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Abstract
In this paper we study a class of nonlinear fourth order analogue of a generalized Camassa-Holm

equation by using sine-cosine method. The compactons, solitary wave, solitary patterns, periodic
wave and solitary patterns solutions of a class of nonlinear fourth order analogue of a generalized
Camassa-Holm equation are successfully obtained. It is shown that the sine-cosine provides
a powerful mathematical tool for solving a great many nonlinear partial differential equations in
mathematical physics.
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1 Introduction
Studies of various physical structures of nonlinear dispersive equations had attracted much

attention in connection with the important problems that arise in scientific applications. Mathematically,
these physical structures have been studied by using various analytical methods, such as inverse
scattering method [1], Darboux transformation method [2,3], Hirota bilinear method [4], Lie group
method [5], bifurcation method of dynamic systems [6,7,8], sine-cosine method [9,10], tanh function
method [11-13], Fan-expansion method [14], homogenous balance method [15] and so on. Practically,
there is no unified technique that can be employed to handle all types of nonlinear differential equations.

In 1999, Clarkson and Priestley [16] studied a class of nonlinear fourth order partial differential
equations

utt = (au+ bu2)xx + γuuxxxx + µuxxtt + αuxuxxx + βu2
xx, (1.1)

where α, β, γ, µ, a, b are arbitrary constants. This equation was thought of [16] as a fourth order
analogue of a generalization of the Camassa-Holm equation. Further, Eq. (1.1) was also considered
as a Boussinesq-type equation. In [16], it was shown that (1.1) admits both conventional solitons and
compactons.

*Corresponding author: E-mail: tangsq@guet.edu.cn

www.sciencedomain.org


British Journal of Mathematics and Computer Science 4(11), 1534-1541, 2014

Motivated by the rich treasure of the Camassa-Holm-type equation in the literature, we will
study nonlinear dispersive variants CH(n,m,m) and CH(-n,-m,-m) of the generalized Camassa-Holm
equation of the form, respectively

utt = (au+ bun + dum)xx + k(um)xxtt, m, n ∈ Z+ (1.2)

and
utt = (au+ bu−n + du−m)xx + k(u−m)xxtt, m, n ∈ Z+ (1.3)

Specially, when n = m, the two equations respectively called nonlinear dispersive variants CH(n,n)
and CH(-n,-n) of the generalized Camassa-Holm equation [17]. In [17], A.M. Wazwaz studied the
CH(n,n) and CH(-n,-n) equations by using sine-cosine method, it is shown that these class give
compactons, conventional solitons, solitary patterns and periodic solutions. It is also found that the
qualitative change in the physical structure of solutions depends mainly on the exponent of the wave
function u(x, t), positive or negative, and on the coefficient of (un)′′ as well.

The sine-cosine method will be mainly used to back up our analysis. The sine-cosine method
was proved to be powerful in handling nonlinear problems, with genuine nonlinear dispersion, where
compactons and solitary patterns solutions are generated. This method will be described briefly,
where details can be found in [9-13,17-18] and the references therein.

Let u(x, t) = u(x − ct) = u(ξ), where c is the wave speed. Then Eq.(1.2) and Eq.(1.3) become
to

c2u′′ = (au+ bun + dum)′′ + kc2(um)(4) (1.4)

and
c2u′′ = (au+ bu−n + du−m)′′ + kc2(u−m)(4), (1.5)

where ”′” is the derivative with respect to ξ. Integrating Eq. (1.4) and Eq. (1.5) twice, using the
constants of integration to be zero we have the following ordinary differential equation

(a− c2)u+ bun + dum + kc2(um)′′ = 0 (1.6)

and
(a− c2)u+ bu−n + du−m + kc2(u−m)′′ = 0. (1.7)

In what follows, we highlight the main steps of the sine-cosine algorithm and the extended
algorithm.

2 Analysis of the Sine-cosine Method

The sine-cosine method has been applied for a wide variety of nonlinear problems. The main
features of the method will be reviewed briefly.

We first use the wave variable ξ = x− ct to carry a PDE in two independent variables

P (u, ut, ux, utx, uxx, uxxx, ...) = 0 (2.1)

into an ODE
Q(u, u′, u′′, u′′′, ...) = 0. (2.2)

Eq. (2.2) is then integrated as long as all terms contain derivatives where integration constants are
considered zeros.

The sine-cosine method admits the use of the solution in the form

u(x, y, t) =

{
λcosβ(µξ), | µξ |< π

2
,

0, otherwise, (2.3)
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or in the form

u(x, y, t) =

{
λsinβ(µξ), | µξ |< π,
0, otherwise, (2.4)

where λ, µ, and β are parameters that will be determined. For (2.3),we use

u(ξ) = λ cosβ(µξ),

un(ξ) = λn cosnβ(µξ), u−n(ξ) = λ−n cos−nβ(µξ) (2.5)

(un)′′ = −n2µ2β2λn cosnβ(µξ) + nµ2λnβ(nβ − 1) cosnβ−2(µξ),

and for (2.4) we use
u(ξ) = λ sinβ(µξ),

un(ξ) = λn sinnβ(µξ), u−n(ξ) = λ−n sin−nβ(µξ) (2.6)

(un)′′ = −n2µ2β2λn sinnβ(µξ) + nµ2λnβ(nβ − 1) sinnβ−2(µξ).

We substitute (2.3) or (2.4) into the reduced ordinary differential equation obtained above in
(2.2), balance the terms of the cosine functions when (2.3) is used, or balance the terms of the sine
functions when (2.4) is used, and solving the resulting system of algebraic equations by using the
computerized symbolic calculations to obtain all possible valuse of the parameters λ, µ and β.

3 Using the Sine-cosine Method

3.1 For positive exponents
Substituting (2.5) into (1.6) yields

(a− c2)λ cosβ(µξ) + bλn cosnβ(µξ) + dλm cosmβ(µξ)

+c2kmµ2βλm((mβ − 1) cosmβ−2(µξ)−mβ cosmβ(µξ)) = 0. (3.1)

Eq. (3.1) is satisfied only if the following system of algebraic equations holds:

mβ 6= 1, a− c2 = 0, nβ = mβ − 2,

bλn = −c2kmµ2λmβ(mβ − 1), dλm = c2km2µ2β2λm. (3.2)

Solving the system (3.2) give

β 6= 1

m
, a = c2, β =

2

m− n, µ = ±
∣∣∣m− n

2m

∣∣∣√ d

ak
, λ =

[
d(m+ n)

−2bm

] 1
n−m

. (3.3)

The results (3.3) can be easily obtained if we also use the sine method (2.6).
Form > n, l ∈ Z+,h ∈ Z+,combining (3.3) with (2.5) and (2.6), we have the following compactons

solutions:

u1 =


±
[
−2bm
d(m+n)

cos2
∣∣m−n

2m

∣∣√ d
ak

(x− ct)
] 1

m−n

,∣∣∣∣m−n2m

√
d
ak

(x− ct)
∣∣∣∣ < π

2
, m− n = 2l, a > 0, dk > 0, bd < 0,

0, otherwise, (3.4)

u2 =



[
−2bm
d(m+n)

cos2
∣∣m−n

2m

∣∣√ d
ak

(x− ct)
] 1

m−n

,∣∣∣∣m−n2m

√
d
ak

(x− ct)
∣∣∣∣ < π

2
, m− n = 2h− 1, a > 0, dk > 0,

0, otherwise, (3.5)
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u3 =


±
[
−2bm
d(m+n)

sin2
∣∣m−n

2m

∣∣√ d
ak

(x− ct)
] 1

m−n

,∣∣∣∣m−n2m

√
d
ak

(x− ct)
∣∣∣∣ < π, m− n = 2l, a > 0, dk > 0, bd < 0,

0, otherwise (3.6)

and

u4 =



[
−2bm
d(m+n)

sin2
∣∣m−n

2m

∣∣√ d
ak

(x− ct)
] 1

m−n

,∣∣∣∣m−n2m

√
d
ak

(x− ct)
∣∣∣∣ < π, m− n = 2h− 1, a > 0, dk > 0,

0, otherwise. (3.7)

However, for dk < 0, we obtain the following solitary patterns solutions:

u5 = ±

[
−2bm

d(m+ n)
cosh2

∣∣∣m− n
2m

∣∣∣√−d
ak

(x− ct)

] 1
m−n

,m− n = 2l, a > 0, dk < 0, bd < 0, (3.8)

u6 =

[
−2bm

d(m+ n)
cosh2

∣∣∣m− n
2m

∣∣∣√−d
ak

(x− ct)

] 1
m−n

, m− n = 2h− 1, a > 0, dk < 0, (3.9)

u7 = ±

[
2bm

d(m+ n)
sinh2

∣∣∣m− n
2m

∣∣∣√−d
ak

(x− ct)

] 1
m−n

,m− n = 2l, a > 0, dk < 0, bd > 0 (3.10)

and

u8 =

[
2bm

d(m+ n)
sinh2

∣∣∣m− n
2m

∣∣∣√−d
ak

(x− ct)

] 1
m−n

, m− n = 2h− 1, a > 0, dk < 0. (3.11)

For m < n, l ∈ Z+, h ∈ Z+, combining (3.3) with (2.5) and (2.6), the following periodic wave
solutions:

u9 = ±

[
d(m+ n)

−2bm sec2
∣∣∣m− n

2m

∣∣∣√ d

ak
(x− ct)

] 1
n−m

, n−m = 2l, a > 0, dk > 0, bd < 0, (3.12)

u10 =

[
d(m+ n)

−2bm sec2
∣∣∣m− n

2m

∣∣∣√ d

ak
(x− ct)

] 1
n−m

, n−m = 2h− 1, a > 0, dk > 0, (3.13)

u11 = ±

[
d(m+ n)

−2bm csc2
∣∣∣m− n

2m

∣∣∣√ d

ak
(x− ct)

] 1
n−m

, n−m = 2l, a > 0, dk > 0, bd < 0 (3.14)

and

u12 =

[
d(m+ n)

−2bm csc2
∣∣∣m− n

2m

∣∣∣√ d

ak
(x− ct)

] 1
n−m

, n−m = 2h− 1, a > 0, dk > 0. (3.15)

However, for dk < 0, we obtain the following solitary wave and solitary patterns solutions:

u13 = ±

[
d(m+ n)

−2bm sech2
∣∣∣m− n

2m

∣∣∣√−d
ak

(x− ct)

] 1
n−m

, n−m = 2l, a > 0, dk < 0, bd < 0, (3.16)
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u14 =

[
d(m+ n)

−2bm sech2
∣∣∣m− n

2m

∣∣∣√−d
ak

(x− ct)

] 1
n−m

, n−m = 2h− 1, a > 0, dk < 0, (3.17)

u15 = ±

[
d(m+ n)

2bm
csch2

∣∣∣m− n
2m

∣∣∣√−d
ak

(x− ct)

] 1
n−m

, n−m = 2l, a > 0, dk < 0, bd > 0 (3.18)

and

u16 =

[
d(m+ n)

2bm
csch2

∣∣∣m− n
2m

∣∣∣√−d
ak

(x− ct)

] 1
n−m

, n−m = 2h− 1, a > 0, dk < 0. (3.19)

3.2 For negative exponents
We consider Eq. (1.3) equation. Substituting (2.5) into (1.7) yields

(a− c2)λ cosβ(µξ) + bλ−n cos−nβ(µξ) + dλ−m cos−mβ(µξ)

+c2kmµ2βλ−m((mβ + 1) cos−mβ−2(µξ)−mβ cos−mβ(µξ)) = 0. (3.20)

Eq. (3.20) is satisfied only if the following system of algebraic equations holds:

mβ 6= −1, a− c2 = 0, nβ = mβ + 2,

bλ−n = −c2kmµ2λ−mβ(mβ + 1), dλ−m = c2km2µ2β2λ−m. (3.21)

Solving the system (3.21) give

β 6= − 1

m
, a = c2, β =

2

n−m, µ = ±
∣∣∣m− n

2m

∣∣∣√ d

ak
, λ =

[
d(m+ n)

−2bm

] 1
m−n

. (3.22)

The results (3.22) can be easily obtained if we also use the sine method (2.6).
For n > m, l ∈ Z+, h ∈ Z+, combining (3.22) with (2.5) and (2.6), the following compactons

solutions:

u17 =


±
[
−2bm
d(m+n)

cos2
∣∣m−n

2m

∣∣√ d
ak

(x− ct)
] 1

n−m

,∣∣∣∣m−n2m

√
d
ak

(x− ct)
∣∣∣∣ < π

2
, n−m = 2l, a > 0, dk > 0, bd < 0,

0, otherwise, (3.23)

u18 =



[
−2bm
d(m+n)

cos2
∣∣m−n

2m

∣∣√ d
ak

(x− ct)
] 1

n−m

,∣∣∣∣m−n2m

√
d
ak

(x− ct)
∣∣∣∣ < π

2
, n−m = 2h− 1, a > 0, dk > 0,

0, otherwise, (3.24)

u19 =


±
[
−2bm
d(m+n)

sin2
∣∣m−n

2m

∣∣√ d
ak

(x− ct)
] 1

n−m

,∣∣∣∣m−n2m

√
d
ak

(x− ct)
∣∣∣∣ < π, n−m = 2l, a > 0, dk > 0, bd < 0,

0, otherwise (3.25)
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and

u20 =



[
−2bm
d(m+n)

sin2
∣∣m−n

2m

∣∣√ d
ak

(x− ct)
] 1

n−m

,∣∣∣∣m−n2m

√
d
ak

(x− ct)
∣∣∣∣ < π, n−m = 2h− 1, a > 0, dk > 0,

0. otherwise. (3.26)

However, for dk < 0, we obtain the following solitary patterns solutions:

u21 = ±

[
−2bm

d(m+ n)
cosh2

∣∣∣m− n
2m

∣∣∣√−d
ak

(x− ct)

] 1
n−m

, n−m = 2l, a > 0, dk < 0, bd < 0, (3.27)

u22 =

[
−2bm

d(m+ n)
cosh2

∣∣∣m− n
2m

∣∣∣√−d
ak

(x− ct)

] 1
n−m

, n−m = 2h− 1, a > 0, dk < 0, (3.28)

u23 = ±

[
2bm

d(m+ n)
sinh2

∣∣∣m− n
2m

∣∣∣√−d
ak

(x− ct)

] 1
n−m

, n−m = 2l, a > 0, dk < 0, bd > 0 (3.29)

and

u24 =

[
2bm

d(m+ n)
sinh2

∣∣∣m− n
2m

∣∣∣√−d
ak

(x− ct)

] 1
n−m

, n−m = 2h− 1, a > 0, dk < 0. (3.30)

For n < m, l ∈ Z+, h ∈ Z+, combining (3.22) with (2.5) and (2.6), the following periodic wave
solutions:

u25 = ±

[
d(m+ n)

−2bm sec2
∣∣∣m− n

2m

∣∣∣√ d

ak
(x− ct)

] 1
m−n

, m− n = 2l, a > 0, dk > 0, bd < 0, (3.31)

u26 =

[
d(m+ n)

−2bm sec2
∣∣∣m− n

2m

∣∣∣√ d

ak
(x− ct)

] 1
m−n

, m− n = 2h− 1, a > 0, dk > 0, (3.32)

u27 = ±

[
d(m+ n)

−2bm csc2
∣∣∣m− n

2m

∣∣∣√ d

ak
(x− ct)

] 1
m−n

, m− n = 2l, a > 0, dk > 0, bd < 0 (3.33)

and

u28 =

[
d(m+ n)

−2bm csc2
∣∣∣m− n

2m

∣∣∣√ d

ak
(x− ct)

] 1
m−n

, m− n = 2h− 1, a > 0, dk > 0. (3.34)

However, for dk < 0, we obtain the following solitary wave and solitary patterns solutions:

u29 = ±

[
d(m+ n)

−2bm sech2
∣∣∣m− n

2m

∣∣∣√−d
ak

(x− ct)

] 1
m−n

, m−n = 2l, a > 0, dk < 0, bd < 0, (3.35)

u30 =

[
d(m+ n)

−2bm sech2
∣∣∣m− n

2m

∣∣∣√−d
ak

(x− ct)

] 1
m−n

, m− n = 2h− 1, a > 0, dk < 0, (3.36)

u31 = ±

[
d(m+ n)

2bm
csch2

∣∣∣m− n
2m

∣∣∣√−d
ak

(x− ct)

] 1
m−n

, m− n = 2l, a > 0, dk < 0, bd > 0 (3.37)
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and

u32 =

[
d(m+ n)

2bm
csch2

∣∣∣m− n
2m

∣∣∣√−d
ak

(x− ct)

] 1
m−n

, m− n = 2h− 1, a > 0, dk < 0. (3.38)

4 Discussion
By using the sine-cosine method to study a class of nonlinear fourth order variant of a generalized

Camassa-Holm equation the results are similar to the reference [9,17] conclusion. The study of
compactons may give insight into many scientific processes such as the super deformed nuclei,
preformation of cluster in hydrodynamic models, the fission of liquid drops (nuclear physics), inertial
fusion and others as discussed in. The basic goal of this work has been the study of a class of
nonlinear fourth order analogue of a generalized Camassa-Holm equation. The solitary wave and
compactons solutions for a class of nonlinear fourth order variant of a generalized Camassa-Holm
equation is obtained analytically by using the sine-cosine method. The obtained results in this work
clearly demonstrate the effect of the purely nonlinear dispersion and the qualitative change made in
the genuinely nonlinear phenomenon. This approach may be applied to seek traveling wave solutions
for other types of nonlinear dispersion partial differential equations which satisfy certain restrictions.
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