training,
the rectified Adam optimizer effectively adjusts the model’s parameters. The categorical
cross-entropy loss is employed to gauge the dissimilarity between predicted and actual
probability distributions, with SoftMax probabilities and labels being utilized to compute
this loss. To mitigate overfitting and enhance performance, the training process incorporates
early stopping and adaptive learning rate callbacks.

3.2. Knowledge Distillation

Knowledge distillation is a powerful method for compressing models, allowing the
transfer of expertise from a large, intricate model to a smaller one throughout training.
This method is commonly known as the teacher–student model, with the larger model
assuming the role of the teacher and the smaller model functioning as the student. The
motivation behind knowledge distillation stems from the fact that large models possess a
significant amount of knowledge capacity due to their numerous layers and parameters.
However, this knowledge is not fully utilized when deploying these large models to devices
that have limited memory and computational resources. To overcome this limitation, a
model compression technique was initially proposed by [38] and later generalized by [39]
as knowledge distillation. The fundamental concept of knowledge distillation is depicted in
Figure 4, which illustrates the network architecture used in the proposed SDViT approach.
Both the teacher and student models utilized in the knowledge distillation process are
based on transfer learning from pretrained vision transformers, with varying fine-tuning
layers. During training, the teacher model transfers its knowledge to the student model
by guiding its learning process. This knowledge transfer is achieved by instructing the
student model to replicate not only the final predictions made by the teacher model but also
the internal representations and patterns learned by the teacher. Through this distillation
of knowledge from the teacher model, the student model can capture and leverage the
valuable insights and decision-making capabilities of the larger model while maintaining a
compact size. This enables the student model to achieve comparable performance to the
teacher model, making it a highly efficient solution for real-world applications.
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Figure 4. Network architecture of knowledge distillation of pretrained vision transformer model.

In this paper, response-based knowledge distillation is employed. The teacher model’s
output probabilities or logits are utilized as the knowledge, which provide valuable infor-
mation about the confidence or certainty of the model’s predictions. By incorporating this
response-based knowledge into the training process of the student model, it can learn to
mimic the teacher’s decision-making process and improve its own predictive capabilities.
In addition, we adopt the widely used offline distillation approach. Offline distillation
involves employing a pretrained teacher model to steer and inform the training of the
student model through knowledge transfer. This method offers ease of implementation
and is commonly employed in deep learning applications.

During the knowledge distillation process, knowledge transfer from the teacher model
to the student model takes place through the minimization of a loss function. The objective
in this process is to match the class probability distribution generated by the teacher model,
which is derived by applying a SoftMax function to the teacher model’s logits. However, the
teacher model’s probability distribution often assigns a high probability to the correct class
while assigning close to zero probabilities to other classes. This limited distribution fails at
offering extra information beyond the actual labels present in the dataset. To overcome this
limitation, SoftMax temperature [39] is employed to calculate the probability pi of class i
directly from the logits z using the equation:

pi =
exp

(
Zi
T

)
∑j exp

( Zj
T

) (5)

This equation represents the calculation of class probabilities, where the temperature
parameter T plays a crucial role. A temperature of one yields the standard SoftMax function,
while increasing the value of T results in a softer probability distribution. This softer
distribution provides more information about which classes the teacher model considers
similar to the predicted class. To incorporate this knowledge transfer, the same temperature
parameter T is employed when applying the SoftMax function to the student’s logits during
the computation of the loss function with respect to the teacher’s soft targets. This loss
function is commonly known as the distillation loss.

In addition to the distillation loss, it is advantageous to ensure that the distilled
model can accurately predict labels based on the true data. Consequently, the student
loss is computed, which reflects the typical loss between the student’s forecasted class
probabilities and the actual ground truth labels. The comprehensive loss function, which
combines both the distillation loss and the student loss, is formulated as follows:

L(x; W) = α ∗ H(y, σ(zs; T = 1))+

β ∗ H(σ(zt; T = τ), σ(zs; T = τ))
(6)
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In the given equation, x represents the input, W denotes the student model’s param-
eters, y represents the actual ground truth label, andH represents the cross-entropy loss
function. The SoftMax function, which depends on the temperature parameter T, is denoted
by σ. The coefficients α and β are utilized to balance the contributions of the distillation
loss and the student loss, where β = 1− α. The logits of the student and teacher models
are denoted as zs and zt, respectively, with the subscripts s and t indicating the student and
teacher models.

From the loss function, it is observed that the values of τ, α, and β are hyperparame-
ters. The temperature parameter, τ, controls the richness of information in the soft labels
distribution. Increasing the temperature leads to a more diverse distribution. However,
it is important to note that using higher temperatures may not always be beneficial for
the student model, as excessively high temperatures can make it difficult for the student
model to capture all of the rich information. It is generally recommended to use lower
temperatures, although the most suitable temperature value could differ depending on the
unique attributes of the student model.

On the other hand, α and β dictate the weighted mean of both the distillation loss and
the student loss, with β being defined as 1− α. The authors have observed that setting α to
be much smaller than β leads to the best results. This implies that the distillation loss has
a higher weight in the overall loss function, emphasizing the transfer of knowledge from
the teacher to the student. It should be noted that the values of τ, α, and β are determined
through experimentation and fine-tuning.

3.3. Stacking

Ensemble learning is a powerful machine learning technique designed to improve
predictive performance by amalgamating the forecasts from numerous models [40]. There
are different approaches to implementing ensemble learning, including bagging, stacking,
and boosting. In this paper, we focus specifically on the stacking method, which involves
training multiple models on the same dataset and combining their predictions using a meta-
learner. By employing a stacking approach, we aim to harness the collective intelligence
of multiple models and take advantage of their complementary strengths to enhance the
accuracy and effectiveness of our predictive model. The configuration of ensemble learning
with stacking is depicted in Figure 5.

Figure 5. Structure of the stacking ensemble method.

One common approach to stacking is the two-level hierarchy of models. In this
approach, the individual models, also known as level-0 models or first-level learners, make
predictions on the data. The predictions from these models are then used as inputs for
the meta-learner or level-1 model, which combines them to produce the final prediction.
While various machine learning models can be used as the meta-learner to aggregate
the predictions, logistic regression is commonly employed. This choice ensures that the
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complexity of the model is primarily focused on the lower-level ensemble member models.
By doing so, the simple combiner model can effectively learn to utilize the predictions of the
lower-level models and determine which classifiers are more likely to succeed in different
regions of the feature space, combining their predictions accordingly. By employing
stacking in ensemble learning, we can exploit the diversity and collective intelligence
of multiple models, thereby improving the comprehensive predictive capabilities and
constructing a more resilient and precise model. The training procedure for the proposed
SDViT approach is outlined in Algorithm 1.

Algorithm 1 The procedural steps for training the proposed SDViT method

Require: Dataset D = {(x1, y1), (x2, y2), . . . , (xm, ym)}, First level learning algorithm
A1, . . . , AT , Second level learning algorithm A

1: for t = 1, 2, . . . , T do
2: mt = At(D)
3: end for
4: D′ = Φ
5: for i = 1, 2, . . . , T do
6: for t = 1, 2, . . . , T do
7: fit = mt(xi)
8: end for
9: D′ = D′ ∪ {(( fi1, fi2, . . . , fit), yi)}

10: end for
11: m′ = A(D′)
12: return M(x) = m′(m1(x), m2(x), . . . , mT(x))

The ensemble learning training process begins with taking an input of hand gesture
dataset D consisting of pairs (xi, yi), where xi represents the input data and yi is the
corresponding label of the hand gesture samples. Additionally, it requires two sets of
learning algorithms: A1, A2, . . . , AT for the first level and A for the second level. The
algorithm starts by performing first-level learning. It iterates over T steps, where in each
iteration, it employs a distinct first-level learning algorithm denoted as At on the dataset D.
This process generates a set of first-level models m1, m2, . . . , mT , each capturing different
aspects and representations of the input data, which in our case is the set of knowledge-
distilled ViT models. Next, the algorithm proceeds with feature extraction. For each data
point xi in the original dataset D, it applies the set of first-level models to obtain a set of
intermediate features fi1, fi2, . . . , fit. These intermediate features serve as representations
that capture different levels of abstraction and contextual information from the input hand
gesture data.

To further enhance the training process, an augmented dataset D′ is created. Initially,
D′ is an empty set denoted by Φ. The algorithm then iterates over each data point xi and
collects the intermediate features fi1, fi2, . . . , fit obtained in the previous step. It combines
these features with the original label yi and adds the augmented pair (( fi1, fi2, . . . , fit), yi)
to the augmented dataset D′. This augmentation expands the dataset by incorporating the
intermediate features alongside the original data. With the augmented dataset in place,
the algorithm proceeds to the second-level learning. It applies the second-level learning
algorithm A to the augmented dataset D′, resulting in the training of the final model m′.
This model integrates the information and representations learned from both the original
input data and the intermediate features obtained from the first-level models.

Finally, the trained model M(x) is defined as the composition of the final model m′

and the set of first-level models m1, m2, . . . , mT . Given an input data point x, the model
M(x) leverages the combined knowledge and representations from the first- and second-
level models to make the final prediction. By stacking multiple levels of learning and
incorporating intermediate representations, the algorithm aims to enhance the performance
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and representation power of the final model. This enables the model to effectively grasp
intricate patterns and connections within the hand gesture data.

4. Experiment and Analysis

In this section, we employ three benchmark datasets that are commonly used by
researchers in the field of static hand gesture recognition [3,6,26,41–44] to assess the effec-
tiveness of the proposed SDViT method. These datasets encompass the ASL, ASL with
digits, and NUS hand gesture datasets.

4.1. Datasets

The ASL dataset, created by the authors in [45], serves as the first benchmark dataset
for evaluation. It consists of 65,774 image samples representing 24 distinct hand gestures,
encompassing the letters A to Y. It is worth noting that this dataset does not include the
dynamic hand gestures J and Z. To introduce variation in the samples, the images were
signed by five different individuals. Each class within the dataset contains a varying
number of image samples, with the letter W having the highest count of 6221 samples,
while the letter F has the lowest count of 5235 samples. Figure 6 displays the image samples
corresponding to each category in the ASL dataset.

Figure 6. Illustrations of images representing each category within the ASL dataset. The label of each
category is shown at the top of each subfigure.

The second dataset is known as the ASL with digits dataset, which was created by the
authors in [46]. This dataset comprises 36 unique classes of hand gestures, encompassing
the letters A to Z in addition to the numbers 0 to 9. It consists of hand gestures performed
by five different signers to introduce variation, resulting in a total of 2515 image samples.
Each class in this dataset is signed 25 times by the first and second signer except for the
letter T, which is signed 20 times. The third and fourth signers perform each class five
times, while the final signer performs each class ten times. Image samples representing
each category in the ASL with digits dataset are depicted in Figure 7.

For the NUS hand gesture dataset [47], it comprises 10 classes and includes 2000 image
samples. The 10 classes of hand gestures correspond to the letters A to J. To enhance
the diversity in hand gestures, this dataset incorporates the largest number of signers
among the three datasets, totaling 40 signers. Each signer performs each class five times.
Image samples representing each category in the NUS hand gesture dataset are exhibited
in Figure 8.
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Figure 7. Illustrations of images representing each category within the ASL with digits dataset. The
label of each category is shown at the bottom of each subfigure.

Figure 8. Illustrations of images representing each category within the NUS hand gesture dataset.
The label of each category is shown at the bottom of each subfigure.

Figure 9 provides a visual representation of image samples from the three datasets,
depicting the diverse challenges encountered in static hand gesture recognition. These chal-
lenges encompass five key categories: pose, lighting, background, occlusions, and similarity.
In the pose challenges, images from the same class exhibit subtle variations in pose due to
different signers. This introduces potential confusion for both human experts and machine
learning models, as the nuanced differences in signing might lead to misinterpretations.
Addressing lighting challenges, the displayed image samples capture hand gestures under
suboptimal lighting conditions. Such conditions pose a difficulty in accurately discerning
the hand gestures, thereby presenting a challenge for robust recognition. The background
challenges showcase image samples against complex backgrounds. This complexity has
the potential to mislead machine learning models, as elements of the background may be
misconstrued as integral parts of the hand gesture. The occlusion challenge is exemplified
by image samples where certain parts of the hand gestures, such as the thumb finger or a
significant portion of the gesture, are obscured. This introduces ambiguity and difficulty
in the interpretation of the hand gestures. Lastly, the similarity challenge is demonstrated
through image samples where subtle differences exist between hand gestures of different
classes. For instance, distinctions in the positioning of the thumb differentiate similar
gestures, such as numbers and alphabets. These minute differences can be challenging for
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both human experts and machine learning models to accurately discern. The presence of
these challenges in static hand gesture recognition underscores the complexity of the task.
The potential for confusion or misinterpretation not only poses difficulties for human ex-
perts but also demands sophisticated approaches in machine learning models to effectively
navigate and overcome these challenges.

Figure 9. Illustrations of images representing each category of challenges found within the three datasets.

4.2. Experimental Setup

To ensure robust experimentation, this paper employs five-fold cross-validation (CV),
where the dataset is split into five separate subsets or folds. During each fold, four subsets
will be used for training purposes, while the remaining subset will serve as the test set. This
process will be repeated, with each subset being used as the test set in turn. By employing
five-fold CV, every subset of the dataset will serve as the test set at least once, thereby
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reducing the risks of biased estimation and overfitting. Therefore, this method is commonly
used by researchers in the field [3,6,17,23,41] as it is reliable for assessing model performance
and mitigating the impact of data distribution variations among different subsets.

Table 1 illustrates the dataset division into folds and their assignments for training
and testing. The dataset is segregated into five folds, numbered from 1 to 5. In each fold,
the training sets are composed of four folds, while the remaining fold is used as the test
set. This systematic arrangement ensures that the entire dataset is employed for both
training and testing in a balanced manner throughout the CV process. Overall, employing
five-fold CV facilitates a thorough assessment of the model’s performance as it assesses
its generalization capabilities across multiple partitions of the dataset. This methodology
serves as a reliable way for verifying the model’s effectiveness and reduces the impact of
data distribution variations among different subsets.

Table 1. Distribution of the dataset among training and testing sets.

Dataset Folds Training Set (80%) Testing Set (20%) Total (100%)

ASL 5 52,619 13,155 65,774

ASL with Digits 5 2012 503 2515

NUS Hand Gesture 5 1600 400 2000

4.3. Experimental Analysis

The proposed SDViT approach consists of three components: the vision yransformer,
knowledge distillation, and ensemble learning stacking. To optimize the performance
of the pretrained vision transformer through transfer learning and fine-tuning, a set of
experiments is being carried out to identify the best combination of hyperparameters on
the three benchmarking datasets. In the initial stage, all images from the three datasets
are resized to dimensions of 256× 256 which is a common approach utilized by existing
researchers [48–52] for transformer-based models. This higher resolution is advantageous
for fine-tuning the ViT compared with the pretrained ImageNet21k dataset, which has
an image dimension of 224× 224. Research by [37] shows that feeding higher resolution
images into the pretrained ViT with the same patch size leads to better performance
due to the larger effective sequence length generated. Next, the input images undergo
preprocessing in accordance with the ViT model’s requirements. Subsequently, a flattening
layer, batch normalization layer, and dense layer with SoftMax activation are applied for
making predictions. The model is configured by having the rectified Adam optimizer
employing a learning rate of 0.0001, by using categorical cross-entropy as the loss function,
and by using accuracy as the evaluation metric.

In addition to the training setup, two essential callback methods, namely early stop-
ping and reduce learning rate on plateau, are incorporated into the model. Early stopping
is a fundamental technique that prevents overfitting and improves model generalization.
It monitors the accuracy on a validation set during training and halts the process if the
performance degrades over a set number of epochs. The parameters for early stopping
include monitoring accuracy, a minimum delta of 0.0001, patience of 5, mode set to max,
restore best weights set to true, and verbose of 1. The critical aspect of “restore best weights”
becomes apparent in its role as a safeguard against overfitting. When set to true, this
parameter ensures that, upon early stopping, the model reverts to the set of weights that
achieved the highest accuracy on the validation set. This strategic addition is pivotal for
preserving the model’s ability to generalize well to new data. By restoring the weights
associated with optimal validation performance, the model is less prone to memorizing
noise or idiosyncrasies in the training data, promoting better generalization to real-world
scenarios and unseen data. Simultaneously, the adaptive learning rate technique, known
as reduce learning rate on plateau, is employed to dynamically adjust the learning rate
during training. This technique contributes to the convergence of the model, preventing
it from converging too quickly or too slowly. The parameters for reduce learning rate on
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plateau involve monitoring accuracy, a factor of 0.2, patience of 2, verbose of 1, minimum
delta of 0.0001, minimum learning rate of 0.000001, and mode set to max. The adaptive
learning rate proves beneficial by adjusting the learning rate when a specified metric, such
as accuracy, shows no improvement for a set number of epochs. These callback methods,
when integrated into the training process, enhance the model’s efficiency, stability, and
generalization performance.

Two experiments were conducted on the pretrained ViT. The first experiment focused
on comparing the ViT configured with a patch size of 32 × 32, referred to as ViT B32, with
fine-tuning of all available layers using weights from ImageNet21k and ImageNet2012
datasets. The results can be observed from Table 2, while the best results were achieved
when using weights from ImageNet21k + ImageNet2012, with testing accuracies of 99.97%
for the ASL dataset, 99.01% for the ASL with digits dataset, and 99.85% for the NUS hand
gesture dataset. On average, across all three datasets, the accuracy reached 99.61%. The
second experiment involved fine-tuning the ViT B32 with ImageNet21k + ImageNet2012
weights by unfreezing different numbers of layers, ranging from 3 to 19 layers. The results
can be observed from Table 3, while the best results were obtained when fine-tuning
12 layers, achieving testing accuracies of 99.98% on the ASL dataset, 99.40% on the ASL
with digits dataset, and 99.85% on the NUS hand gesture dataset. On average, across all
three datasets, the accuracy reached 99.74%.

Table 2. Results of weights experiment of ViT on the three benchmark datasets.

Weights
Datasets

Average
ASL ASL with Digits NUS Hand Gesture

ImageNet21k 99.94% 98.53% 99.15% 99.21%

ImageNet21k + ImageNet2012 99.97% 99.01% 99.85% 99.61%

Table 3. Results of fine tuning experiment of ViT on the three benchmark datasets.

Fine Tune Layers
Datasets

Average
ASL ASL with Digits NUS Hand Gesture

3 99.93% 97.46% 98.20% 98.53%

4 99.95% 98.57% 99.15% 99.22%

5 99.97% 98.69% 99.05% 99.24%

6 99.98% 98.77% 99.35% 99.36%

7 99.98% 98.85% 99.40% 99.41%

8 99.98% 99.08% 99.60% 99.55%

9 99.98% 99.09% 99.80% 99.62%

10 99.99% 99.36% 99.80% 99.72%

11 99.98% 99.24% 99.80% 99.68%

12 99.98% 99.40% 99.85% 99.73%

13 99.96% 98.85% 99.70% 99.50%

14 99.95% 98.81% 99.75% 99.50%

15 99.96% 98.89% 99.85% 99.57%

16 99.96% 98.49% 99.70% 99.38%

17 99.97% 98.85% 99.75% 99.52%

18 99.96% 98.69% 99.90% 99.52%

19 99.97% 99.01% 99.85% 99.61%
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To perform knowledge distillation on the pretrained vision transformer (ViT), a series
of experiments were carried out to identify the best hyperparameter setup. The teacher and
student models used in the knowledge distillation process have the same configurations as
the pretrained ViT experiments but with different fine-tuning layers. The student model
is a scaled-down version of the ViT, while the teacher model is a larger ViT. The model
was then configured using the rectified Adam optimizer, utilizing a learning rate of 0.0001.
Accuracy was used as the evaluation metric. The student loss function was categorical cross-
entropy with label smoothing of 0.2, and the distillation loss function was Kullback–Leibler
divergence, with an alpha value of 0.1 and a temperature of 10. Additionally, early stopping
and reduce learning rate on a plateau were implemented during the training phase.

The first experiment for knowledge distillation focused on comparing teacher and
student models with different fine-tuning layers, as more fine-tuning layers result in a more
complex model. Various combinations of teacher–student models were tested, including
models with more, fewer, or the same number of fine-tuning layers. The best results were
obtained when the teacher model had 12 fine-tuning layers and the student model had
11 fine-tuning layers. With this setup, the model achieved accuracy scores of 99.99% on the
ASL dataset, 99.36% on the ASL with digits dataset, and 99.90% on the NUS hand gesture
dataset. On average, across all three datasets, the accuracy reached 99.75%. The second
experiment focused on the alpha and temperature hyperparameters in the knowledge
distillation process. The teacher and student models from the previous experiment, with
12 and 11 fine-tuning layers, respectively, were used. The most favorable outcomes were
obtained when using the default temperature of 10 and an alpha value of 0.5, resulting
in accuracies of 99.99% on the ASL dataset, 99.40% on the ASL with digits dataset, and
99.95% on the NUS hand gesture dataset. On average, across all three datasets, the accuracy
reached 99.78%. The model was then saved in the h5 format for the stacking process,
preserving the acquired knowledge and configurations to contribute effectively to the
ensemble learning approach.

Finally, to leverage ensemble learning stacking with the knowledge-distilled models,
an experiment was conducted using the distilled student model from the previous phase.
The objective was to find the optimal combination of distilled student models that enhanced
the overall performance. The predictions of each distilled student model on the dataset,
which were loaded from the h5 model saved in the previous experiment, were stacked
together before being passed to the logistic regression model for training. The best results
were achieved by stacking four different models. The first combination consists of the
distilled student model with 12 fine-tuned layers, a teacher model with 11 fine-tuned layers,
and an alpha value of 0.5. The second combination involves the distilled student model
with 11 fine-tuned layers, a teacher model with 12 fine-tuned layers, and an alpha value of
0.5. The third combination includes the distilled student model with 12 fine-tuned layers,
a teacher model with 11 fine-tuned layers, and an alpha value of 0.1. Lastly, the fourth
combination comprises the distilled student model with 11 fine-tuned layers, a teacher
model with 12 fine-tuned layers, and an alpha value of 0.1. As a result, the proposed
method achieved outstanding performance. The testing accuracy reached 100.00% on
the ASL dataset, 99.60% on the ASL with digits dataset, and 100.00% on the NUS hand
gesture dataset, leading to an average accuracy of 99.87% across all three datasets. This
demonstrates the effectiveness of the ensemble learning stacking approach when applied
to the knowledge-distilled models.

An additional experiment was also conducted to assess and validate the performance
of the stacked distilled ViT (SDViT) model in comparison with the stacked ViT model. In
this experiment, we stacked ViT models with a configuration similar to that of SDViT. The
best result was achieved by stacking four different models, specifically, the top-performing
ViT models from our pretrained ViT experiment, namely the ViT models fine-tuned with
10, 11, 12, and 19 layers. However, as shown in Table 4, while the stacked ViT demonstrated
strong performance, it slightly lagged behind SDViT on the ASL with digits dataset, with a
performance difference of just 0.04%. It is also worth noting that stacked ViT also utilized a
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higher number of trainable parameters, exceeding SDViT by about 9.5 million trainable
parameters. Therefore, our findings suggest that knowledge distillation not only aids in
model compression but also improves the model performance.

Table 4. Results of stacked ViT compared against the proposed SDViT method on the three benchmark
datasets.

Method No. of Trainable Parameters

Dataset

Average
ASL ASL with Digits NUS Hand

Gesture

Stacked ViT 278,843,904 100.00% 99.56% 100.00% 99.85%

SDViT 269,345,280 100.00% 99.60% 100.00% 99.87%

4.4. Experimental Results and Discussions

The proposed SDViT approach achieved remarkable testing accuracies on different
datasets. Specifically, it achieved a 100.00% accuracy on the ASL dataset, 99.60% accuracy
on the ASL with digits dataset, and 100.00% accuracy on the NUS hand gesture dataset.
On average, across all three datasets, the testing accuracy stands at an impressive 99.87%.
Table 5 shows a more comprehensive view of the performance of the proposed SDViT
approach in each cross-validation set for the three datasets.

Table 5. Results of the proposed SDViT method for each cross-validation set on the three benchmark
datasets.

Dataset Cross-Validation Set Test Accuracy (%) F-Score

ASL

1 100.00 1.00
2 100.00 1.00
3 99.99 1.00
4 100.00 1.00
5 99.99 1.00

Average 100.00 1.00

ASL with digits

1 99.20 1.00
2 100.00 1.00
3 100.00 1.00
4 99.20 1.00
5 99.60 1.00

Average 99.60 1.00

NUS hand gesture

1 100.00 1.00
2 100.00 1.00
3 100.00 1.00
4 100.00 1.00
5 100.00 1.00

Average 100.00 1.00

Figures 10–12 present the cost function against epochs graphs for the proposed SDViT
approach across three distinct datasets. The incorporation of early stopping in the training
phase is evident in these graphs, showcasing the model’s adaptive behavior in halting the
training process when the loss ceases to decrease. This strategic intervention signifies that
the model ceases to enhance its generalization capability. This implementation of early
stopping serves a dual purpose. Firstly, it optimizes computational resources by concluding
the training process upon reaching an optimal point, eliminating the need for training to a
fixed number of epochs. This results in a more efficient use of computational power and
time, preventing unnecessary prolongation of the training phase. More critically, the early
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stopping mechanism acts as a safeguard against overfitting. By recognizing when the loss
on the validation set plateaus or starts to rise, the model prevents itself from becoming
overly specialized to the training data. This proactive measure ensures that the model
not only performs well on the training set but also exhibits robust generalization to new,
unseen data.

Figure 10. Cost function against epochs graph of the proposed SDViT approach on the ASL dataset.

Figure 11. Cost function against epochs graph of the proposed SDViT approach on the ASL with
digits dataset.

Figure 12. Cost function against epochs graph of the proposed SDViT approach on the NUS hand
gesture dataset.

Figure 13 illustrates examples of misclassified samples from the benchmark datasets,
mainly consisting of the four misclassified samples from the ASL with digits dataset. Two
samples of the hand gesture for the letter O were misclassified as the number 0, one sample
of the hand gesture for the letter V was misclassified as the number 2, and one sample of the
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number 0 was misclassified as the letter O. The misclassification of the hand gestures for the
letter O and the number 0 is due to their similarity, which can also result in misclassification
by humans when viewed in isolation from contextual cues. The hand gesture for the letter
V being misclassified as the number 2 is due to their close resemblance, with only subtle
differences in the positioning of the thumb area, which can also result in misclassification
by humans from certain angles. Figures 14, 15, and 16 display the confusion matrices
for the ASL, ASL with digits, and NUS hand gesture datasets, respectively. For both the
ASL and NUS hand gesture datasets, the confusion matrices reveal that all classes were
predicted accurately.

Figure 13. Misclassified image samples from the benchmark datasets.

Figure 14. Confusion matrix of the proposed SDViT method on the ASL dataset.
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Figure 15. Confusion matrix of the proposed SDViT method on the ASL with digits dataset.

Figure 16. Confusion matrix of the proposed SDViT method on the NUS hand gesture dataset.

Table 6 presents a performance evaluation comparing the proposed SDViT with exist-
ing SOTA approaches on the ASL dataset, ASL with digits dataset, and NUS hand gesture
dataset. Noticeably, the proposed SDViT method outshines the compared methods in
all three datasets, achieving the highest classification accuracy. Specifically, it achieved a
remarkable classification accuracy of 100.00%, 99.60%, and 100.00% on the ASL dataset,
ASL with digits dataset, and NUS hand gesture dataset, respectively. Overall, when consid-
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ering the average accuracy across all three datasets, the proposed method demonstrated an
impressive accuracy of 99.87%, outperforming the SOTA approaches under comparison.

Table 6. Accuracy percentages for classification (%) of the SOTA methods and the proposed SDViT
method across the three hand gesture datasets.

Method ASL Dataset ASL with Digits Dataset NUS Hand Gesture Dataset Average Accuracy

Deep learning with CNN [41] 99.96 - 94.70 -
CNN Baseline A [42] 99.85 98.69 89.15 95.90
CNN Baseline B [43] 99.78 98.65 89.30 95.91
ADCNN [26] 98.50 98.49 83.10 93.36
DAG-CNN [44] 99.89 98.13 91.05 96.36
EdenseNet [6] 99.89 98.85 96.75 98.50
CNN-SPP [3] 99.94 99.17 95.95 98.35
SDViT (Ours) 100.00 99.60 100.00 99.87

5. Conclusions

In conclusion, this paper proposes stacking of distilled vision transformers, referred
to as SDViT, for hand gesture recognition. The proposed SDViT encompasses several key
components that contribute to its effectiveness. Firstly, transfer learning and fine-tuning of
pretrained ViTs are employed, leveraging their superior performance and computational
efficiency compared with SOTA CNNs. By incorporating early stopping and reduce
learning rate on plateau techniques, the pretrained ViTs are fine-tuned to achieve optimal
results. Additionally, knowledge distillation techniques are applied using the pretrained
ViTs as both teacher and student models. This process not only enhances the performance of
the models but also reduces their overall size, resulting in reduced computational resource
requirements. Furthermore, the knowledge distilled student models are ensembled using a
stacking approach. This approach combines the predictions of multiple stacked models,
effectively reducing bias and enhancing model stability and accuracy.

While the proposed SDViT model demonstrates remarkable performance in hand
gesture recognition, it is essential to acknowledge certain limitations and identify potential
areas for improvement. One notable aspect is the reliance on distilled student models which,
despite their computational efficiency, might not capture all of the nuanced features present
in the original ViT. Additionally, the generalization of the model across diverse datasets
and real-world scenarios warrants further investigation. The sensitivity of the model to
variations in lighting conditions, occlusions, or dynamic backgrounds could be a potential
challenge that needs attention. Furthermore, the ensemble learning approach, while
effective, introduces additional computational overhead, and optimizing the ensemble size
and configuration could be explored for efficiency. These considerations pave the way
for future research to refine and extend the capabilities of the SDViT model in addressing
real-world challenges and diverse application scenarios.

The techniques and insights from SDViT, which include transfer learning, knowledge
distillation, and ensemble learning, present a versatile toolkit with applications extend-
ing beyond hand gesture recognition. One notable application is in the realm of object
recognition, where SDViT’s transfer learning facilitates swift adaptation to new datasets,
leveraging pretrained ViTs for robust feature extraction and hierarchical representations.
The knowledge distillation process ensures the creation of compact yet accurate models
that are suitable for resource-constrained environments. The ensemble learning aspect
contributes to the model’s robustness, enhancing accuracy and generalization by aggregat-
ing diverse perspectives from multiple distilled models. Additionally, in medical image
analysis, SDViT’s ability to capture intricate patterns and relationships proves valuable.
Transfer learning aids in scenarios with limited labeled medical datasets, while knowledge
distillation creates more efficient models without sacrificing diagnostic capabilities. The
ensemble learning approach ensures reliability across diverse patient profiles and imaging
conditions. These examples illustrate how SDViT’s methodologies adapt to specific com-
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puter vision tasks, offering improvements in performance, efficiency, and interpretability,
thus showcasing its potential for broader applications.

In our extensive evaluations, the proposed SDViT consistently outperformed exist-
ing methods on three benchmark datasets. Achieving a remarkable testing accuracy of
100.00% on the ASL dataset, 99.60% on the ASL with digits dataset, and 100.00% on the
NUS hand gesture dataset and an average accuracy of 99.87% across all three datasets, the
results underscore the model’s robustness and effectiveness. The superior performance
positions SDViT as a state-of-the-art solution for vision-based static hand gesture recogni-
tion, demonstrating its potential for real-world applications across diverse domains within
computer vision.
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