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Abstract

The ste-stress accelerated life tests allow increasing tiesstievels on test units at fixed til
during the experiment. In this paper, accelerated life sstsconsidered when lifetime of|a
product follows a Kumaraswamy Weibull distribution. The €hpprameter is assumed to be a
log linear function of the stress and a cumulative exposwdehholds. Based on Type Il and
Type | censoring, the maximum likelihood estimatesdrined for the unknown parameters.
The reliability and hazard rate functions are estimatedaal conditions of stress. In additign,
confidence intervals of the estimators are construdBggtimum test plans are obtained |to
minimize the generalized asymptotic variance of the maminikelihood estimators. Montg
Carlo simulation is carried out to investigate the igien of the maximum likelihood estimates.
An application using real data is used to indicate the ptiepeof the maximum likelihood
estimators.

keywords: Accelerated life tests; simple step-stress; cumulatixgosure; type Il censoring;
type | censoring; confidence intervals; test of hypothesisn#&aswmay Weibull
distribution; optimum test plans; generalized asymptotic ara@; Monte Carlo
simulation.

1 Introduction

In order to obtain highly reliable products long life-spameetconsuming and expensive tests are
often required to collect enough failure data. The starlifartesting methods are not appropriate

in such situations and to overcome this difficulty accederéife tests are applied; wherein the test
units are run at higher stress levels (which includes teahpe, voltage, pressure, vibration,

cycling rate, etc.) to cause rapid failures. Accelerdifedtests allow the experimenter to apply

severe stresses to obtain information on the paramdténs bfetime distributions more quickly
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than under normal operating conditions. Such tests chrceethe testing time and save a lot of
manpower, material sources and money. The stress cgupledain different ways: Commonly
used methods are constant stress, progressive streseusttass (see [1,2,3]).

In step-stress accelerated life testing (ALT), thesst for survival units is generally changed to a
higher stress level at a predetermined time. This magimes that the remaining life of a unit
depends only on the current cumulative fraction failed and cwshessts. Moreover, if it is held at
the current stress, survivors will continue failingaing to the cumulative distribution function
(cdf) of that stress but starting at the age comedimg to the previous fraction failed. This model
is called the cumulative exposure (CE) model. Some refesandee field of the accelerated life
testing include [4,5,6,7,8,9,10,11,12,13,14,15,16,17,18, 19, ZP].

[23] constructed a distribution with two shape parametersOpnl). Kumaraswamy (Kum)
distribution is applicable to many natural phenomena wlmgeomes have lower and upper
bounds, such as heights of individuals, scores obtainedtéstaatmospheric temperatures and
hydrological data. Also, Kum distribution could be appropriate turabns where scientists use
probability distributions which have infinite lower andupper bounds to fit data, when in reality
the bounds are finite (see [24]). A compound between Kutritdion and any distribution was
constructed by [25].

Weibull distribution is one of the most popular modelsigis been extensively used for modeling
data in reliability, engineering and biological studies. fiked for forms of Weibull distribution
arises in many applied areas. In this paper, simple stegsss applied to Kumaraswamy Weibull
distribution. The cumulative distribution function (cdf) ahé probability density function (pdf)
of the Kumaraswamy Weibull (KumW) distribution are ob¢airas follows:

F(t; 0,B,0,0) =1—[1—[1—exp(—Q)"]]?, t>0, (1)
and

f(t; 6,B,0,2) = 0BpAt*exp(~(A)*)[1 — exp(—= (O]~ [1 = [1 — exp(=(O)]'],
t>0, 6,%,0>0, (2

wheref, B andg are the shape parameterss a scale parameter.

It has three shape parameters. These parameters alloavHigh degree for flexibility of the
KumW distribution. Some special cases can be obtained fromKudlistribution such as Kum
exponential, Kum Rayleigh, exponentiated Weibull, exponentiatagileRh, exponentiated
exponential, Weibull, Rayleigh and exponential distributioh$s Wwide applicable in reliability,
engineering and in other areas of research. The KumWdgsdisd in details in [26].

The reliability function (rf) of KumW and the hazardedtnction (hrf) corresponding to
(2), can be written, respectively, as follows:

R(t 6,8,0,2) = [1—[1 - exp(=(:O)N]'I, t>0, ®3)

and
0Bert?Lexp (- ()M [1-exp(- ()] 2

h(t; 6, B; o0, A) = [-[1=exp(—0O")I7] ,

t> 0. 4)
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The rest of this paper is organized as follows: in Se@jdhe k step-stress accelerated life testing
is presented. The statistical inference for simple steyssstife testing based on Type Il censoring
is obtained in Section 3. In Section 4, the statisticarerice for simple step-stress life testing
based on Type | censoring is discussed.

2 TheK Step-Stress Accelerated Life Testing

Assuming k step-stress accelerated life testing, tbéeinof constant stress is considered in the
first step. In this model, the lifetime of the unit is affal by a certain level of stresg where x

is larger than the usual stress x

In the consecutive steps, other stresses are consideredx, ..., %, where ¥<X;<Xo<..<X,

then the cumulative exposure model reflects the effect of gdrdm one stress to another one.
In the following subsection some basic assumptions are cortidere

2.1 Basic Assumptions

1- For any stress;xj=1, 2, ..., k, the lifetime distribution is KumV@, (3, ¢, 1) the pdf can be
written as follows:

f(ty: B, 0,2, 6;) =

00"ty esp(~() )1 - exp(~G) )" [1- [0 @
where § is a random variable of time at the step j gnislthe number of failures at the step j,
t>0,8,0,A, ¢>0,j=1, 2, .., kandi=1, 2, .., r

2- B, A, ¢ are constants with respect to the stress x, andchtygesparametdy is affected by the
stress x j=1, 2, ..., k, through the log linear model in the form

0; = exp(a + bxj), (6)
where a and b are unknown parameters depending on the ofatfoeeunit and the test method.

3- Suppose that, for a particular pattern of stress, wmitsat stress;jxstarting at timer;.; and
reaching to time; , j=1, 2, ..., k,§ = 0). The behavior of such units is as follows:

At Step 1, the population fractiom Ft) of units failing by timer; under constant stress is
Fi() = 11— [1— exp(~(t;)N)]*P@ 0] 0 < ¢ <7, ab,Bor>0.  (7)

If F(t) is the population cumulative distribution fractionwfits failing under step-stress, then in

the first step:

F(t) = Fl(t), 0<t< T1, (8)
wherert, is the time when the stress is raised frqroxx.
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2.2 The Cumulative Exposure M odel for the Remaining Steps

When Step 2, starts, units have equivalent agevhich have produced the same fraction failed
seen at the end of Step 1. In other words the survivdiat; will be switched to the stress x
beginning at the point;uwhich can be determined as the solution of

Fa(uy) = Fi(ty),
<1 - (1 - eXp(_(%uj—1)(P))e}q)(aerXj))[3 =
0 exp(a+bxj_1) B
(1 - (1 — exp (= (M4 +u2)) )) ) , ©)

whereAg = 1,— 1o, = 0 andA ., = 111 — 112, =2, 3, ..., K, by solving (9), one obtains

’

0 >exp(b(x]-_1—x]-))

exp(—(%uj_l)q)) =1- (1 — exp (— (X(Aj_z + uj_z)) )

by taking the logarithm for two sides, it follows that

u]'_1 =

%[—m [1 — [t —exp (= (M8 + uj_z))“’)]exp(b(xi_l_xi))“ : (10)

the cumulative exposure model for j steps can be wrétefollows:

F(t) = F] [t — T + u]-_l], Tj-1 <t< Tj»

0 exp(a+bxj_q) p
F)=1- (1 - (1 — exp (— (x(t —t, uj_l)) )) ) . (11)

Substituting , in (11), it is seen that F(t), for a step-stressepativhich consists of
segments of the cdf H~, ..., K, can be written in the form:

10 t< 19}
Fi(); T <t<T1
F(t) = ) , 12
( ) F](t— T]'—l + u]'_l); Tj—l <t< T]’,] = 2,3, ,k -1 ( )
Fk(t — Tg—1 T uk_l); Tk-1 <t

and the associated pdf, f(t), has the following form
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£, (t); T, <t<1y
£(t—1j—1 + uj_e); Gy <t<Ty,  j=23,..,k-1
f(t) = , (13)
fk(t — Tg—1 T+ uk_l); Tk-1 <t
0 elsewhere

The maximum likelihood (ML) method is applied to the stepsst model. The pdf for each test is
shown by (13), which is the time derivative of the cdf gily (12). The likelihood function is
the product of such pdf's evaluated at failure times if cotapgampling is used or of observed
pdf's of such survival functions evaluated at censoring ginvben censoring is applied. It is
shown that F(t), differs for units with different stepess patterns. The likelihood function is used
to obtain maximum likelihood estimators (MLES) of the paeters a, b anfl

3 Inference and Optimal Simple Step-Stress Accelerated Life
Tests Based on Typell Censoring

The experiment based on Type Il censoring step-stessthk following assumptions:

1- There are k levels of stress, %o, ..., %, where x<X, < ...<Xy, are applied such that
each unit is initially put under stresg x

2- The experiment begins with n units. The strass applied at the first step and the result
is ny failure times t, i=1, 2, ..., p of test units are observed. When stress applied at
the second step; failure times i, i=1, 2, ..., pare observed. Finally, at Step j, stress x
is applied, pfailure times {, are observed.

3- The test begins at stress levelifxthe unit doesn't fail till the predetermined failures,
the stress is raised te and held until pfailures. If it doesn't fail, stress is raised t9 x
In general, if the unit doesn't fail until the occurrencengfat stress x, then the stress
is raised to xatt., , j=2, 3, ..., K, and held failure in case of censored samples, then the
test is continued until the occurrence of a predeterminachbar of failuresZ};ln]-.
Then there are runits still survived, at the Step k, the data wouldHheefailure times of
(n-ny) failed units arranged in order and the units which survdesand & ).

4- Then, it is shown from the previous points that:
The stress;x is raised to xatt.,, j=2, 3, ..., k, when exactly.nfailures are observed. It
is assumed that the test is continued until all unitsvi&ién exactly g failures are
observed. Then, the failure:nj=2, 3, ..., k is predetermined btt, j=2, 3, ..., k and.t
are random variables.

The failure time distribution is assumed to be KumW distion and the shape parameter is
shown as a function of the stress through the log linearematie likelihood function of the
experiment is assumed to have the following form:

L(tl],l = 1,2, ...,n]-, ] = 1,2, ,k) = [H?i& f1(t11)][ ]!(:2 H?ilfl(tl] - T]'—l + u]'_l)]
* [1— Frlte = teeq +ug-0)]™ . (14)

It is shown from (14) that the likelihood function consistshoEe parts. The first one represents

the likelihood of the first step which is the same fes ¢ase of constant stress. The second part
shows the likelihood function of the (k-1) other stresSd®e third part shows the likelihood
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function of the survived units by timg Considering the cumulative exposure model to relate cdf
under step-stress to the cdf under constant stress and hsipgevious assumptions, it is clear
that:

The failure time distribution at j-th step

— )
f(tl] - T]‘_1 + u]-_l) = ﬁ(pX(PeXp (a + bX])((tl] - Tj—l + u]'_l)(P 1exp (_ ()\.(tll - T]‘_1 + u]'_1)) )

exp(a+bxj)-1

* [1 — exp (— (X(tij —T-1t u]-_1))¢)]

oy 1exp(a+bx;) p-1
R TR ) I (15
where
1 exp(b(x-_l—x-)) .
s = X[_m [1 1 e (= (4 +uy) ) “ |
As a special case, let k=8, ; = 1, and 1, = t, it is shown that:
Fo(uy) = Fi(ty), (16)
then
w =3[ -In[1 = [1 = exp(~ ()] e (17)

hence, the population cumulative fraction of specimeitiadan Step 2, by time t is given by:

FO) =F,[(t—1) +u], n <t<r,, (18)

() =1- [1 —[1-exp(—(M(t— 1, + ul))‘f’)]e"p(a*b“’]ﬁ. (19)

When k=2 there are two steps only with two levels @sstrx and %. In this case, the likelihood
function has the following form:
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L(B.o.\0;t)=
" | BpA?exp(a + bxl)tg_lexp(—(ltil)"’) (1 —exp(—(At)?)
exp(a+bxy) B-1
i=1 * (1 - (1 - exp(—(lti1)¢)) per )
{ BpAfexp(a+ bxy)(t; — 71 + u1)w_1exp(_(l(ti2 -7t u1))¢)

exp(a+bxy)— exp(a+bx, B-1
1—exp(—(Aty — 71 + u1))q’)) P (1 - (1 —exp(—(Alty — 74 + u1))¢)) P )) }

)exp(a+bx1)—1

nz
IT:2,

exp(a+bxy) Bne)
) ) . (20)

(1= (1 - em(-(a —r +0)")

Supposér and ¢ are known, the logarithm of the likelihood function in (2@¢noted byt is
given by:

, = InL(B, 9,1, 6;t)

=(n—-nJ)nBy) + p(n —nHnid + ZZ 1nj(a + bxj) +(p—-1) Z Int;,
= i=1

- > Ge)e +(exp(a+bx1)—1)+zln< Hi() )
i=1 o

1 — exp(—=(\t;1)%)

FE-DY m1-HO) + 0= n(H0) = ) AHON?
i=1 i=1 i=1

+ (exp(a + bx,) — 1)2 In (1 — exp(—(u(H,())?))
i=1
(8~ D52, In[1 - (1 - exp (-t O)?) )

exp(a+bxy)

1= (1- e (- (:0)") -
where
Hy() = (1 — exp(=(At;y)?))expla+bx),
HO =G
and

Hy() = (1 — exp(—(h1,)®))exp(bla-x2)),

The first derivatives of the logarithm of the likelihood ftion (21), with respect to a, b aficare
obtained.

Therefore, the MLEs can be obtained by equating thed@svatives oft,to zero. As shown they
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are nonlinear equations, the estimatesha andp, are numerically obtained using Newton
Raphson method. Depending on the invariance property of the Mh&dVILE of the shape
parameterf, , of the KumW distribution at usual stress ®an be estimated using the following
equation.

92u = exp(é.z + BzxZu), (22)

also, the MLE of the rf under the same usual conditiBgng(t,), can be given by

Rou(to) = [1 - [1 - exp(~(utg)) %], (23)
and the MLE of the hrf under the same usual conditiongt,), is given as follows
R == 20
where § is a mission time.
The asymptotic Fisher information matrix can be writtefosws:
i,= —[ o*tz ] ij=123, (25)
Y]

where ¥, = a, ¥, = b, Y3 = B and the elements of the information matrix (25) are ddrive
3.1 The Confidence Intervals Based on Typell Censoring

For large sample size, the MLEs under appropriate regulagnditions are consistent and
asymptotically unbiased as well as asymptotically norndiiyributed. Therefore, the two sided
approximate 100(1e) % confidence intervals for the MLE sa; of a population value w can be

obtained byP (—z < ‘%VW < z) =(1—-a) where z is the 10()1 — %) th standard normal

percentile. The two sided approximate 100¢1-% confidence intervals for a, b agdwill be
respectively, as follows:

Ly, = W — Zaoy, and U, =W+ zagy (26)
2 2

whereay, is the standard deviation and in this stiidis 4,5 or f, respectively (see [27]).
3.2 Optimum Test Plans Based on Type |l Censoring

The generalized asymptotic variance (GAV) of the MLEhef model parameters is the reciprocal
of the determinant of the asymptotic Fisher informatiatrin i, (see [11]).
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That is
~ 7~ 5 = -1

GAV(@y, by, B,) = |L| (27)
Thus, minimization of GAV is equivalent to maximizatioh the determinant of,. Newton
Raphson method is applied to determine numerically thechegce of the sub sample proportion
allocated to each level of stress which minimizes Ga#sVdefined previously. Accordingly, the
corresponding optimal numbers of items allocated to steghof stress can be obtained by getting
the first partial derivatives off} | with respect to Gand G.

A
%, ’ j=12. (28)

Then setting (28) equal to zero, wherga@ the sub sample proportion which can be optimally
determined by solving them simultaneously and applying Newtonhd®ap method. The
determinant can be obtained as follows

i |_azs2 920, 820, 02E2(62E2)2 62£2(02E2)2 z[azsz a2e, azsz] 62£2(62£2)2 (29)
217 9az o9b2 8B2  0a2 \obop 9p2 \dadb dadb dadf dbdp ab2 \aadp/) °

Remark

When r=n all the results obtained for Type Il censoringylte reduce to those of the complete
sample.

3.3 Numerical Results

This section aims to investigate the precision of ther#imal results of both estimation and
optimal design plans on basis of simulated and real data.

3.3.1 Simulation algorithm

« Several data sets are generated from KumW distributioa fmmmbination of the initial
parameter values of a, b afdand for sample sizes 20, 30, 60 and 100 using 1000
replications for each sample size.

» The transformation between uniform distribution and KumWitistion in step j=I is

exp(a+bx1)]ﬁ

WDy = 1= [1= [1 = exp(~(2t,,)")] (30)

¢ While the transformation between uniform distribution and Kumtiéfribution in step
jF2is
W2)y = 1-[1-[1— exp)]r@od]” (31)

where
@

1 exp(b(x1-x2))
M=—-A|t,—1— z(ln <1 - (1 - exp(—(lti,l)w)) P )) )
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e The whole sample size n is with initial values of pagameters a=0.5, b=1.5 apie1.2,
given n = 0.4n, n = 0.5n and g 0.In.

e It is assumed that there are only two different levélstess (k=2), x| and »%=1.5,
which are higher than the stress at usual conditigrQ)..

*  Number of test units is allocated to each level &sst where 0.4, G=0.5,

r; =90%(nR), j=I, 2.

* The initial parameter values of a, b ghdre used in this simulation study to genergte t
j=1,2andi=l, 2, ..;r

e Computer program is used depending on MathCad 14 using Newton Rapditbanl to
solve the derived nonlinear logarithmic likelihood equat&intultaneously.

e Once the values o%3b, and[?’z are obtained, the estimates are used to obtain, depending
on (22) and the design stress=&.5, the shape parameter under this strégsis
estimated a#,, = exp (4, + b,%,,,). Also, the rf, the hrf and their relative absolute bias
are estimated at different values of mission times undeal conditions using (23) and
(24).

«  The performance of the,&, andf, has been evaluated through some measurements of
accuracy. In order to study the precision and variation of MlEgs it is convenient to
use, the relative absolute bias (RABhe mean square error (BRund the relative error
(RE).

e The two sided approximate 10041-% confidence intervals for a, b afidwill be

obtained using (26). The different sample sizes of n=206@0100 are considered.

The results are displayed in Tables 1-4.

3.3.2 Concluding remarks

. It is clear from Table | that the MLEs fEare very close to the initial values of the
parameters as the sample size increases. Also, as shoilva numerical results the
RAB,, ER, and RE are decreasing when the sample size is increasing.

For all sample sizes we noted that:

«  fB,performs better than other estimates.

« b, performs better thana

e Table 2 indicates that the reliability decreases whenntission timegtincreases. The
results get better in the sense that the aim of anaaated life testing experiments is to
get large number of failures (reduce the reliabilityjhaf device with high reliability. As
to increases the RAB increases and when the sample size increases, therehses.
Also, the RAR;, for the rf decreases when the sample size increaseshiTincreases
when the mission timg tncreases and whegihcreases the RAB decreases.

* The two-sided 95% central asymptotic confidence interfal the parameters of Kumw
are displayed in Table 3. This table contains the standeod (8E), lower bound (b),
upper bound (&) and the length of the intervals. The interval estimathe parameters
becomes narrower as the sample size increases.

For all sample sizes, it is clear that:

* The length of the interval fg¥ is shorter than the other lengths.

* The length of the interval for b is shorter than theyterof the interval for a.

e Optimum test plans are developed numerically; it can bereéd from the numerical
results presented in Table 4, that the optimum test plam®t allocate the same number
of the test units to each stress. Also, Table 4, includegxpected number of items that
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must be allocated to each level of stress representetl by which minimizes the GAV.
As indicated from the results, the optimal GAV of the BMbf the model parameters
decreased as the sample size n increased.

Table 1. The E;, RAB,, ER; and RE; of the estimates at different sample sizes

n Parameter E, RAB, ER; RE;
20 a 0.3602 0.2796 0.0385 0.1962
b 1.7204 0.1469 0.0274 0.1655
B 1.3469 0.1213 0.0192 0.1386
30 a 0.411¢ 0.176: 0.036 0.191¢
b 1.682: 0.121¢ 0.025¢ 0.160¢
B 1.307: 0.089: 0.017¢ 0.133¢
60 a 0.452( 0.098( 0.0311 0.176¢
b 1.639¢ 0.093( 0.019: 0.140:
B 1.288¢ 0.074! 0.012¢ 0.112:
100 a 0.4731 0.0538 0.0275 0.1658
b 1.5618 0.0412 0.0168 0.1296
B 1.2427 0.0439 0.0093 0.0964

Table 2. The estimated shape parameter, rf and hrf under usual condition
at different sample sizes

n 024 to Rau(to) RABg; hy.(to) RAB#,
20 3.388¢ 0.3 0.976, 0.004¢ 0.446¢ 0.233:
0.5 0.726: 0.048: 2.847: 0.1557
0.7 0.293: 0.148¢ 6.229( 0.131¢
1 0.023( 0.359¢ 10.538¢ 0.123¢
30 3.500: 0.3 0.980: 0.001¢ 0.390: 0.362:
0.5 0.746! 0.022: 2.675¢ 0.086:
0.7 0.314( 0.088: 5.989 0.088¢
1 0.026¢ 0.254¢ 10.21° 0.089:
60 3.5669 0.3 0.9820 0.0004 0.3622 0.0002
0.5 0.7564 0.0009 2.5883 0.0506
0.7 0.3250 0.0562 5.8736 0.0673
1 0.0288 0.1970 10.0678 0.0733
100 3.5043 0.3 0.9813 0.0003 0.3702 0.0222
0.5 0.7573 0.0076 2.5410 0.0314
0.7 0.3328 0.0336 5.6925 0.0344
1 .0320 0.1074 9.7126 0.0354
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Table 3. Confidence intervals of the estimates at confidence level 95%
at different sample sizes

n Par ameter E, SE, L, U, Length

20 a 0.3602 0.1962 0.2725 0.4479 0.1755
b 1.720¢ 0.165¢ 1.646¢ 1.794 0.148:

B 1.3469 0.1386 1.2818 1.4121 0.1303

30 a 0.4119 0.1916 0.3419 0.4819 0.1399
b 1.682: 0.160¢ 1.623: 1.740¢ 0.117¢

B 1.3072 0.1338 1.2400 1.3378 0.0977

60 a 0.4520 0.3130 0.3712 0.5328 0.1617
b 1.639¢ 0.305( 1.560% 1.718: 0.157¢

B 1.2889 0.2722 1.2186 1.3592 0.1406

100 a 0.4731 0.1658 0.4399 0.5063 0.0663
B 1.561¢ 0.129¢ 1.535¢ 1.5877 0.051¢

B 1.2427 0.0964 1.2234 1.2620 0.0386

Table4. Theresults of optimal design of thelifetest at different sample sizes

n Ny Ny G, G, ni Tl; GAV
20 8 10 0.2903 0.3629 6 7 0.009642
30 12 15 0.3164 0.3955 9 12 0.000517
60 24 30 0.3257 0.4071 20 24 0.000340
100 40 50 0.3481 0.4351 35 44 0.000030

3.3.3 Application

The main aim of this subsection is to demonstrate how theogpedpmethod can be used in
practice. [25] used Kolmogorov-Smirnov goodness of fit tadt @ata points representing failure
time. The data were taken from [28]. The data were 3sitg=30) tested with test stopped after
20 th failure (r=20). It is assumed that k=2, i.e. theee @ily two different levels of stresses
x1=0.6 and ¥=1, which are higher than the stress at usual conditign8,5 The failure times in
the first step are [0.0014, 0.0623, 1.3826, 2.0130, 2.5274, 2.8234434.9835, 5.5462, 5.8196,
5.8714, 7.4710] and the failure times in the second ste7a5080, 7.6667, 8.6122, 9.0442,
9.1153, 9.6477, 10.1547, 10.7582].

The initial parameter values of a, b ghdsed in this application are a=0.5, b =B.52,A=2 and
¢=2. Once the estimate values of a, b fradle obtained, the estimators are used to estifpate
0,, = exp(&, + b,x,,). Letting the design stress,~ 0.5. Also, the reliability function is
estimated at different values of mission times undealconditions depending on (22).

Moreover, the precision and variation of MLEs,)Ere studied through some convenient
measures such as the RAER, and RE. These measures are computed for each parameter in
Table 5.

The estimated shape parameter, rf, RABhe hrf and RARB, under usual condition are shown in

Table 6. Table 7 and Table 8 indicate confidence interofithe parameters at confidence levels
95% and 99%. These tables contain the standard errgy, (8&er bound (L), upper bound (k)
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and the length of the intervals.

The relationship between the stress and the shape paramdested through testing the

significance of the coefficient b. Hypothesis test is ioleté wheno=0.05 and with one degree of

freedom, assuming the null hypothesis is b=0. It is rejeatel the relationship between the level
of the stress and the shape parameter exist.

Table5. The E,, RAB,, SE, and RE; of the estimates

Parameter E, RAB, ER, RE,
a 0.112:¢ 0.776¢ 0.150¢ 0.775¢
b 1.6020 0.0013 0.5913 0.4806
p 1.121¢ 0.439: 0.771: 0.439!

Table 6. The estimated shape parameter, rf and hrf under usual condition

0,, =2.4897
to 0.3 0.5 0.7 1
Ry, (ty) 0.974¢ 0.943¢ 0.906: 0.846¢
RABg, 0.021¢ 0.046¢ 0.073. 0.110¢
Ry (to) 0.8274 3.0461 5.5813 8.8508
RAB,; 1.2849 0.2364 0.0142 0.0564

Table 7. Confidence intervals of the estimates at confidence level 95%

Parameter E, SE, L, U, Length
a 0.1122 0.7756 0.0000 0.8878 0.8878
b 1.602( 0.480¢ 0.062: 3.137¢ 3.075¢
B 1.1218 0.4391 0.6346 2.8782 3.5128

Table 8. Confidence intervals of the estimates at confidence level 99%

Par ameter E, SE, L, U, Length
a 0.1122 0.7756 0.0000 1.3288 1.3288
b 1.602( 0.480¢ 0.000( 3.906¢ 3.906¢
B 1.1218 0.4391 0.0000 4.0149 4.0149

4 Inference and Optimal Simple Step-Stress Accelerated Life
TestsBased on Typel Censoring

In Type | censoring step-stress, the strgsdskraised to xatt.,, j=2, 3, ..., k. It is assumed that
the test is continued until all units fail or until ny. The difference between time step-stress and
failure step-stress, is that in failure step-stress,jn2, 3, ..., k+1, are predetermined but, j=2,

3, ..., kandtare random variables. On the other hapgd,and ¢ are predetermined in time step-
stress and;n, j=2, 3, ..., k+1, are random variables.
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4.1 The Maximum Likelihood Estimation Based on Type | Censoring when
thereare 2 Steps of Stressas a Special Case

As a special case, let k=8, is the time at which the stress changes frerox, and { is the time

at which the experiment is terminated (censoring {iribe likelihood function of the experiment
is considered to have the same form as (21)jhuand t are predetermined in time step-stress
and n,, j=2, 3, ..., k+1 are random variables. Then the maximkelitiood estimates are
obtained for the unknown parameters. The reliability &edhiazard rate functions are estimated.
In addition, confidence intervals of the estimators are aacts. Optimum test plans are
obtained to minimize the generalized asymptotic varianteeofnaximum likelihood estimators.

4.2 Numerical Results

This subsection aims to illustrate the precision of the #imal results of both estimation and
optimal design problems on basis of simulated data.

4.2.1 Simulation algorithm

The same steps of the algorithm in Subsection (3.3) wildmsidered in this algorithm with the
following data:

e The valuesty = 0,t; =2 and &= 5.5 are given. Once the values of & and[?l are
obtained, the estimates are used to obtain, depending on (22heamtksign stress,
x,=0.5, the shape parameter under this stigsss estimated ad;, =exp @1+hx.).

Also, the reliability function, the hazard rate functenmd their relative absolute bias are
estimated at different values of mission times under usual camglitsing (23) and (24).

« The performance of the estimateg B, andf; has been evaluated through some
measurements of accuracy. In order to study the predsidrvariation of MLEs, it is
convenient to use the relative absolute bias (BAfBe mean square error (BRind the
relative error (RE. Depending on the same procedure as in Section 3, the numerica
results of the experiment are displayed in Tables 9-12.

4.2.2 Concluding remarks

e ltis clear from Table 9 that the MLEs jjEare very close to the initial values of the
parameters as the sample size increases. Also, as shoilva numerical results the
RAB, ER; and RE are decreasing when the sample size is increasing.

For all sample sizes we noted that:

«  f, performs better than other estimates.

« by performs better than a

e Table 10, indicates that the reliability decreases whermission timegtincreases. The
results get better in the sense that the aim of anaaated life testing experiments is to
get large number of failures (reduce the reliabilityjreff device with high reliability. As
to increases the RAB increases and when sample size increases, the rf inerddse,
the RABg; for the rf decreases when the sample size increasesiriThereases when
the mission timegtincreases and whegihcreases the RAB decreases.

* The two-sided 95% central asymptotic confidence interfal the parameters of Kumw
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are displayed in Table 11. This table contains the standamd(8&9, lower bound (L),
upper bound (Y and the length of the intervals. The interval estimathe parameters
becomes narrower as the sample size increases.

¢ As shown in Section 3, by setting t%’l =0, 7, and tcan be optimally determined by
1

solving them simultaneously.
For all sample sizes, it is clear that:

* The length of the interval fgt is shorter than the other lengths.

« The length of the interval for b is shorter than the lerdtthe interval for a.

e optimum test plans are developed numerically. The egddohe,r;, at which the stress
changes from xto % and the expected timg;, at which the experiment is terminated
are displayed in Table 12. As indicated from the restlie optimal GAV of the MLE of
the model parameters is decreasing as the sample isiziecneasing.

Table9. The E;, RABy, ER; and RE; of the estimates at different sample sizes

n Parameter E, RAB; ER; RE;

20 a 0.402: 0.195/ 0.029: 0.171:
b 1.3283 0.1145 0.0217 0.1473
B 1.354¢ 0.128: 0.023¢ 0.154:

30 a 0.428: 0.143¢ 0.024¢ 0.156¢
b 1.3391 0.1073 0.0185 0.1360
)] 1.321¢ 0.101: 0.019: 0.138¢

60 a 0.457¢ 0.084¢ 0.020¢ 0.104¢
b 1.3816 0.0789 0.0154 0.1241
B 1.291¢ 0.076: 0.013¢ 0.117¢

10C a 0.470: 0.059/ 0.009¢ 0.097¢
b 1.4669 0.0227 0.0121 0.1100
)] 1.2285 0.0237 0.0108 0.1039

Table 10. The estimated shape parameter, rf and hrf under usual condition
at different samples sizes

n 014 to Ry (to) RABg; hyy(t) RABm
20 2.9051 0.3 0.9583 0.0237 0.6961 0.9225
0.5 0.6605 0.1345 3.2825 0.3324
0.7 0.2475 0.2814 6.5168 0.1842
1 0.0184 0.4880 10.6450 0.1348

30 2.9977 0.3 0.963¢ 0.018¢ 0.625: 0.726¢
0.5 0.6803 0.1085 3.1206 0.2667
0.7 0.2646 0.2317 6.3101 0.1466

1 0.021: 0.412¢ 10.376t 0.106:
60 3.1538 0.3 0.9704 0.0114 0.5308 0.4658
0.5 0.7071 0.0734 2.9186 0.1847
0.7 0.2871 0.1663 6.0886 0.1064
1 0.0245 0.3164 10.1263 0.0796

100 3.3326 0.3 0.977: 0.000¢ 0.428¢ 0.184:
0.5 0.9406 0.0295 2.3689 0.0711
0.7 0.3215 0.0664 5.7077 0.0372
1 0.0325 0.1255 9.6170 0.0253

1510



British Journal of Mathematics & Computer Scien¢gl4, 1496-1514, 2014

Table 11. Confidence bounds of the parameter s at confidence level 95%
at different sample sizes

n Parameters E; SE, L, U, Length

20 a 0.4023 0.0293 0.3258 0.4788 0.1531
b 1.328: 0.0217 1.262¢ 1.394: 0.131¢

B 1.3544 0.0238 1.2854 1.4234 0.1380

30 a 0.4283 0.1712 0.3658 0.4908 0.1250
b 1.339:; 0.147: 1.285: 1.392¢ 0.107¢

B 1.3214 0.1543 1.2651 1.3777 0.1127

60 a 0.4578 0.1446 0.4205 0.4951 0.0746
b 1.381¢ 0.1241 1.349¢ 1.413¢ 0.064

B 1.2914 0.1175 1.2110 1.3217 0.0607

100 a 0.4703 0.0975 0.4508 0.4898 0.0390
b 1.466¢ 0.110¢ 1.444¢ 1.488¢ 0.044(

B 1.2285 0.1039 1.2077 1.2493 0.0416

Table 12. Theresults of optimal design of thelifetest at different sample sizes
under Typel censoringin step-stress

n ny n, T3 t; nj n, GAV
20 10 10 2.81 4.82 11 3 0.0072¢
30 15 15 2.94 4,79 19 7 0.00095
60 30 30 3.06 4,53 37 13 0.000249
100 50 50 3.39 4.10 61 16 0.0000583
Remarks

The results obtained in this paper can be modified to olésinlts for sub-models of KumwW
distribution under Type | and Type Il censored samples such as

e The Kum exponential distribution ¢f = 1.

e The Kum Rayleigh distribution if = 2.

e The exponentiated Weibull distributionfif= 1.

e The exponentiated Rayleigh distributiorif 1, = 2.
e The exponentiated exponential distributiof i ¢= 1.
e The Weibull distribution iff =6 = 1, see [29].

e The Rayleigh distribution ip =2, =6 = 1.

e The exponential distribution @ =p =6 = 1.
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