

Annual Research & Review in Biology 4(6): 924-935, 2014



SCIENCEDOMAIN international www.sciencedomain.org

## Spore Morphology of 34 Species of Monilophyta from Northern Parts of Iran

### Ali Mazooji<sup>1\*</sup> and Fahimeh Salimpour<sup>2</sup>

<sup>1</sup>Department of Biology, Roodehen Branch, Islamic Azad University, Roodehen, Iran. <sup>2</sup>Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran.

### Authors' contributions

Authors may use the following wordings for this section: This work was carried out in collaboration between two authors. Author AM designed the study, collected the materials identified them and performed the research. Author FS managed the literature searches and wrote the manuscript. All authors read and approved the final manuscript.

**Original Research Article** 

Received 2<sup>nd</sup> September 2013 Accepted 24<sup>th</sup> October 2013 Published 12<sup>th</sup> December 2013

### ABSTRACT

**Aim:** The aim of this study is to analyze the 34spores species by using SEM that grown in Northern parts of Iran as a contribution to the knowledge about the general morphology and assess if these characteristics could be useful for systematic purpose.

**Methodology:** For Scanning Electron Microscope, the material treated with hot 3% sodium carbonate, for 2 min, washed, dehydrated, suspended in 96% ethanol and then transferred to acetate plates and finally coated with gold. The shape, ornamentation, the equatorial and polar diameter, and the number of cells in annulus in 38 spores were studied.

**Results:** ornamentations of spores consist of rugulate, ornate, echinate or microechinate, verrucate, perforate and spinule or spinuluse. Based on our results the identification key was devised using spore characteristics.

**Conclusion:** Based on our results, the spore sculpture could be useful for systematic purpose, specially in Polypodiaceae, Thelypteridaceae and Hydrofilicinae ferns.

Keywords: Micro morphology; Fern; SEM; Iran; Spores.

\*Corresponding author: Email: amazooji@yahoo.com;

### **1. INTRODUCTION**

The ferns are a group of lower tracheophyta that range of distribution extends throughout the temperate regions. According to Mazooji et al., 45 species belonging to 21 genera are represented in Iran specially in the northern parts [1]. Contributions on Sinopteridaceae spore morphology were made by Khosravi, who studied the relationship between species by using Scanning Electron Microscope [2]. Cubasa and Pardo using SEM, described the spore in *Polystichum* as trilete with a verrucate exospores [3]. Using both LM and SEM, Erdtman and Sorsa described 45 species of spores and commented that, in some species, the spores were devoid of perispore, and others that those which had periospore, were ornamented by pleated with echinates or granules [4]. Tryon and Lugardon in their work on spores of the Pteridophyta described and illustrated with SEM and TEM the spore that characterized the genera of the Cyatheaceae, Grammitidaceae, Aspleniaceae, and Polypodiaceae [5]. Denk recorded the Cystopterisregia from Iran based on spore sculpture [6]. Spore morphology of six genera of Polypodiaceae from the Northwestern Argentina were analyzed by Giudice et al. According to this study, the spores were monolete with elliptic to oblong in polar view [7]. Morphology and ultrastructure of the spores of Grammitidaceae from Argentina were analyzed by Ramos Giacosa et al. [8,9]. The ornamentation of the five species of Grammitis were tuberculate, papillate or verrucate. Multivariate analyses based on morphological and anatomical characters performed by Wannachai et al. to investigate the phenetic relationship in Lepisorus genus and its related genera [10]. Also, spore morphology of twenty species of the genus Lindsaea from Japan with SEM using were illustrated by Lin et al. [11]. They described that spores were trilete and had with verrucose sculpture. The variation in the spore size is in relation to the ploidy of cytotypes. Oliver studied fifty spore's fern in India by using SEM [12]. He diagnostic that most species may can be distinguished by differences in shape, and in the structure and sculpture of the perispore and exospore layer. As a result, of the diagnostic key was elaborated devised based on using spore morphology. The aim of this study in to analyze the 34 spores species by using SEM that grown in Northern parts of Iran as a contribution to the knowledge about the general morphology and assess if these characteristics could be useful for systematic purpose.

### 2. MATERIALS AND METHODS

The studies were conducted on herbarium material provided by the VezarateJahad Keshavarzi Herbarium (IRAN). Origin of species and their voucher numbers examined are given in Table 1. For SEM study, the material treated with hot 3% sodium carbonate, for 2 min, washed, dehydrated, suspended in 96% ethanol and then transferred to acetate plates and finally coated with gold. The observation were made a JEOL ISMT–100 Scanning Electron Microscope. Shape, ornamentation, the equatorial and polar diameter, and the number of cells in annulus were studied. The terminology used for spore sculpturing is based on the work by Moore et al. (Table 2) [13].

| Species                                     | Locality                            | Voucher number |
|---------------------------------------------|-------------------------------------|----------------|
| Adiantum capilus-verneris L.                | Mazandaran : Royan road to          | 2009           |
|                                             | Noshahr, 350 m                      |                |
| Asplenium adiantumnigrum L.                 | Gilan : Asalem to Khalkhal, 2300m   | 2023           |
| Asplenium onopteris L.                      | Mazandaran : Lahijan to siyahkoh,   | 2042           |
|                                             | 250m                                |                |
| Asplenium ruta – muraria L.                 | Gilan : Asalem to Khalkhal, 2200m   | 2045           |
| Asplenium septentrionale (L.) Hoffm.        | Gilan : Asalem to Khalkhal, 2200m   | 2037           |
| Asplenium officinarum D.C.                  | Gilan : Masoleh, 950m               | 2051           |
| Athyrium distentifoliumTausch ex.           | Mazandaran : Abasabad to klardasht, | 2001           |
| Opiz.                                       | 900m                                |                |
| <i>Athyrium filix – femina</i> (L.) Roth.   | Gilan : Asalem to Khalkhal, 1850m   | 2008           |
| Azolla filiculoides Lam.                    | Gilan : Bandar Anzali, -10m         | 2048           |
| Blechnum spicant (L.) roth.                 | Gilan : Shaft road to Lask, 900m    | 2049           |
| Cystopteris fragilis (L.) Bernh.            | Tehran : Darband, 2000m             | 2058           |
| <i>Cystopteris regia</i> (L.) Desvaux.      | Tehran : Dizin, 2500m               | 2052           |
| <i>Dryopteris affinis</i> (Lowe). Frazer –  | Mazandaran : Haraz road, 200m       | 2140           |
| Jankins                                     |                                     |                |
| D. carthusiana (Vill.) H.P. Fuchs.          | Gilan : Asalem to Khalkhal, 550m    | 2080           |
| <i>D. caucasica</i> (A. Braun.) Frazer –    | Gilan : Asalem to Khalkhal, 900m    | 2069           |
| Jankins&Jermy.                              |                                     |                |
| <i>D. dillatata</i> (Hoffm.) A. Gray        | Gilan : Asalem to Khalkhal, 450m    | 2075           |
| <i>D. expansa</i> (C. Presl.) Frazer –      | Mazandaran : Ramsar to              | 2076           |
| Jankins&Jermy.                              | Javaherdeh, 700m                    |                |
| <i>D. filix – mas</i> (L.) schott.          | Gilan : Asalem to Khalkhal, 700m    | 2066           |
| <i>D. pallida</i> (Bory.) Fomin.            | Ardebil : Fandoglo forest, 1900m    | 2062           |
| <i>D. remota</i> (A. Braun ex. Doll) Drice. | Mazandaran : Alamdeh to             | 2071           |
|                                             | Marzanabad, 300m                    |                |
| <i>Matteuccia struthiopteris</i> Tod.       | Mazandaran : Abasabad to            | 2083           |
| <b>.</b>                                    | Klardasht, 900m                     |                |
| Ophioglossum vulgatum L.                    | Mazandaran : Sangdeh, 2500m         | 16821          |
| Oreopteris limbosperma (Bellard. ex         | Gilan : shaft, Lask road, 950m      | 2084           |
| all.) Y. Holub                              |                                     |                |
| Polypodium interjectumShivas.               | Gilan : Asalem to Khalkhal, 100m    | 2095           |
| P. vulgare L.                               | Gilan : Asalem to Khalkhal, 1800m   | 2092           |
| Polystichum aculeatum (L.) Roth.            | Gilan : Asalem to Khalkhal, 450m    | 2103           |
| P. braunii (spenner) Fee.                   | Mazandaran : Abasabad to            | 2104           |
|                                             | Klardasht, 900m                     | 0447           |
| P. woronowii Fomin in Mon.                  | Gilan : Gizvin to Rasht, 350m       | 2117           |
| Pteridium aquilinum (L.) Kuhn.              | Gilan : roadbar, 350m               | 2122           |
| Salvinia natans (L.) All.                   | Gilan : Lahijan, -20m               | 2130           |
| i neiypteris paiustris                      | Gilan : Lahijan to Langroad,        | 2132           |
|                                             | -2/m                                | 0.400          |
| Woodsia alpina (Bolton.) S.F.Gray.          | Gilan : Asalem to Khalkhal, 2400m   | 2133           |

# Table 1. Materials and collecting data for micro morphological studies on spores in 34species of Pteridophyta

### **3. RESULTS AND DISCUSSION**

The species studied had general characteristic given below. In equatotial view, the spore sizes varied between 27.44–70.50  $\mu$ m. The spores are monolete or trilete and had bean, circular or elliptic shape (Fig. 1).The largest spores were showed in *Matteucia struthiopteris* Tod. and the smallest lowest ones were in *Dryopteris pallida* (Bory.) Fomin.

The ornamentations of spores were rugulate, ornate, echinate or microechinate, verrucate, perforate and spinule or spinuluse (Fig. 1). Based on our results the identification key was devised using spore characteristics as followed:

| 1.+ spore bean shape                                            | 2                                 |
|-----------------------------------------------------------------|-----------------------------------|
| - spore orbicular or elliptic                                   | 14                                |
| 2.+ sporangium without annulus Sa                               | alvinia groups (Salvinia,Azolla)  |
| - sporangium with annulus                                       | 3                                 |
| 3.+ the equatorial diameter > 60 µm                             | 4                                 |
| - the equatorial diameter < 60 µm                               | 6                                 |
| 4.+ spore ornate                                                | Matteucia                         |
| - sporeverrucate                                                | 5                                 |
| 5.+ cell numder of annulus is 10 – 11                           |                                   |
| - cell number of annulus is 14 – 45                             | Polvpodium vulgar                 |
| 6.+ spore rugulate                                              | Blechnum spicant                  |
| - different from above                                          |                                   |
| 7.+cell number of annulus <19                                   | 8                                 |
| - cell number of annulus >19                                    |                                   |
| 8.+ spore spinule                                               | Thelvpteris palustris             |
| - sporespinuluse                                                | Athvrium distentifolium           |
| 9.+ the polar diameter $>$ 30 µm, spore echinate or microechina | ate                               |
| Asplenium groups (A. onopteris, A. trichomanes, A. ruta-n       | nuraria, A.septenterional, A.     |
| adiantum-nigrum)                                                |                                   |
| - the polar diameter < 30 µm                                    |                                   |
| 10.+ the equatorial diameter > 40 µm                            |                                   |
| - the equatorial diameter < 40 µm                               |                                   |
| 11.+ spore rugular reticulate                                   | Oreopteris limbosperma            |
| - sporespinule Cystopter                                        | is groups (C. fragilis, C. regia) |
| 12.+ spore echinate- reticulate                                 |                                   |
| - sporespinuluse                                                | Polvsticum aculeutum              |
| 13.+ polar diameter< 25 um, spines shorter                      | Asplenium sclopendrium            |
| - polar diameter> 25 µm, spines longer                          | Polvstichum woronowii             |
| 14 + spore orbicular or subrobicular                            | 15                                |
| - spore elliptic                                                |                                   |
| 15 + the equatorial diameter < 40  um spore perforate           |                                   |
|                                                                 |                                   |
| - the equatorial diameter > 40 um                               |                                   |
| 16.+ cell number of annulus > 20                                | Adiantum capilus – veneris        |
| - cell number of annulus $< 20$                                 | 17                                |
| 17 + spore ornate                                               | Asplenium officinarum             |
| - sporeechinate                                                 | Woodsia alpina                    |
| 18 + spore ornate Drvopteris grou                               | n (D dillatata D carthusiana      |
| D affinis D caucasica D expansa D filix-mas D pallida)          |                                   |
| - spore different from above                                    | 19                                |
| 19.+ the equatorial diameter > 40 um                            | Dryonteris remota                 |
| - the equatorial diameter < 40 µm                               | 20                                |
| 20 + spore echinate                                             | Polystichumbraunii                |
| - sporedifferent from above                                     |                                   |
| 21 + spore rugulate, the polar diameter 28 28+0.01 um           | Pteridium aquilinum               |
| - snoresninuluse the polar diameter 26.1+0.01 µm                | Athyriumfilix _ femina            |
|                                                                 |                                   |

| Species                   | Shape    | Aperture | Ornamentation        | Cell Number of | Polar         | Equatorial    |
|---------------------------|----------|----------|----------------------|----------------|---------------|---------------|
| -                         | -        | -        |                      | Annulus        | Diameter (µm) | Diameter (µm) |
| Adiantum capilus-veneris  | Circular | trilete  | Rugulate             | 19-23          | 38.03         | 44.5          |
| Asplenium adiantum-nigrum | Bean     | monolete | Echinate             | 19-20          | 33.3          | 43.2          |
| A. onopteris              | Bean     | monolete | Echinate             | 19-20          | 31.85         | 42.14         |
| A. rutamuraria            | Bean     |          | Echinate             | 18-20          | -             | -             |
| A. septentrinal           | Bean     | monolete | Echinate             | 18-19          | 34.62         | 55.44         |
| A. trichomanes            | Bean     | monolete | Echinate             | 19-20          | 32.9          | 40.90         |
| Athyrium distentifolium   | Bean     | monolete | Spinuluse            | 16-18          | 29.3          | 34.5          |
| A. filix-femina           | Elliptic | monolete | Rugulate             | 13-14          | 26.1          | 31.1          |
| Azolla filiculoides       | Bean     | monolete | Ornate               | -              | 19.45         | 45.82         |
| Blechnum spicant          | Bean     | monolete | Rugulate             | 20-22          | 31.98         | 39.44         |
| Asplenium officinarum     | Circular | monolete | Ornate               | 17-19          | 36.54         | 44.04         |
| Cystopteris fragilis      | Bean     | monolete | Spinule              | 16-18          | 31.12         | 41.05         |
| C. regia                  | Bean     |          | Spinule              | 21-22          | 16.19         | 39.51         |
| Dryopterisaffinis         | Elliptic | monolete | Ornate               | 15-16          | 28.13         | 35.87         |
| D. carthusiana            | Elliptic | monolete | Ornate               | 14-15          | 28.63         | 33.26         |
| D. caucasica              | Elliptic | monolete | Ornate               | 15-16          | 38.82         | 49.5          |
| D. dillatata              | Elliptic | monolete | Ornate               | 13-15          | 31.4          | 45.5          |
| D. expansa                | Elliptic | monolete | Ornate               | 22-24          | 30.1          | 37.4          |
| D. filix – mas            | Elliptic | monolete | Ornate               | 15-16          | 25            | 35            |
| D. pallida                | Elliptic | monolete | Ornate               | 15-17          | 20.40         | 27.44         |
| D. remota                 | Elliptic | monolete | Verrucate            | 16-17          | 33.55         | 43.15         |
| Matteucia struthiopteris  | Bean     | monolete | Ornate               | -              | 55.21         | 70.50         |
| Ophioglossum vulgatum     | Circular | trilete  | Perforate            | 14-16          | 31.42         | 31.47         |
| Oreopteris limbosperma    | Bean     | monolete | Echinate             | 20-21          | 26.81         | 38.83         |
| Asplenium scolopendrium   | Bean     | monolete | Spinuluse            | 21-23          | 24.28         | 34.03         |
| Polypodium interjectum    | Bean     | monolete | Verrucate            | 10-11          | 48.82         | 65.09         |
| P. vulgar                 | Bean     | monolete | Verrucate            | 20-22          | 30.12         | 63.69         |
| Polystiehum aculeatum     | Bean     | monolete | Spinuluse            | 23-24          | 23.41         | 35.22         |
| P. braunii                | Elliptic | monolete | Echinate             | -              | 23.26         | 41.18         |
| P. woronowii              | Bean     | monolete | Echinate- reticulate | 19-20          | 29.99         | 33.99         |
| Pteridium aquilinum       | Elliptic | trilete  | Rugulate             | 14-16          | 28.28         | 29.88         |
| Salvinia natans           | Bean     | monolete | Ornate               | -              | 35.15         | 44.48         |
| Thelypteris palustris     | Bean     | monolete | Spinule              | 16-18          | 23.80         | 38.42         |
| Woodsia aplina            | Circular | monolete | Echinate             | 16-17          | 41.41         | 46.16         |

### Table 2. Spore characteristics by SEMin Pteridophytaspecies

According to our observations, the spore sculpture could be useful for systematic purpose. *Polypodium vulgar* and *P. interjectum* have similarity specially in rhizome anatomy, orbicular sori and morphology of spore but annulus cells can separate them. Also, the spore ornamentation of could be useful for distinguishing of *Thelypteris palustris* from *Orepteris limbosperma*. This species was named *Thelypteris limbosperma* in the past but the shape and sculpture confirmed Mazooji porposed. He separated these two species using cross section of rhizomes anatomy and morphology.

However, the spore characters couldn't separate *Dryopteris* species very well. It seems that morphology and the kind of steles are better for distinguished them, because most of species are apogame and have similarity especially in frond. Ivanova and Mirkowa (2003) noted that *D. palliada* and *D. carthusiana* have similarity in chromosome numbers [14]. In our study, only *D. remota* is differed from the other species by used spore ornamentation. Aspleniaceae is one of the few families that are nearly homogenous by cytologyically and morphology. Most of them have linear sorus, real indusium and pinnate or pinnatifid frond. Based on this analysis, it is verified that these are an ultrastractural homogeneity of the *Asplenium* species spores. Also, spore characteristics could be useful for separate the *Polystichum* species especially similar species means of *P. aculeatum* and *P. worronowii*. Two species of *Cystopteris* are very similar by with the different mean of size.

### 4. CONCLUSION

Based on our results, the spore sculpture could be useful for systematic purpose, specially in Polypodiaceae, Thelypteridaceae and Hydrofilicinae ferns. However, the results derived from our studies point out the need of further researches on spore especially by using TEM in order to obtain more information about spore ultra structure.











933



Fig. 1. Scaning electron microscopic photographs of spores (15000x, SEM).
1- Adianthumcapilus-veneris; 2- Aspleniumadiantum-nigrum; 3- Aspleniumonopteris; 4-Aspleniumrutamuraria; 5- Aspleniumseptenterional; 6- Aspleniumtrichomanes; 7-Aspleniumscolopendrium; 8- Aspleniumceterach; 9- Athyriumdistentifolium; 10-Athyriumfilix-femina; 11- Azollafilicoloides; 12- Blechnumspicant; 13- Cystopterisfragilis; 14- Cystopterisregia; 15- Dryopterisaffinis; 16- Dryopteriscarthusiana; 17-Dryopteriscaucasica; 18- Dryopterisdillatata; 19- Dryopterispallida; 20- Dryopterisremota; 21- Matteuciastruthiopteris; 22- Ophioglossumvulgatum; 23- Oreopterislimbosperma; 24-Polypodiuminterjectum; 25- Polypodiumvulgare; 26- Polysticumaculeatum; 27-Polysticumbraunii; 28- Polysticumworronowii; 29- Pteridiumaquilinum; 30- Salvia natans(microspore); 31- Thelypterispalustris; 32- Woodsiaalpina

### **COMPETING INTERESTS**

Authors have declared that no competing interests exist.

### REFERENCES

- 1. Mazooji A., Fallahian F, Nejadsatari T. Systematic study of fern in Northern parts of Iran. PhD Thesis. 2004.
- 2. Khosravi AR. Spore variation in Sinopteridaceae From Iran, Iran Jour. Bot.1998;7(2):207–213.
- 3. Cubasa P, Pardo C. Perispore structure in *P. setiferum*, *P. aculeatum* and their hybrid *P. xbicknellii*. American fern Journal. 1993;82(6):128–152.
- 4. Erdtman G, Sorsa P. Pollen and spore morphology/Plant taxonomy. Pteridophyta (test and additional illustrations). Almqvist and wiksell, Stockholm; 1971.
- 5. Tryon R, Lugardon B. Spores of Pteridophyta. Springer– Verlag, New york. 1991.
- 6. Denk TA. Record of *Cystopteris regia* from Iran, Iran Jour. Bot. 1998;7(2):254–267.
- 7. Giudice GE, Morbelli MA, Piñeiro MR, Copello M, Erra G. Spore morphology of the Polypodiaceae from North western Argentina, American fern Journal. 2004;94(1):9–27.
- 8. Ramos Giacosa JP, Morbelli MA, Giudice GE. Morphology and ultrastructure of the spores of the Grammitidaceae from Argentina, Review of palaeobotany and palynology. 2007;143:155–166.
- 9. Jermy C, Josephine C. The illustrated field guide to ferns and allied plants of the British isles. London, Published by HSMO.1993;
- Wannachai C, Thaweesakdi B, Bernard RB. Phenetic relationship between *Lepisorus* (J.sm.) Ching (Pteridophyta, Polypodiaceae) and its related genera. Bangladesh Journal of Plant Taxonomy. 2009;16(2):99-113.
- 11. Lin SJ, Kato M. Iwatsuki K. Spore morphology of the fern Genus *Lindsaea*. Journal of Japanese Botany. 1999;74(6):353–366.
- 12. Oliver JC. A study of spore characteristics of the ferns of Indiana, American fern Journal. 1968;58(1):5–12.
- 13. Moore PD, Webb JE, Elinson ME. Pollen analysis, 2<sup>nd</sup> edition. Blackwell Scientific; 1991.
- 14. Ivanova D, Mirkowa HP. Chromosomes numbers of Polish Ferns. Acta Biologia Cracoviensia series Botanica. 2003;45(2):93-99.

© 2014 Mazooji et al.; This is an Open Access article distributed under the terms of the Creative Commons. Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: http://www.sciencedomain.org/review-history.php?iid=365&id=32&aid=2700