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Abstract
Due to the fact that measured vibration signals from a bearing are complex and non-stationary
in nature, and that impulse characteristics are always immersed in stochastic noise, it is usually
difficult to diagnose fault symptoms manually. A novel hybrid fault diagnosis approach is
developed for denoising signals and fault classification in this work, which combines
successfully variational mode decomposition (VMD) and a one-dimensional convolutional
neural network (1D CNN). VMD is utilized to remove stochastic noise in the raw signal and to
enhance the corresponding characteristics. Since the modal number and penalty parameter are
very important in VMD, a particle swarm mutation optimization as a novel optimization method
and the weighted signal difference average as a new fitness function are proposed to optimize
the parameters of VMD. The reconstructed signals of mode components decomposed by
optimized VMD are used as the input of the 1D CNN to obtain fault diagnosis models. The
performance of the proposed hybrid approach has been evaluated using sets of experimental
data on rolling bearings. The experimental results demonstrate that the VMD can eliminate
signal noise and strengthen status characteristics, and the proposed hybrid approach has a
superior capability for fault diagnosis from vibration signals of bearings.

Keywords: fault diagnosis, bearing, variational mode decomposition (VMD), one dimensional
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1. Introduction

Rolling bearings are key components of rotating machines.
Once there is a serious failure, it may lead to unexpected
downtime and thereby result in huge financial losses or safety
issues. According to [1], bearing-related failures account for
over 30% of all rotary machines. Therefore, the goal of accur-
ate and effective fault diagnosis of bearings has attracted
much attention to ensure high production efficiency and to
improve the safety and reliability of rotary machines in indus-
trial processes. Vibration signal analysis is themost commonly
used approach due to its easy measurement and high cor-
relation with structural dynamics [2–7]. Ahmed and Nandi
have explored the combined compressive sampling method
of signals, and achieved good results in bearing fault dia-
gnosis [8, 9]. Also, they have explored the compressive sens-
ing method to produce highly compressed measurements of
bearing vibration signals [10, 11]. But the measured vibration
signals are complex and non-stationary in nature, and mean-
while impulse characteristics of rolling bearings are usually
immersed in stochastic noise. So, there are two challenging
issues in bearing fault diagnosis from vibration signals. The
questions are (a) how one should effectively eliminate noise
and (b) how one should extract valid fault features.

Some signal decomposition techniques, as powerful non-
linear and non-stationary signal processing tools, have been
developed and immediately attracted much attention in the
field of fault diagnosis, such as empirical mode decompos-
ition (EMD), ensemble EMD (EEMD), local mean decom-
position (LMD), singular value decomposition (SVD), empir-
ical wavelets transform (EWT), etc. Xu proposed a new bear-
ing fault diagnosis method combining SVD and the squared
envelope spectrum [12]. Longqing et al put forward a fault
diagnosis method of bearing clearance of a reciprocating com-
pressor based on LMD sample entropy and SVM [13]. How-
ever, these methods still have their drawbacks and limited
application. EMD has the drawbacks of mode mixing and end
effects, although it has good intrinsic locally adaptive prop-
erties. Rilling et al [14] first completely probed these issues
of EMD. EEMD, an extended version of EMD, is proposed to
address the modemixing of EMD [15] but creates a large com-
putational burden [16]. EWT can alleviate the sensitivity of
EMD to noise and sampling, but it cannot avoid invalid decom-
position caused by the concentration of boundaries. LMD can
make up for the shortcomings of EMD, but both are types of
recursive mode decomposition, which is affected by mode ali-
asing, end effects, and sampling frequency [17].

Variational mode decomposition (VMD) as a non-recursive
signal processing method has been recently proposed by
Dragomiretskiy and Zossso [18]. Xin et al [19] proposed a
rolling bearing fault diagnosis method based on VMD and
SVM. The energy features are extracted from the intrinsic
modal components decomposed by VMD and used as the
input of a support vector machine (SVM) to judge the work-
ing state and fault type of the bearing. Gu et al [20] proposed a
new fault diagnosis method based on statistical characteristics
such as variational pattern decomposition (VMD), SVM and

variance contribution rate, energy entropy (EE), and permuta-
tion entropy (PE). Liu et al [21] proposed a feature extrac-
tion method based on parameter optimization of VMD and
sample entropy, and further used to support SVM for fault
diagnosis. The performance of VMD is more powerful than
EMD in tone-separation [22] and EWT in feature extraction
[23], because the VMD can avoid the cumulative error and end
effects. When VMD is used to decompose signals, the num-
ber of decomposition components is always preset by experi-
ence, but it directly affects the decomposition effectivity, and
so does the penalty parameter. In order to solve the problems
of choosing the values of VMD parameters, a 1.5-dimensional
diagnosticmethod based on the optimizedVMDwith a genetic
algorithm (GA) is proposed for fault diagnosis [24]. However,
a single GA cannot handle the complexity in an efficient way.
Zhang et al [25] use the improved particle swarm optimization
(PSO) algorithm to optimize the parameters K and α of VMD
by using themaximumvalue ofweighted autocorrelation func-
tion as the optimization objective function. But PSO can easily
get trapped in a local optimum when solving a complex mul-
timodal problem [26], and the choice of fitness function also
affects the optimization [27]. In short, VMD can be used to
eliminate the noise of the non-stationary vibration signal of
bearings by decomposing signals, but the problem of how to
obtain the optimal parameters of VMD efficiently still needs
research.

The second challenging issue is the question of how one
should extract feature values. It is well known that the feature
extraction is a bottleneck problem and deep learning methods
can avoid this problem because they integratefeature extrac-
tion and classification operations into a single machine learn-
ing body to optimize jointly the classification performances
[28, 29]. Convolutional neural networks (CNNs) are widely
used tools for deep learning which are different from the tra-
ditional feed-forward ANN because of the three architectural
properties of the visual cortex cell: local receptive regions,
shared weights, and subsampling. CNNs are most frequently
used with two-dimensional (2D) data, such as images. Dong
et al [30] proposed a new bearing fault diagnosis method
based on multiple noise reduction of SVD and EMD and an
improved CNN for bearing weak fault identification. Wang
et al [31] uses a CNN and AE-DNN to detect and classify
faults of an MMC-HVDC system. Li et al [32] uses a CNN
to classify the time–frequency samples obtained by a short-
time Fourier transform for bearing vibration signals. How-
ever, recently, as an alternative, a modified version of 2D
CNNs, called 1D CNNs (1D-CNNs), has been developed
[33–35]. In many applications, 1D-CNNs are preferable to
their 2D counterparts in dealing with 1D signals due to the
reduced computational complexity and the same perform-
ancewith shallower architecture. Themain difference between
2D and 1D CNNs is the usage of 1D arrays instead of 2D
matrices for both kernels and feature maps [36]. A classifier
based on a 1D CNN has the ability to process the raw signal
directly and to extract the representative features more pre-
cisely, without explicit feature extraction or manual selection
[37].
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Therefore, in order to solve these two challenging issues
in bearing fault diagnosis, a novel hybrid fault diagnosis
approach is developed for the denoising of signals and fault
classification in this work. This combines successfully with
the VMD and 1D CNN. To obtain the appropriate decompos-
ition mode, it is necessary to find a method to optimize the
parameters of VMD and design an excellent fitness function.

The main contributions of this paper are summarized as
follows.

(a) A novel hybrid fault diagnosis approach is proposed to
solve the two challenging issues of non-stationary vibra-
tion signal from bearings.

(b) A novel PSMO method is proposed. The key parameters
of VMD are optimized by using the PSMO method which
has the advantages of both PSO and GA. Meanwhile, a
weighted signal difference average (WSDA) is proposed
as the fitness function.

(c) The denoising signals are reconstructed by the decompos-
ition modes and the reconstructed signals are estimated by
the index of PE.

(d) The effectiveness of the proposed method is verified using
real bearing data. The diagnosis results are analyzed from
the diagnosis accuracy, confusion matrix, and data distri-
bution, as well as comparison with other methods.

The rest of this paper is arranged as follows. In section 2
we propose VMD and a novel PSMO method. The 1D CNN
is introduced in section 3. A novel hybrid fault diagnosis
approach is proposed in section 4. The feasibility and perform-
ance of the proposed approach are discussed in section 5. Con-
clusions are drawn in section 6.

2. VMD and a novel PSMO method

In 2014, Dragomiretskiy and Zosso [18] introduced a new
adaptive signal processing method called VMD, which can
effectively decompose non-stationary nonlinear signals. In
contrast to EMD and LMD, VMD can effectively solve the
mode aliasing problem and has significant superior anti-noise
performance and higher computational efficiency. But, val-
ues of its decomposition parameters need to be artificially set,
which is prone to over-decomposition or under-decomposition
phenomena. In order to overcome the problem of VMD, PSO
and GA have been combined in a novel way to optimize the
VMD parameters.

2.1. Brief introduction to VMD

VMD can non-recursively decompose a multi-component
input signal into a discrete set of quasi-orthogonal band-
limited intrinsic mode functions (IMFs). Each IMF compon-
ent uk has a center frequency and a finite bandwidth, and

the corresponding constrained variation model is described as
follows [18]:

min
{ uk},{ωk}

{∑
k

∥∥∥∥∂t [(δ(t)+ j
πt

)
∗ uk(t)

]
ejωkt

∥∥∥∥ 2

s.t.
∑
k

uk = f

(1)

where uk = (u1,u2, · · · ,uk) is a set of modal component func-
tions, their sum is the original function f, ∂t is the partial deriv-
ative of time t,ωk = (ω1,ω2, · · · ,ωk) is the center frequency set
of the modal component, δ (t) is the unit pulse function, j is the
imaginary unit, and ∗ represents the convolution operation.

In order to solve equation (1), the quadratic penalty factor
α and Lagrangian multiplier λ(t) are introduced to transform
the constrained variational problem into the following uncon-
strained variational problem:

L({uk} ,{ωk} ,λ) = α
∑
k

∥∥∥∥∂t [(σ(t)+ j
πt

)
e−jωkt

]∥∥∥∥2

2

+

∥∥∥∥∥f(t)−
K∑
k

uk(t)

∥∥∥∥∥
2

2

+

〈
λ(t), f(t)−

K∑
k

uk(t)

〉
.

(2)

In detail, the implementation process of the VMD is
described as follows.

Step 1. Initialize mode
{
û1k
}
, central frequency

{
ω̂1
k

}
, Lag-

rangian multiplier λ1and iterations n.
Step 2. Execution cycle: n = n +1.
Step 3. For all ω ⩾ 0, update uk, ωk and λk

un+1
k = arguk minL({un+1

i<k },{u
n
i⩾k},{ωni },λn) (3)

ωn+1
k = argωk

minL({un+1
i },{ωn + 1

i<k },{ωn + 1
i<k },{ωni⩾k},λn)

(4)

λn+1
k = λn+ τ

(
f−
∑
k

un+1
k

)
. (5)

Step 4. Repeat steps (2) to (3), until the iteration stop con-
dition is satisfied∑

k

(∥∥un+1
k − unk

∥∥2
2

/
∥unk∥

2
2

)
< ε. (6)

Step 5. Stop the iterations and obtain the IMF components.
In order to estimate the effectiveness of VMD, PE is used as

it is a measure of the complexity of a time series by capturing
the order relations and extracting a probability distribution of
the ordinal patterns. PE was presented by Bandit and Pompe
[38] for the complexity analysis of time domain data by using
the comparison of neighboring values. Yan et al [39] used PE
as one nonlinear statistical measure for status characterization
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of rotating machines. Their study has shown promising res-
ults that PE could effectively detect and amplify the dynamic
change of vibration signals, and characterize the bearingwork-
ing status under different operating conditions.

The PE method also has the advantages of simplicity,
extremely fast calculation, robustness, and invariance with
respect to nonlinear monotonic transformations. PE is defined
as the Shannon entropy associated with the probability distri-
bution

PE=−
D!∑
i=1

πi lnπi

where D is the embedding dimension which controls the row
numbers of the new matrix. The new matrix is formed by par-
titioning the one-dimensional time series which need to set the
embedding time delay τ and the embedding dimension D. πi
is the frequencies associated with the i possible permutation
patterns, i= 1, · · · ,D!.

2.2. A novel PSMO method

In order to decompose accurately the vibration signal of bear-
ings by using the VMD, to prevent the phenomenon of over-
decomposition or under-decomposition, and to obtain accur-
ate bandwidth and central frequency for each component, it is
necessary to optimize two parameters of the VMD, which are
the modal number k and the penalty factor α.

Evolutionary algorithms, as an effective method for solv-
ing difficult optimization problems, have gained much atten-
tion. PSO and GA are quite similar, which means that PSO
and GA change from one set of points to another set of points
within an iteration with visible improvement from the previous
values using some probabilistic and deterministic rules. The
PSO has the advantages of strong local search ability and fast
convergence speed but easily falls into a local optimum and
the search path is more complicated. GA has the advantages
of strong global search ability but cannot handle complexity
in an efficient way. Therefore, in this paper we introduce the
mutation idea of the GA algorithm into PSO and propose a
new hybrid algorithm of PSMO by adding mutation during the
update iteration of the PSO algorithm.

The definition is as follows: suppose that in a
D-dimensional search space there is a population of M
particles X= (X1,X2,X3, · · · ,XM). Each of these particles
has a corresponding position and velocity; for example,
the position of the ith particle is Xi = (xi1,xi2,xi3, · · · ,xiD),
and the velocity is Vi = (vi1,vi2,vi3, · · · ,viD). The local
extremum of the particle is Pi = (pi1,pi2,pi3, · · · ,piD), and
the global optimal value of the corresponding population is
G= (gi1,gi2,gi3, · · · ,giD). On this basis, the idea of GA muta-
tion is added, and themutation probability is q, and the random
number rd ∈ [0,1]. If rd > q, the particles do not mutate, and
each particle is updated according to formula (8), and the posi-
tion and speed of the next generation are updated by individual
local extremum and global extremum. If rd ⩽ q, the position

after the mutation isMi = rand(lbd, ubd). The specific update
formula is shown in (9).

vn+1
i = ωvni + c1rd(pi− xni )+ c2rd(gi− xni ) (7)

xn+1
i = xni + vni rd > q (8)

xn+1
i =Mi rd < q (9)

where ω is the inertia weight, rd is a random number between
0 and 1, and c1 and c2 are the learning factors, which represent
the learning ability of the local extremum and global extremum
respectively.

A fitness function is needed to optimize the parameters
of VMD using PSMO. In this paper, the WSDA is proposed
based on the signal difference average (SDA)

WSDA= SDA+(KSDA)/β (10)

where K is the modal number and β is the penalty parameter.
The SDAmethod calculates the difference between the signals
for each data point within the signals itself. A small value of
SDA indicates that the signals have high similarities whereas
a large value of SDA indicates that there is a lot of information
loss from the signal. Equation (11) describes the SDAmethod,
where yIMFS is a sum of VMFs (equation (12)), ys is an input
signal, and N is the data point in the signals:

SDA=
1
N

N∑
n=1

(yIMFS (n)− ys (n)) (11)

yIMFS =
K∑
i=1

yIMF[i]. (12)

The flowchart of the proposed PSMO algorithm is shown
in figure 1.

3. 1D CNNs

More and more pattern recognition of 1D signals uses a 1D
CNN, instead of a 2D CNN, because of its reduced computing
burden and often better performance. A 1D CNN uses weight
sharing, which requires fewer parameters to converge than tra-
ditional neural network models. This guarantees the conver-
gence of the 1D CNN earlier and faster.

The configuration of a 1D CNN is composed of the input
layer, convolutional layer, pooling layer, full connect layer,
and output layer, which are shown in figure 2. Among these
layers, there are two basic layers in CNN, which are the con-
volutional layer and the pooling layer. The convolution opera-
tion implements the first two properties, that are local receptive
regions and sharedweights. The pooling operation implements
the subsampling property [40]. The input layer is a passive
layer that receives the raw 1D signals and the output layer is
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Figure 1. Flowchart of parameter optimization by the PSMO.

Figure 2. Architecture of 1D CNN.

an MLP layer with the number of neurons equal to the number
of classes.

A convolutional layer consists of neurons that connect to
small regions of the input and operate the convolution com-
putation. Every kernel detects specific characteristics in any
location on the input feature map. The output feature map of
the convolutional layer can be written as

yl(i,j) = Kli ∗Xl(r
j) (13)

where K is the ith convolution kernel of the lth layer. Xl(r
j)is

the local area of the lth layer input, and ∗ represents the con-
volution operator.

Pooling layers perform down-sampling operations. Pooling
functions usually include max-pooling and average-pooling,

pl(i,j) =
1
W

jW∑
t= ( j−1)W+1

al(i,t) (14)

pl(i,j) = max
(j−1)W+1⩽t⩽jW

{
al(i,t)

}
. (15)

In this paper, the max-pooling function is applied and it out-
puts the maximal values of rectangular regions of its input.

In a fully connected layer, neurons between two adjacent
layers are fully pairwise connected but neurons within the
same layer share no connections. Then the Softmax function is
commonly adopted for classification tasks in the output layer.
It is calculated as:

yr (x) = P(cr|x,θ) =
exp(ar (x))∑k
j=1 exp(aj (x))

. (16)

The loss function can use the mean squared error func-
tion and the cross-entropy function. In this paper, we used the
cross-entropy function, which is given by

E=−
N∑
i=1

k∑
j=1

tij ln(yij) (17)

where tij is the indicator that the ith example belongs to the
jth class, and yij is the output for example i, which is the value
from the Softmax function.

4. A novel fault diagnosis method

When the rolling bearings are in operation, bearings with
different types and different degrees of failure will gener-
ate vibrations which are typical non-stationary and nonlin-
ear multiple-component vibration signals. The vibration signal
collected by the acceleration sensor maybe the superposi-
tion of multiple vibration signals which include the inter-
ference signals. In the process of signal analysis and fault
diagnosis, the interference signal makes it more difficult to
extract valuable information. The VMD is an adaptive and
non-recursive signal decomposition method that can reveal the
weak transient impulse from complex vibration signals which
has the advantages of effectively reducing pseudo-components
and modal aliasing. The 1D CNN is a typical deep learning
method that provides a structure in which both feature extrac-
tion and prediction are performed together in a single block,
like genetic programming but unlike other traditional meth-
ods. A 1D CNN is superior to a 2D CNN in terms of compu-
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Figure 3. Flowchart of fault diagnosis method of rolling bearings.

tation burden and similar performance with shallower archi-
tectures. This paper combines the above methods for fault dia-
gnosis. The flowchart of the fault diagnosis method is shown
in figure 3.

The specific steps of the proposed method are described as
follows.

Step 1. The vibration signal data set is divided into training
examples and testing examples.

Step 2. The modal number and the penalty factor of VMD
are optimized by PSMO.

Step 3. Training examples and testing examples are decom-
posed by optimized VMD, and some sets of IMF components
are obtained.

Step 4. Signals are reconstructed by the VMF components
obtained in step 3.

Step 5. The 1D CNN is trained using the reconstructed
training examples.

Step 6. The effectiveness of the proposed fault diagnosis
model is evaluated by experimental data of rolling bearings.

5. Verification and analysis

To verify the effectiveness of the proposed method in bearing
fault diagnosis, two open-source datasets are used for research
in this paper, including Case Western Reserve University
(CWRU) Bearing Data Center dataset [41] and the Society
for Mechanical Failure Prevention Technology (MFPT) data-
set [42].

Figure 4. Rolling bearing test rig [41]. Reproduced from [41].
CC BY 4.0.

Table 1. Bearing health conditions.

Bearing health
condition

Fault diameter
(mm) Data label Symbol

Rolling element
fault

0.1778 0 B0
0.3556 1 B1
0.5334 2 B2

Inner race fault 0.1778 3 I0
0.3556 4 I1
0.5334 5 I2

Outer race fault 0.1778 6 O1
0.3556 7 O2
0.5334 8 O3

Normal — 9 N

5.1. CWRU data

5.1.1. Experimental data and parameter settings. The
CWRU data is the experimental data of rolling bearings
from the electrical engineering laboratory of CWRU in this
experiment [41]. The bearing model is a drive-end bearing
(6205–2RSJEM SKF, deep groove ball bearing). As shown in
figure 4, the test bed consists of a 2 hp motor (left), a torque
transducer and encoder (center), a dynamometer (right), and
control electronics (not shown). The dynamometer is con-
trolled so that desired torque load levels can be achieved.
The test bearings support the motor shaft. Single point
faults were introduced to the test bearings using electrical-
discharge machining with fault diameters of 1.778 × 10–4 m,
3.556 × 10–4 m, and 5.334 × 10–4 m, and the fault depth is
2.794 × 10–4 m.

Vibration signals were collected using a 16-channel DAT
recorder with a sample rate of 12 kHz. Each data set is made
up of 1.2× 105 points. The experimental rotating frequency
is about 30 Hz. The experimental data (table 1) were collec-
ted vibration signals for normal and three different fault types
(ball fault, inner race fault, and outer race fault) with three dif-
ferent degrees (the different fault diameters correspond to the
different fault degrees). Each of the ten conditions in the data
sets is composed of 600 samples and the sample length of each
signal is 4096.

6
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Table 2. Parameters of PSMO.

Gmax M c1 c2 ω q

10 10 1.5 1.5 1 0.2

Figure 5. Original signal of inner race fault.

5.1.2. Vibration signal denoising

5.1.2.1. Parameter optimization of VMD based on PSMO. In
order to eliminate the noise of vibration signals of bearings,
the VMD method is used to decompose the signals. To obtain
appropriate mode components, the parameters such as the
modal number and the penalty parameter of VMD need to be
optimized. We propose a novel PSMO method which has the
advantages of the global optimum of GA and the convergence
speed of PSO. The parameters of PSMO are set as shown in
table 2. Gmax is the maximum evolution algebra,M is the pop-
ulation size, c1 and c2 are learning factors, ω represents inertia
weight, and q is the mutation probability.

The WSDA is taken as the fitness function. The smaller the
WSDA value is, the better is the decomposition result. There
are two termination conditions which are the number of itera-
tions t and the WSDA value ε. As long as either ε⩽ 1× 10−7

or t = 10, the optimization result is output. In this paper, we
select the data with 0.1778 inner race damage, which has 4096
sample length. In the fourth iteration, the minimum average
difference is 0.0000425, and the corresponding optimal para-
meter combination is K = 8 and α = 6300.

5.1.2.2. Signal decomposition. The vibration signals of ten
states are decomposed via the VMD method with optimized
parameters obtained from 5.1.2.1. Because of limited space,
we introduce only the signal decomposition and reconstruc-
tion process of th inner ring signal with a damage diameter
of 0.14 feet. Figure 5 shows the time domain and frequency
domain diagram of the original signal of the inner ring fault.
Figure 6 is the decomposition of the inner race fault signal.

Figure 6. Decomposition of inner race fault signal.

5.1.2.3. Signal reconstruction. Signals are reconstructed
according to the maximum kurtosis criterion, and the IMF
component whose kurtosis is greater than the average kur-
tosis is selected for signal reconstruction. Figure 7 shows the
time domain and frequency domain diagram of the recon-
structed fault signal of the inner ring with a damage diameter
of 0.14 feet. Compared with figure 4, it can be seen that the
reconstructed signal removes the disorder components in the
original signal and removes some noise signals. For other
samples, there are similar differences between the other ori-
ginal signals and the reconstructed signals.

To illustrate the effectiveness of the VMD, we adopt the
index of PE to compare the original signal with the reconstruc-
ted signal. The parameters of PE need to be set; the embedding
time delay is set as 5 and the embedding dimension is set as 4.

The smaller the value of PE is, the more regular and more
deterministic the time series is. Conversely, the greater the
value of PE is, the more noisy and random the time series is.
From figure 8, it can be seen that the PE value of the recon-
structed signal is smaller than that of the original signal. This
indicates that the reconstructed signal has more information
of working states and the original signal has more noise and
chaos.

7
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Figure 7. The reconstructed signal.

Figure 8. PE comparison of original signal and reconstructed
signal.

5.1.3. Fault diagnosis based on 1D CNN

5.1.3.1. Parameter setting of 1DCNN. Reconstructed signals
with 4096 data points are used as the input of the 1D CNN.
Therefore, the size of the input bearing signals is (4096 × 1).
The 1D CNN model has a total of seven layers, including five
convolutional and pooling layers, a fully connected layer and
a Softmax layer. The five layers of convolutional and pooling
layers and their parameters are set as shown in figure 9. The
Relu function [43] is used as the activation functionin all layers
except the Softmax layer. In table 3, ‘same’ means that the out-
put feature map has the same spatial dimensions as the input
feature map. Zero padding is introduced to make the shapes
match as needed, equally on every side of the input map. Here,
‘same’ tries to pad evenly left and right, but if the number of
columns to be added is odd it will add the extra column to the

Figure 9. Confusion matrix of original signals (a) and reconstructed
signals (b).

right. Here, ‘valid’ means no padding and only ever drops the
right-most columns (or bottom-most rows).

As the Adam optimization algorithm (Adam) may reduce
the oscillations along the path of the steepest descent towards
the optimum that is sometimes caused by the stochastic gradi-
ent descent algorithm [44], we use the Adam algorithm to

8
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Table 3. Layers of 1D CNN.

Layer

Convolution Pooling

Filter Size Stride Padding Size Stride Padding

1 16 64 16 Same 2 2 Valid
2 32 3 1 Same 2 2 Valid
3 64 3 1 Same 2 2 Valid
4 64 3 1 Same 2 2 Valid
5 64 3 1 Valid 2 2 Valid

update the parameters of the deep NN. The stochastic gradient
descent with momentum update is

ωt = ωt−1 −α ∗ m̂t√
v̂t+ ϵ

(18)

m̂t =
mt

1−βt1
(19)

v̂t =
vt

1−βt2
(20)

where mt and vt are the first-order moment estimation and
second-order moment estimation of the gradient, respectively,
and m̂t and v̂t are the corrections of mt and vt, which can be
approximated to the unbiased estimation of expectation. The
parameter t represents the number of times; β1 are β2 are con-
stants, controlling exponential attenuation. Also, α is called
the learning rate or step size factor, which controls the update
ratio of weights, and ϵ is a very small number in order to pre-
vent division by zero in the implementation. Here, we set the
momentum β1 at 0.9 and β2 at 0.99, the learning rate α at
0.001,ϵ at 10 × 10−8 and the maximum number of epochs
to use for training at 10.

5.1.3.2. Diagnosis results and analysis. The 5000 samples
are taken as the training set and 1000 samples are taken as the
testing set in the experiment. The original signal and recon-
structed signal are used respectively as the input layer of the
1D CNN to verify the diagnosis accuracy of the proposed
method. The average diagnosis accuracy for running 10 times
was 99.6% for reconstruction signals and 98.7% for original
signals. Table 4 records the diagnosis accuracy for original sig-
nals and for reconstructed signals at each running time. From
the diagnosis accuracy, we can see that at every running time
the proposed method can obtain a higher diagnosis accuracy,
which indicates that the VMDmethod is very important in the
process of fault diagnosis to obtain higher diagnosis accuracy.

Because of limited space, we only provide a confusion mat-
rix of the classification results for each condition with testing
data at the fourth run, which is shown in figure 9. The reason
for selecting the results of the fourth run is that the diagnosis
accuracy of the fourth run is near to the average accuracy. In
figure 9, the 1D CNNmisclassified 1% of the testing examples
of the B1 condition as the N condition, and misclassified 10%

Table 4. Accuracy of diagnosis of vibration signals.

Accuracy of diagnosis (%)

Run Original signals Reconstructed signals

1 98.1 99.7
2 99.2 99.8
3 98.0 99.8
4 98.8 99.7
5 99.1 99.6
6 96.0 99.7
7 99.1 99.9
8 99.0 99.5
9 99.0 99.4
10 98.3 99.8

Table 5. Number of misclassifications for original signals.

Prediction

B0 B1 B2 I0 I1 I2 O0 O1 O2 N

True B0
B1 1
B2 7 1 1
I0
I1 2 1 1 3
I2
O0
O1
O2
N

of the testing examples of the B2 condition as the B1 condi-
tion for the original signals. Our method misclassified 3% of
the testing examples of the B2 condition as the B1 condition
for the constructed signals.

In order to describe the overall perspective of the confu-
sion matrix under ten runs in limited space, the numbers of
misclassifications in the confusion matrix under ten runs are
counted in tables 5 and 6 respectively for original signals and
for reconstructed signals.

It can be seen from table 5 that out of the ten runs, the con-
dition of B1 is misclassified as B0 once; the condition of B2 is
misclassified as B0 seven times, as B1 once, and as O1 once;
the condition of I1 is misclassified as B0 twice, as B2 once,
as I0 once and as O1 three times. By contrast, the content of
table 6 is simpler than that of table 5. Only the conditions of B2

9
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Table 6. Number of misclassifications for reconstructed signals.

Prediction

B0 B1 B2 I0 I1 I2 O0 O1 O2 N

True B0
B1
B2 6 3
I0 3
I1
I2
O0
O1
O2
N

and I0 incurred misclassification. The condition of B2 is mis-
classified as B0 six times and B1 three times. The condition of
I0 is misclassified as I1 three times.

It is known that the classification accuracy is influenced by
the distribution of samples. To observe more clearly whether
there is a difference of distribution between the original sig-
nals and the constructed signals, we use the t-SNE [45] dimen-
sion reduction algorithm to visualize the distribution of high-
dimensional datasets at the full connection layer.

It can be seen from figure 10 that, for the original signals,
there are some overlaps among three different types of data-
set, which are the conditions of B0, B1, and B2. These three
different fault degrees of rolling element fault type are more
easily confused in the process of diagnosis. It is consistent with
figure 9 that the conditions of B0, B1 and B2 are easily mis-
classified. it is obvious that for the reconstructed signals there
are clear boundaries between different types of data set. This
partly explains why the diagnosis accuracy of the reconstruc-
ted signal is higher than that of the original signal.

5.1.4. Comparison. To verify further the effectiveness of the
proposed method, we use long short-term memory (LSTM),
random forest (RF), and SVM to classify the faults of the ori-
ginal data and the faults of the reconstructed data. The para-
meters are set as follows: for LSTM, the number of layers
is set to two, and the neuron numbers of the two layers are
set to 16 and 32 respectively; for RF, the number of trees in
the forest is set to 100. Information entropy is used to meas-
ure the performance of splitting quality, the maximum depth
of the random tree is set to none mode, and the meaning
nodes are expanded until all leaves are pure. For SVM, the
radial basis function is introduced as the kernel function of
SVM. The above three methods have been used for ten runs
each to classify the original data and classify the reconstructed
data.

Table 7 contains the results of the three methods. Compared
with table 4, we can see that the proposed method is better
than other methods, on both the original data and the recon-
structed data. We also conclude that the diagnosis accuracy
using the reconstructed data is better than the same with the
original data, no matter whether 1D CNN, LSTM, RF or SVM

Figure 10. Data distribution at full connection layer for the original
signals (a) and the reconstructed signals (b).

is used. This demonstrates that the optimized VMD is essential
to improve the diagnosis accuracy.

5.2. MFPT data

5.2.1. Experimental data and parameter settings. The used
data are the experimental data of rolling bearings from the
Machinery Failure Prevention Technology (MFPT) Associ-
ation in this experiment, which comprised two real-world
kinds of fault state and one kind of normal state [42]. The
motor speed was 25 Hz. Baseline data were gathered at a
sampling frequency of 97 656 Hz and under a load of 270 lb.
Outer race fault data were gathered at a sampling frequency of
48 828 Hz and under seven different loads (25, 50, 100, 150,
200, 250, 300 lb), and inner race fault data were gathered at
a sampling frequency of 48 828 Hz and under seven different
loads (0, 50, 100, 150, 200, 250, and 300 lb). In this paper, five
conditions of bearing data are used for fault diagnosis, shown
in table 8. Each sample is a collected vibration signal segment

10
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Table 7. Diagnosis accuracy of three methods.

Run

Accuracy of diagnosis (%)

Reconstructed signals Original signals

LSTM RF SVM LSTM RF SVM

1 93.1 89.5 85.8 91.6 82.7 73.8
2 94.3 90.7 79.9 94.3 84.3 74.3
3 95.2 91.2 79.4 92.2 83.1 77.2
4 93.6 88.3 82.3 89.9 82.3 76.5
5 93.9 87.5 83.5 90.2 86.5 80.9
6 95.5 89.2 85.6 93.3 83.6 75.6
7 96.4 92.3 78.5 85.6 85.2 78.8
8 92.3 86.4 86.2 89.7 82.1 76.6
9 93.4 90.5 82.3 91.2 83.3 77.7
10 95.2 89.7 83.8 90.3 81.4 73.4

Table 8. Bearing health conditions.

Bearing health condition Load (lbs) Data label Symbol

Normal 270 0 N
Inner race fault 0 1 I1

50 2 I2
Outer race fault 25 3 O1

50 4 O2

Table 9. Parameters of PSMO.

Gmax M c1 c2 ω q

10 10 1.5 1.5 1 0.2

consisting of 4096 sampling data points, and 500 samples are
included in each condition of bearing data.

5.2.2. Vibration signal denoising. To eliminate the noise of
vibration signals of bearings, first we optimize the modal num-
ber and the penalty parameter of VMDby PSMO, then decom-
pose signals by VMD, and finally reconstruct signals of bear-
ing data.

5.2.2.1. Parameter optimization of VMD based on PSMO.
To obtain appropriate mode components, the parameters such
as the modal number and the penalty parameter of VMD need
to be optimized by PSMO. The parameters of PSMO are set as
shown in table 9.Gmax is the maximum evolution algebra,M is
the population size, c1 and c2 are learning factors, ω represents
inertia weight, and q is the mutation probability.

The WSDA is taken as the fitness function. The smaller the
WSDA value is, the better is the decomposition result. There
are two termination conditions, which are the number of itera-
tions t and the WSDA value ε. As long as either ε⩽ 1× 10−7

or t = 10, the optimization result is output. In this paper, we
select the data with 0 lb inner race damage, which has 4096
sample length. In the fourth iteration, the minimum average
difference is 0.0000994, and the corresponding optimal para-
meter combination is K = 6 and α = 3623.

Figure 11. Original signal of inner race fault.

5.2.2.2. Signal decomposition. The vibration signals of five
states are decomposed via the VMD method with K = 6 and
α = 3623. Because of limited space, we introduce only the
signal decomposition and reconstruction process of the inner
ring signal with load of 0 lb. Figure 11 shows the time domain
and frequency domain diagram of the original signal of the
inner ring fault. Figure 12 is the decomposition of the inner
race fault signal.

5.2.2.3. Signal reconstruction. Signals are reconstructed
according to the maximum kurtosis criterion, and the IMF
component whose kurtosis is greater than the average kur-
tosis is selected for signal reconstruction. Figure 13 shows
the time domain and frequency domain diagram of the recon-
structed fault signal of the inner ring with a damage 0 lb
load.

Compared with figure 11, it can be seen that the reconstruc-
ted signal removes the disorder components in the original sig-
nal and removes some noise signals. For other samples, there
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Figure 12. Decomposition of inner race fault signal.

Figure 13. The reconstructed signal.

are similar differences between the other original signals and
the reconstructed signals.

To illustrate the effectiveness of the VMD, we adopt the PE
index to compare the original signal with the reconstructed sig-
nal. The embedding time delay and the embedding dimension
of PE are set to 5 and 4 respectively.

From figure 14, it can be seen that the PE value of the recon-
structed signal is smaller than that of the original signal. This
indicates that the reconstructed signal has more information of
working states compared with the original signal.

Figure 14. PE comparison of original signal and reconstructed
signal.

Table 10. Layers of 1D CNN.

Layer

Convolution Pooling

Filter Size Stride Padding Size Stride Padding

1 16 64 16 Same 2 2 Valid
2 32 3 1 Same 2 2 Valid
3 64 3 1 Same 2 2 Valid
4 64 3 1 Same 2 2 Valid
5 64 3 1 Valid 2 2 Valid

5.2.3. Fault diagnosis based on 1D CNN

5.2.3.1. Parameter setting of 1D CNN. Reconstructed sig-
nals with 4096 data points are used as the input of the 1DCNN.
Therefore, the size of the input bearing signals is (4096 × 1).
The 1D CNN model has a total of seven layers, including five
convolutional and pooling layers, a fully connected layer and a
Softmax layer. The five convolutional and pooling layers and
their parameters are set as shown in table 10. TheRelu function
[42] is used as the activation function in all layers except the
Softmax layer, and the Adam algorithm [43] is used to update
the parameters of the deep NN.

5.2.3.2. Diagnosis results and analysis. The 2000 samples
are taken as the training set and 500 samples are taken as the
testing set in the experiment. The original signal and recon-
structed signal are used respectively as the input layer of the
1D CNN to verify the diagnosis accuracy of the proposed
method. The average diagnosis accuracy for running 10 times
was 96.1% for reconstruction signals and 91.2% for original
signals. Table 11 records the diagnosis accuracy for original
signals and for reconstructed signals at each running time.
From the diagnosis accuracy, we can see that at every running
time the proposed method can obtain a higher diagnosis accur-
acy, which indicates that the VMD method is very important

12
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Table 11. Accuracy of diagnosis of vibration signals.

Accuracy of diagnosis (%)

Run Original signals Reconstructed signals

1 88.2 97.6
2 93.5 97.2
3 90.8 95.9
4 89.9 95.5
5 91.3 93.9
6 90.7 96.3
7 91.6 97.7
8 93.1 95.8
9 92.1 96.3
10 90.6 94.5

in the process of fault diagnosis to obtain higher diagnosis
accuracy.

Figure 15 provides a confusion matrix of the classification
results for each condition with testing data at the sixth run.
The reason for selecting the results of the sixth run is that
the diagnosis accuracy of the fouth run is near to the average
accuracy.

In figure 15, for the original data, 1D CNN misclassified
13% of the testing examples of the I1 condition as the I2 con-
dition, andmisclassified 18% of the testing examples of the O1
condition as the O2 condition for the original signals; For the
reconstructed data, 1D CNN misclassified 5% of the testing
examples of the I2 condition as the N condition, and misclas-
sified 10% of the testing examples of the O1 condition as the
O2 condition.

It is well known that the classification performance is influ-
enced by the distribution of samples. In order to observe more
clearly whether there is a difference of distribution between
the original signals and the constructed signals, we use the
t-SNE [44] dimension reduction algorithm to visualize the data
distribution of high-dimensional datasets at the full connection
layer.

It can be seen from figure 16 that, for the original sig-
nals, there is some overlap between I1 and I2 and some over-
lap between O1 and O2, which is consistent with figure 15.
For the reconstructed signals, there are nearly clear boundar-
ies between different types of data set. To some extent, this
explains why the diagnosis accuracy of the reconstructed sig-
nal is higher than that of the original signal.

5.2.4. Comparison. To verify further the effectiveness of the
proposed method, we use LSTM, RF, and SVM to classify the
faults of the original data and the faults of the reconstructed
data, then we compare them with the results of our proposed
method.

The parameters are set as follows: for LSTM, the number of
layers is set to two, and the neuron numbers of the two layers
are set to 16 and 32 respectively; for RF, the number of trees in
the forest is set to 100. Information entropy is used to measure
the performance of splitting quality, the maximum depth of the
random tree is set to none mode, and the meaning nodes are
expanded until all leaves are pure. For SVM, the radial basis

Figure 15. Confusion matrix of original signals (a) and of
reconstructed signals (b).

function is introduced as the kernel function. The above three
methods have been used for ten runs on the original data and
on the reconstructed data. The results are shown in table 12.

Compared with table 11, we can see that the proposed
method is better than other methods, both on the original data
and the reconstructed data.We also conclude that the diagnosis
accuracy using the reconstructed data is better than the same
with the original data, no matter whether 1D CNN, LSTM, RF
or SVM is used. This demonstrates that the optimized VMD
is essential to improve the diagnosis accuracy.
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Figure 16. Data distribution at full connection layer for the original signals (a) and the reconstructed signals (b).

Table 12. Diagnosis accuracy of three methods.

Run

Accuracy of diagnosis (%)

Reconstructed signals Original signals

LSTM RF SVM LSTM RF SVM

1 88.8 71.2 66.7 80.2 58.7 64.3
2 86.7 73.6 70.5 79.8 59.6 66.2
3 91.3 72.3 71.2 81.3 60.2 63.5
4 92.6 70.9 67.4 80.5 61.5 62.9
5 91.9 74.5 66.1 81.2 62.3 64.1
6 87.6 76.3 72.2 80.5 56.9 63.9
7 85.3 75.6 66.8 79.6 58.3 62.3
8 88.1 71.5 71 82.2 61.3 63.4
9 89.4 74.2 69.8 81.4 62.2 65.2
10 87.5 73.5 71.2 80.3 61.4 63.3
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6. Conclusions

In this paper, to address two challenging issues of how to
effectively eliminate noise and extract valid fault features from
the vibration signals for bearing fault diagnosis, a novel hybrid
fault diagnosis method, the optimized VMD by PSMO and 1D
CNN, has been proposed to realize fault diagnosis of rolling
bearings.

PSMO, which has the advantages of strong global search
ability and fast convergence speed by combining PSO andGA,
and WSDA as the fitness function, are proposed to realize the
optimization ofK andα in VMD. From the index of PE, the PE
value of the reconstructed signal is smaller than that of the ori-
ginal signal, which indicates that the reconstructed signal has
more information of working states than the original signal.

1D CNN, which fuses feature extraction and classification
operations into a single machine learning body to optimize
jointly the classification performances, has been adopted to
realize fault diagnosis of the reconstructed vibration signals.
For the CWRU data and MFPT data, our method has bet-
ter classification accuracy, 99.6% for CWRU data and 96.1%
for MFPT data, compared with LSTM, RF, and SVM. Mean-
while, the optimized VMD denoising signals by PSMO is very
important in the process of fault diagnosis, because the recon-
structed data have been better adapted for this task than the
original data.
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