
 
 

British Journal of Mathematics & Computer Science  
4(11): 1496-1514, 2014 

 

SCIENCEDOMAIN international 
www.sciencedomain.org   

________________________________________________________________ 

_____________________________________ 
*Corresponding author: aah_elhelbawy@hotmail.com; 
  
 

 

Statistical Inference for a Simple Step-Stress Model 
Based on Censored Data from the Kumaraswamy 

Weibull Distribution 
 

H. R. Rezk1, A. A. EL Helbawy1* and G. R. AL Dayian1 

 
1Department of Statistics, Faculty of Commerce, AL-Azhar University (Girls’ Branch), Cairo, 

Egypt. 
 
 
 

Received: 25 October 2013 
Accepted: 03 February 2014 

Published: 28 March 2014 
_______________________________________________________________________ 
 

Abstract 
 
The step-stress accelerated life tests allow increasing the stress levels on test units at fixed time 
during the experiment. In this paper, accelerated life tests are considered when lifetime of a 
product follows a Kumaraswamy Weibull distribution. The shape parameter is assumed to be a 
log linear function of the stress and a cumulative exposure model holds. Based on Type II and 
Type I censoring, the maximum likelihood estimates are obtained for the unknown parameters. 
The reliability and hazard rate functions are estimated at usual conditions of stress. In addition, 
confidence intervals of the estimators are constructed. Optimum test plans are obtained to 
minimize the generalized asymptotic variance of the maximum likelihood estimators. Monte 
Carlo simulation is carried out to investigate the precision of the maximum likelihood estimates. 
An application using real data is used to indicate the properties of the maximum likelihood 
estimators. 
 

keywords:  Accelerated life tests; simple step-stress; cumulative exposure; type II censoring;  
type I censoring; confidence intervals; test of hypothesis; Kumaraswmay Weibull 
distribution; optimum test plans; generalized asymptotic variance; Monte Carlo 
simulation. 

 
1 Introduction 
 
In order to obtain highly reliable products long life-spans, time consuming and expensive tests are 
often required to collect enough failure data. The standard life-testing methods are not appropriate 
in such situations and to overcome this difficulty accelerated life tests are applied; wherein the test 
units are run at higher stress levels (which includes temperature, voltage, pressure, vibration, 
cycling rate, etc.) to cause rapid failures. Accelerated life tests allow the experimenter to apply 
severe stresses to obtain information on the parameters of the lifetime distributions more quickly 
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than under normal operating conditions. Such tests can reduce the testing time and save a lot of 
manpower, material sources and money. The stress can be applied in different ways: Commonly 
used methods are constant stress, progressive stress and step-stress (see [1,2,3]). 
 
In step-stress accelerated life testing (ALT), the stress for survival units is generally changed to a 
higher stress level at a predetermined time. This model assumes that the remaining life of a unit 
depends only on the current cumulative fraction failed and current stress. Moreover, if it is held at 
the current stress, survivors will continue failing according to the cumulative distribution function 
(cdf) of that stress but starting at the age corresponding to the previous fraction failed. This model 
is called the cumulative exposure (CE) model. Some references in the field of the accelerated life 
testing include [4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22]. 
 
[23] constructed a distribution with two shape parameters on (0, 1). Kumaraswamy (Kum) 
distribution is applicable to many natural phenomena whose outcomes have lower and upper 
bounds, such as heights of individuals, scores obtained in a test, atmospheric temperatures and 
hydrological data. Also, Kum distribution could be appropriate in situations where scientists use 
probability distributions which have infinite lower and or upper bounds to fit data, when in reality 
the bounds are finite (see [24]). A compound between Kum distribution and any distribution was 
constructed by [25]. 
 
Weibull distribution is one of the most popular models; it has been extensively used for modeling 
data in reliability, engineering and biological studies. The need for forms of Weibull distribution 
arises in many applied areas. In this paper, simple step-stress is applied to Kumaraswamy Weibull 
distribution. The cumulative distribution function (cdf) and the probability density function (pdf) 
of the Kumaraswamy Weibull (KumW) distribution are obtained as follows: 

                             F�t;  θ, β,φ, λ� = 1 − �1 − �1 − exp�−�λt�φ��θ�β,     t > 0,                                                                 (1)  
 
and 
 f�t;  θ, β,φ, λ� = θβφλφtφ��exp�−�λt�φ��1 − exp�−�λt�φ��θ���1 − �1 − exp�−�λt�φ��θ�β��,                                                                                                                             t > 0,   �, �, λ , φ > 0,          (2) 
 
where θ, β and φ are the shape parameters, λ is a scale parameter. 
 
It has three shape parameters. These parameters allow for a high degree for flexibility of the 
KumW distribution. Some special cases can be obtained from KumW distribution such as Kum 
exponential, Kum Rayleigh, exponentiated Weibull, exponentiated Rayleigh, exponentiated 
exponential, Weibull, Rayleigh and exponential distributions. It is wide applicable in reliability, 
engineering and in other areas of research. The KumW is discussed in details in [26]. 
 

The reliability function (rf) of KumW and the hazard rate function (hrf) corresponding to 
(2), can be written, respectively, as follows: 
 R�t;  θ, β,φ, λ� = �1 − �1 − exp�−�λt�φ��θ�β,   t > 0,                                                       (3)  
 
and  h�t;  θ, β,φ, λ� = θβφλφ�φ��������λ��φ����������λ��φ��θ��������������λ��φ��θ ,       t > 0.                                        (4) 
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The rest of this paper is organized as follows: in Section 2, the k step-stress accelerated life testing 
is presented. The statistical inference for simple step-stress life testing based on Type II censoring 
is obtained in Section 3. In Section 4, the statistical inference for simple step-stress life testing 
based on Type I censoring is discussed. 
 

2 The K Step-Stress Accelerated Life Testing 
 
Assuming k step-stress accelerated life testing, the model of constant stress is considered in the 
first step. In this model, the lifetime of the unit is affected by a certain level of stress x1, where x1 
is larger than the usual stress xu. 
 
In the consecutive steps, other stresses are considered as x2, x3, ..., xk, where xu<x1<x2<..<xk, 
then the cumulative exposure model reflects the effect of moving from one stress to another one. 
In the following subsection some basic assumptions are considered. 
 
2.1 Basic Assumptions 

 
1- For any stress xj, j=1, 2, ..., k, the lifetime distribution is KumW (θ, β, φ, λ) the pdf can be 
written as follows: 
 f#t$%; β,φ, λ, θ%& =
θ%βφλφt$%φ��exp#−#λt$%&φ&�1 − exp#−#λt$%&φ& θ'�� (1 − �1 − exp#−#λt$%&φ& θ')β��,                  (5) 

 
where tij is a random variable of time at the step j and rj is the number of failures at the step j, 
 
 tij > 0, β, θ, λ,  φ > 0, j=1, 2, ..., k and i=1, 2, ..., rj. 
 
2- β, λ, φ are constants with respect to the stress x, and the shape parameter θ is affected by the 
stress xj,  j=1, 2, ..., k, through the log linear model in the form 
 

                                                                     θ% = exp#a + bx%&,                                                   (6) 
 

where a and b are unknown parameters depending on the nature of the unit and the test method. 
 
3- Suppose that, for a particular pattern of stress, units run at stress xj starting at time τj-1 and 
reaching to time τj , j=1, 2, ..., k, (τ0 = 0). The behavior of such units is as follows: 
 
At Step 1, the population fraction F1 (t) of units failing by time τ1 under constant stress x1 is
  F��t� = 1 − �1 − �1 − exp�−�λt$��φ������-./��� β, 0 <  0 < τ�, a, b, β,φ, λ > 0.        (7) 
 
If F(t) is the population cumulative distribution fraction of units failing under step-stress, then in 
the first step: 

                                 F�t� = F��t�,     0 < 0 < τ�,                                                              (8) 
where τ1 is the time when the stress is raised from x1 to x2. 
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2.2 The Cumulative Exposure Model for the Remaining Steps 
 
When Step 2, starts, units have equivalent age u1, which have produced the same fraction failed 
seen at the end of Step 1. In other words the survivors at time τ1 will be switched to the stress x2 
beginning at the point u1, which can be determined as the solution of 
 F1�u�� = F��τ��,     
 

31 − 41 − exp#−#λu%��&φ&5���#-./�'&6β =
 71 − 31 − exp 4− 4λ#∆%�1 + u%�1&5φ56���#-./�'��&9β ,                                                                     �9�    

                
where ∆0 = τ1− τ0, u0 = 0 and ∆ j-2 = τj-1 − τj-2 ,  j=2, 3, ..., k, by solving (9), one obtains 
 

exp#−#λu%��&φ& = 1 − 31 − exp 4− 4λ#∆%�1 + u%�1&5φ56���4/#�'����'&5, 
 
by taking the logarithm for two sides, it follows that 
 u%�� =
�
λ

;−ln >1 − (1 − exp 4− 4λ#∆%�1 + u%�1&5φ5)���4/#�'����'&5?@
�
φ,                                                      (10) 

 
the cumulative exposure model for j steps can be written as follows: 
 F�t� = F%�t − τ%�� + u%�� , τ%�� ≤ t ≤ τ%, 
 

F�t� = 1 − 71 − 31 − exp 4− 4λ#t − τ%�� + u%��&5φ56���#-./�'��&9β.                                   (11) 

 
Substituting uj-1 in (11), it is seen that F(t), for a step-stress pattern which consists of 

segments of the cdf, F1, F2, ..., Fk , can be written in the form: 
           

F�t� = BB
0                                                                                         t ≤ τCF��t�;                                                                        τC ≤ t ≤ τ�F%#t − τ%�� + u%��&;         τ%�� ≤ t ≤ τ%, j = 2,3, … , k − 1 FI�t − τI�� + uI���;                                    τI�� ≤ t ≤ ∞

BB ,                                              �12� 

 
and the associated pdf, f(t), has the following form     
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f�t� = BB
f��t�;                                                                             τC ≤ t ≤ τ�f%#t − τ%�� + u%��&;             τ%�� ≤ t ≤ τ%, j = 2,3, … , k − 1

fI�t − τI�� + uI���;                                                 τI�� ≤ t ≤ ∞0                                                                                  elsewhere BB ,                         �13� 

 
The maximum likelihood (ML) method is applied to the step-stress model. The pdf for each test is 
shown by (13), which is the time derivative of the cdf given by (12). The likelihood function is 
the product of such pdf’s evaluated at failure times if complete sampling is used or of observed 
pdf’s of such survival functions evaluated at censoring times when censoring is applied. It is 
shown that F(t), differs for units with different step-stress patterns. The likelihood function is used 
to obtain maximum likelihood estimators (MLEs) of the parameters a, b and β. 
 

3  Inference and Optimal Simple Step-Stress Accelerated Life 
Tests Based on Type II Censoring 

 
The experiment based on Type II censoring step-stress has the following assumptions: 
 

1- There are k levels of stress x1, x2, ..., xk , where x1<x2 < ... <xk , are applied such that 
each unit is initially put under stress x1. 

2- The experiment begins with n units. The stress x1 is applied at the first step and the result 
is n1 failure times ti1, i=1, 2, ..., n1 of test units are observed. When stress x2 is applied at 
the second step, n2 failure times ti2, i=1, 2, ..., n2 are observed. Finally, at Step j, stress xj 
is applied, nj failure times tij, are observed. 

3- The test begins at stress level x1 if the unit doesn’t fail till the predetermined n1 failures, 
the stress is raised to x2 and held until n2 failures. If it doesn’t fail, stress is raised to x3. 
In general, if the unit doesn’t fail until the occurrence of nj-1 at stress xj-1, then the stress 
is raised to xj at τj-1 , j=2, 3, ..., k, and held nj failure in case of censored samples, then the 
test is continued until the occurrence of a predetermined  number of failures  ∑ n%I%N� . 
Then there are nc units still survived, at the Step k, the data would be the failure times of 
(n-nc) failed units arranged in order and the units which survived beyond tc (τnk). 

4- Then, it is shown from the previous points that:  
The stress xj-1 is raised to xj at τj-1, j=2, 3, ..., k, when exactly nj-1 failures are observed. It 
is assumed that the test is continued until all units fail when exactly nk failures are 
observed. Then, the failure nj-1, j=2, 3, ..., k is predetermined but τj-1, j=2, 3, ..., k and tc 
are random variables. 

 
The failure time distribution is assumed to be KumW distribution and the shape parameter is 
shown as a function of the stress through the log linear model. The likelihood function of the 
experiment is assumed to have the following form: 
 L#t$%; i = 1,2, … , n%, j = 1,2, … , k& = �∏ f��t$��R�$N�  �∏ ∏ f%#t$% −  τ%�� + u%��&R'SN�I%N1      
                                                           ∗  �1 −  FI�tU − τI�� + uI����RV   .                                   (14)  
                                     
It is shown from (14) that the likelihood function consists of three parts. The first one represents 
the likelihood of the first step which is the same as the case of constant stress. The second part 
shows the likelihood function of the (k-1) other stresses. The third part shows the likelihood 
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function of the survived units by time tc. Considering the cumulative exposure model to relate cdf 
under step-stress to the cdf under constant stress and using the previous assumptions, it is clear 
that: 
 
The failure time distribution at j-th step 
 f#t$% − τ%�� + u%��& =  βφλφexp #a + bxW&�#t$% − τ%�� + u%��&φ��exp 4− 4λ#t$% − τ%�� + u%��&5φ5 

 

                                          ∗  (1 − exp 4− 4λ#t$% − τ%�� + u%��&5φ5)���#-./�'&��
   

                                        ∗ X1 − (1 − exp 4− 4λ#t$% − τ%�� + u%��&5φ5)���#-./�'&Yβ��
,            (15)  where  

u%�� = 1
λ

;−ln >1 − (1 − exp 4− 4λ#∆%�1 + u%�1&5φ5)���4/#�'����'&5?@
�
φ. 

 
 
As a special case, let k=2, τ%�� = τ� and τR1 = tU , it is shown that: 
 
                                         F1�]�� = F��^��,                                                                                   (16) 
 
then 

  u� = �
λ

(−ln�1 − �1 − exp�−�λτ��φ�����#/�����_�& )�
φ ,                                                               (17) 

 
 
hence, the population cumulative fraction of specimens failing in Step 2, by time t is given by: 
 

                       F�t� = F1��t − τ�� + u�� , τ� ≤ t ≤ τ1 ,                                                          (18) 
 
              F�t� = 1 − `1 − �1 − exp#−#λ�t − τ� + u��&φ& ����-./�_�aβ.                                                     (19) 

 
 
When k=2 there are two steps only with two levels of stress x1 and x2. In this case, the likelihood 
function has the following form: 
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b #�, c, λ, �; 0&= 

d e�cfghij�k + li��0S�g��hij#−�f0S��m& 41 − hij#−�f0S��m&5����-./�����
∗ n1 − 41 − hij#−�f0S��m&5����-./���op�� qr�

SN�  

∏ s �cfghij�k + li1��0S1 − ^� + ]��g��hij#−#f�0S1 − ^� + ]��&g&
∗ 41 − hij#−#f�0S1 − ^� + ]��&g&5����-./�_��� n1 − 41 − hij#−#f�0S1 − ^� + ]��&g&5����-./�_�op��tr_SN�      

 * n1 − 41 − hij#−#f�0u − ^� + ]��&g&5����-./�_�op�rv�
 .                                                    (20)                                                                    

  
Suppose λ and φ are known, the logarithm of the likelihood function in (20), denoted by ℓ2 is 
given by:               ℓ1 = lnL#�, c, λ, �; 0&                          
 = �w − wu�xw��c� + c�w − wu�xwf + y wW#k + liW& + �c − 1� y xw0S�

r�
SN�

1
WN�

− y�f0S��g    + �exp�k + li�� − 1�r�
SN� + y xw 3 z��. �1 − exp�−�λ0S��g�6r�

SN�+ �� − 1� y xwr�
SN� #1 − z��. �&  + �c − 1� y xwr_

SN� #z1�. �& − y�f�z1�. ���gr_
SN�+  �hij�k + li1� − 1� y xwr_

SN� #1 − hij�−�λ�z1�. ���g�& 

                                  +�� − 1� ∑ xwr_SN� (1 − #1 − hij�−�f�z1�. ���g�&{|}�~.�|_�) 
                                   +�wuln �1 − 41 − exp 4− 4f#z��. �&5g55����~.�|_�

                                 (21) 

 
where 
 z��. � = �1 − exp�−�λ0S��g��{|}�~.�|��, 
 z1�. � = �0S1 − ^� + ]��, z��. � = �0u − ^� + ]��, 
 
and z��. � = �1 − exp�−�λ^��g��{|}#��|��|_�&. 
 
The first derivatives of the logarithm of the likelihood function (21), with respect to a, b and β are 
obtained. 
 
Therefore, the MLEs can be obtained by equating the first derivatives of ℓ2 to zero. As shown they 
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are nonlinear equations, the estimates â2, l�1  and ��1  are numerically obtained using Newton 
Raphson method. Depending on the invariance property of the MLEs, the MLE of the shape 
parameter, θu , of the KumW distribution at usual stress xu, can be estimated using the following 
equation. 
 

               ��1� = hij#â1 + l�1i1�&,                                                                                    (22) 
 
also, the MLE of the rf under the same usual conditions  ��1��0C�, can be given by 
 

     �� 1��0C� = �1 − �1 − exp�−�λtC�φ����_� p�_ ,                                                          (23) 
 
and the MLE of the hrf under the same usual conditions  ℎ�1��0C�, is given as follows 
 

           ℎ�1��0C� = ��_�p�_φλφ��φ��������λ���φ����������λ���φ����_���(�����������λ���φ����_�) ,                                              (24) 

 
where t0 is a mission time. 
 
The asymptotic Fisher information matrix can be written as follows: 
 

                             Ĩ1 = − ` �_ℓ1������a , �, � = 1, 2, 3,                                                                       (25) 

 
where  �� = k,  �1 = l,  �� = � and the elements of the information matrix (25) are derived . 
 
3.1 The Confidence Intervals Based on Type II Censoring 
 
For large sample size, the MLEs under appropriate regularity conditions are consistent and 
asymptotically unbiased as well as asymptotically normally distributed. Therefore, the two sided 
approximate 100(1- α) % confidence intervals for the MLE say,  �� of a population value w can be 

obtained by � 4−� ≤ �� ����� ≤ �5 = �1 − ��   where z is the 10041 − �15 th standard normal 

percentile. The two sided approximate 100(1- α) % confidence intervals for a, b and β will be 
respectively, as follows: 
 
            b� = �� − ��_��� ,           and           �� = �� + ��_���    ,                                                    (26) 

 
where ���  is the standard deviation and in this study ��  is â, l� or ��, respectively (see [27]). 
 
 
3.2 Optimum Test Plans Based on Type II Censoring 
 
The generalized asymptotic variance (GAV) of the MLE of the model parameters is the reciprocal 
of the determinant of the asymptotic Fisher information matrix Ĩ2 (see [11]).  
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That is 

                                 ¡¢#k£1, l�1 , ��1& = ¤¥¦1¤��
.                                                                         (27) 

 
Thus, minimization of GAV is equivalent to maximization of the determinant of Ĩ2. Newton 
Raphson method is applied to determine numerically the best choice of the sub sample proportion 
allocated to each level of stress which minimizes GAV as defined previously. Accordingly, the 
corresponding optimal numbers of items allocated to each step of stress can be obtained by getting 
the first partial derivatives of | Ĩ2 | with respect to G1 and G2. 
 

                                     
�¤Ĩ_¤�§� , � = 1,2.                                                                                         (28) 

 
Then setting (28) equal to zero, where Gj are the sub sample proportion which can be optimally 
determined by solving them simultaneously and applying Newton Raphson method. The 
determinant can be obtained as follows 
 ¤Ĩ1¤ = �_ℓ_ �~_  �_ℓ_��_  �_ℓ_�p_ − �_ℓ_�~_ 4 �_ℓ_���p51 − �_ℓ_�p_ 4�_ℓ_�~��51 + 2 ( �_ℓ_�~��  �_ℓ_�~�p  �_ℓ_���p) − �_ℓ_��_ 4 �_ℓ_�~�p51.       (29)   

                                                                    
Remark 
 
When r=n all the results obtained for Type II censoring, results reduce to those of the complete 
sample. 
 
3.3 Numerical Results 
 
This section aims to investigate the precision of the theoretical results of both estimation and 
optimal design plans on basis of simulated and real data. 
 
3.3.1 Simulation algorithm 
 

• Several data sets are generated from KumW distribution for a combination of the initial 
parameter values of a, b and β, and for sample sizes 20, 30, 60 and 100 using 1000 
replications for each sample size. 

• The transformation between uniform distribution and KumW distribution in step j=l is 
 

                          ��1�S,� = 1 − `1 − �1 − hij#−#f0S,�&g& {|}�~.�|��ap.                                   (30) 

 
• While the transformation between uniform distribution and KumW distribution in step 

j=2 is 

                                     ��2�S,� = 1 − �1 − �1 − hij�¨��{|}�~.�|_� p
 ,                                    (31) 

 
              where 

¨ = −�f ©0S,1 − ^ − ©1f 7xw 31 − 41 − hij#−#f0S,�&g&5{|}#��|��|_�&69ªgª� 
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• The whole sample size n is with initial values of the parameters a=0.5, b=1.5 and β =1.2, 
given n1 = 0.4n, n2 = 0.5n and nc= 0.ln. 

• It is assumed that there are only two different levels of stress (k=2), x1=l and x2=1.5, 
which are higher than the stress at usual condition, xu=0.5. 

• Number of test units is allocated to each level of stress where G1=0.4, G2=0.5,  
rj =90%(nj), j=l, 2. 

• The initial parameter values of a, b and β are used in this simulation study to generate tij, 
 j = 1, 2 and i=l, 2, ..., rj. 

• Computer program is used depending on MathCad 14 using Newton Raphson method to 
solve the derived nonlinear logarithmic likelihood equations simultaneously. 

• Once the values of â2, l�2 and ��2 are obtained, the estimates are used to obtain, depending 
on (22) and the design stress, xu=0.5, the shape parameter under this stress, θu, is 
estimated as ��1� = exp �â1 + b¬ 1x̂1��. Also, the rf, the hrf and their relative absolute bias 
are estimated at different values of mission times under usual conditions using (23) and 
(24). 

• The performance of the â2, l�2 and ��2 has been evaluated through some measurements of 
accuracy. In order to study the precision and variation of MLEs (E2), it is convenient to 
use, the relative absolute bias (RAB2), the mean square error (ER2) and the relative error 
(RE2). 

• The two sided approximate 100(1-α) % confidence intervals for a, b and β will be 
obtained using (26). The different sample sizes of n=20, 30, 60, 100 are considered. 

•  The results are displayed in Tables 1-4. 
 

3.3.2 Concluding remarks 
 

•  It is clear from Table l that the MLEs (E2) are very close to the initial values of the 
parameters as the sample size increases. Also, as shown in the numerical results the 
RAB2, ER2 and RE2 are decreasing when the sample size is increasing. 

  For all sample sizes we noted that: 
•  ��2 performs better than other estimates. 
• l�2  performs better than â2. 
• Table 2 indicates that the reliability decreases when the mission time t0 increases. The 

results get better in the sense that the aim of an accelerated life testing experiments is to 
get large number of failures (reduce the reliability) of the device with high reliability. As 
t0 increases the RABR2 increases and when the sample size increases, the rf increases. 
Also, the RABR2 for the rf decreases when the sample size increases. The hrf increases 
when the mission time t0 increases and when t0 increases the RABh2 decreases. 

• The two-sided 95% central asymptotic confidence intervals for the parameters of KumW 
are displayed in Table 3. This table contains the standard error (SE2), lower bound (L2), 
upper bound (U2) and the length of the intervals. The interval estimate of the parameters 
becomes narrower as the sample size increases. 

  For all sample sizes, it is clear that: 
• The length of the interval for β is shorter than the other lengths. 
• The length of the interval for b is shorter than the length of the interval for a. 
• Optimum test plans are developed numerically; it can be observed from the numerical 

results presented in Table 4, that the optimum test plans do not allocate the same number 
of the test units to each stress. Also, Table 4, includes the expected number of items that 
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must be allocated to each level of stress represented by w�∗, w1∗  which minimizes the GAV.  
 As indicated from the results, the optimal GAV of the MLE of the model parameters 

decreased as the sample size n increased. 
 

Table 1. The E2, RAB2, ER2 and RE2 of the estimates at different sample sizes 
 

n Parameter E2 RAB2 ER2 RE2 

20 a 0.3602 0.2796 0.0385 0.1962 

b 1.7204 0.1469 0.0274 0.1655 

β 1.3469 0.1213 0.0192 0.1386 

30 a 0.4119 0.1762 0.0367 0.1916 

b 1.6821 0.1214 0.0259 0.1609 

β 1.3072 0.0893 0.0179 0.1334 

60 a 0.4520 0.0980 0.0311 0.1764 

b 1.6394 0.0930 0.0197 0.1403 

β 1.2889 0.0741 0.0126 0.1122 

100 a 0.4731 0.0538 0.0275 0.1658 

b 1.5618 0.0412 0.0168 0.1296 

β 1.2427 0.0439 0.0093 0.0964 

                          
Table 2. The estimated shape parameter, rf and hrf under usual condition  

at different sample sizes 
 

n ®�¯° t0 ±�¯°�²³� RABR2 �́¯°�²³� RABh2 

20 3.3885 0.3 0.9767 0.0049 0.4466 0.2333 

0.5 0.7263 0.0483 2.8473 0.1557 

0.7 0.2932 0.1486 6.2290 0.1319 

1 0.0230 0.3598 10.5384 0.1235 

30 
 

3.5007 
 

0.3 0.9802 0.0014 0.3907 0.3621 

0.5 0.7461 0.0223 2.6758 0.0861 

0.7 0.3140 0.0882 5.9897 0.0884 

1 0.0268 0.2544 10.217 0.0892 

60 
 

3.5669 
 

0.3 0.9820 0.0004 0.3622 0.0002 

0.5 0.7564 0.0009 2.5883 0.0506 

0.7 0.3250 0.0562 5.8736 0.0673 

1 0.0288 0.1970 10.0678 0.0733 

100 
 

3.5043 
 

0.3 0.9813 0.0003 0.3702 0.0222 

0.5 0.7573 0.0076 2.5410 0.0314 

0.7 0.3328 0.0336 5.6925 0.0344 

1 .0320 0.1074 9.7126 0.0354 
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Table 3. Confidence intervals of the estimates at confidence level 95%  
at different sample sizes 

 
n Parameter E2 SE2 L2 U2 Length 
20 a 0.3602 0.1962 0.2725 0.4479 0.1755 

b 1.7204 0.1655 1.6464 1.7944 0.1481 
β 1.3469 0.1386 1.2818 1.4121 0.1303 

30 a 0.4119 0.1916 0.3419 0.4819 0.1399 
b 1.6821 0.1609 1.6233 1.7409 0.1175 
β 1.3072 0.1338 1.2400 1.3378 0.0977 

60 a 0.4520 0.3130 0.3712 0.5328 0.1617 
b 1.6394 0.3050 1.5607 1.7181 0.1575 
β 1.2889 0.2722 1.2186 1.3592 0.1406 

100 a 0.4731 0.1658 0.4399 0.5063 0.0663 
B 1.5618 0.1296 1.5359 1.5877 0.0518 
β 1.2427 0.0964 1.2234 1.2620 0.0386 

 
Table 4. The results of optimal design of the life test at different sample sizes 

 
n n1 n2 G1 G2 µ¶∗  µ∗̄  GAV 
20 
30 
60 
100 

8 
12 
24 
40 

10 
15 
30 
50 

0.2903 
0.3164 
0.3257 
0.3481 

0.3629 
0.3955 
0.4071 
0.4351 

6 
9 
20 
35 

7 
12 
24 
44 

0.009642 
0.000517 
0.000340 
0.000030 

 
3.3.3 Application 
 
The main aim of this subsection is to demonstrate how the proposed method can be used in 
practice. [25] used Kolmogorov-Smirnov goodness of fit test and data points representing failure 
time. The data were taken from [28]. The data were 30 items (n=30) tested with test stopped after 
20 th failure (r=20). It is assumed that k=2, i.e. there are only two different levels of stresses 
x1=0.6 and x2=1, which are higher than the stress at usual conditions, xu=0.5. The failure times in 
the first step are [0.0014, 0.0623, 1.3826, 2.0130, 2.5274, 2.8221, 3.1544, 4.9835, 5.5462, 5.8196, 
5.8714, 7.4710] and the failure times in the second step are [7.5080, 7.6667, 8.6122, 9.0442, 
9.1153, 9.6477, 10.1547, 10.7582]. 
 
The initial parameter values of a, b and β used in this application are a=0.5, b =1.5, β =2, λ=2 and 
φ=2. Once the estimate values of a, b and β are obtained, the estimators are used to estimate θu, as  ��1� = hij#â1 + l�1i1�&.  Letting the design stress, xu= 0.5. Also, the reliability function is 
estimated at different values of mission times under usual conditions depending on (22). 
 
Moreover, the precision and variation of MLEs (E2) are studied through some convenient 
measures such as the RAB2, ER2 and RE2. These measures are computed for each parameter in 
Table 5. 
 
The estimated shape parameter, rf, RABR2, the hrf and RABh2 under usual condition are shown in 
Table 6. Table 7 and Table 8 indicate confidence intervals of the parameters at confidence levels 
95% and 99%. These tables contain the standard error (SE2), lower bound (L2), upper bound (U2) 
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and the length of the intervals. 
 
The relationship between the stress and the shape parameter is tested through testing the 
significance of the coefficient b. Hypothesis test is obtained when α=0.05 and with one degree of 
freedom, assuming the null hypothesis is b=0. It is rejected and the relationship between the level 
of the stress and the shape parameter exist.  
 

Table 5. The E2, RAB2, SE2 and RE2 of the estimates 
 

Parameter E2 RAB2 ER2 RE2 

a 0.1122 0.7766 0.1504 0.7756 
b 1.6020 0.0013 0.5913 0.4806 
β 1.1218 0.4391 0.7712 0.4391 

 
Table 6. The estimated shape parameter, rf and hrf under usual condition 

 ®�2u =2.4897 
t0 0.3 0.5 0.7 1 ��1��0C� 0.9745 0.9434 0.9065 0.8468 

RABR2 0.0214 0.0465 0.0732 0.1104 ℎ�1��0C� 0.8274 3.0461 5.5813 8.8508 
RABh2 1.2849 0.2364 0.0142 0.0564 

 
Table 7. Confidence intervals of the estimates at confidence level 95% 

 
Parameter E2 SE2 L2 U2 Length 

a 
b 
β 

0.1122 0.7756 0.0000 0.8878 0.8878 
1.6020 0.4806 0.0621 3.1379 3.0758 
1.1218 0.4391 0.6346 2.8782 3.5128 

 
Table 8. Confidence intervals of the estimates at confidence level 99% 

 
Parameter E2 SE2 L2 U2 Length 

a 0.1122 0.7756 0.0000 1.3288 1.3288 
b 1.6020 0.4806 0.0000 3.9068 3.9068 
β 1.1218 0.4391 0.0000 4.0149 4.0149 

 

4  Inference and Optimal Simple Step-Stress Accelerated Life 
Tests Based on Type I Censoring 

 
In Type I censoring step-stress, the stress xj-1 is raised to xj at τj-1, j=2, 3, ..., k. It is assumed that 
the test is continued until all units fail or until time tc. The difference between time step-stress and 
failure step-stress, is that in failure step-stress, nj-1, j=2, 3, ..., k+1, are predetermined but τj-1, j=2, 
3, ..., k and tc are random variables. On the other hand, τj-1, and tc are predetermined in time step-
stress and nj-1, j=2, 3, ..., k+1, are random variables. 
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4.1  The Maximum Likelihood Estimation Based on Type I Censoring when 
there are 2 Steps of Stress as a Special Case 

 
As a special case, let k=2, τ1 is the time at which the stress changes from x1 to x2 and tc is the time 
at which the experiment is terminated (censoring time). The likelihood function of the experiment 
is considered to have the same form as (21) but τj-1 and tc are predetermined in time step-stress 
and nj-1, j=2, 3, ..., k+1 are random variables. Then the maximum likelihood estimates are 
obtained for the unknown parameters. The reliability and the hazard rate functions are estimated. 
In addition, confidence intervals of the estimators are constructed. Optimum test plans are 
obtained to minimize the generalized asymptotic variance of the maximum likelihood estimators. 
 
4.2 Numerical Results 
 
This subsection aims to illustrate the precision of the theoretical results of both estimation and 
optimal design problems on basis of simulated data. 
 
4.2.1 Simulation algorithm 
 
The same steps of the algorithm in Subsection (3.3) will be considered in this algorithm with the 
following data: 
 

• The values τ0 = 0, τ1 =2 and tc= 5.5 are given. Once the values of â1, l�1 and �� 1 are 
obtained, the estimates are used to obtain, depending on (22) and the design stress, 
xu=0.5, the shape parameter under this stress, θu, is estimated as  ���� =exp (k£1+l�1x1u).  
Also, the reliability function, the hazard rate function and their relative absolute bias are 
estimated at different values of mission times under usual conditions using (23) and (24). 

• The performance of the estimates â1, l� 1 and �� 1 has been evaluated through some 
measurements of accuracy. In order to study the precision and variation of MLEs, it is 
convenient to use the relative absolute bias (RAB1), the mean square error (ER1) and the 
relative error (RE1). Depending on the same procedure as in Section 3, the numerical 
results of the experiment are displayed in Tables 9-12. 
 

4.2.2 Concluding remarks 
 

• It is clear from Table 9 that the MLEs (E1) are very close to the initial values of the 
parameters as the sample size increases. Also, as shown in the numerical results the 
RAB1, ER1 and RE1 are decreasing when the sample size is increasing. 
For all sample sizes we noted that: 

• ��1 performs better than other estimates. 
• l�1 performs better than â1. 
• Table 10, indicates that the reliability decreases when the mission time t0 increases. The 

results get better in the sense that the aim of an accelerated life testing experiments is to 
get large number of failures (reduce the reliability) of the device with high reliability. As 
t0 increases the RABR1 increases and when sample size increases, the rf increases. Also, 
the RABR1 for the rf decreases when the sample size increases. The hrf increases when 
the mission time t0 increases and when t0 increases the RABh1 decreases. 

• The two-sided 95% central asymptotic confidence intervals for the parameters of KumW 
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are displayed in Table 11. This table contains the standard error (SE1), lower bound (L1), 
upper bound (U1) and the length of the intervals. The interval estimate of the parameters 
becomes narrower as the sample size increases. 

• As shown in Section 3, by setting the  �| ¦̧|�¹� = 0, ^�  and tc can be optimally determined by 

solving them simultaneously.  
For all sample sizes, it is clear that: 

• The length of the interval for β is shorter than the other lengths. 
• The length of the interval for b is shorter than the length of the interval for a. 
• optimum test plans are developed numerically. The expected time, ̂�∗, at which the stress 

changes from x1 to x2 and the expected time, 0u∗, at which the experiment is terminated 
are displayed in Table 12. As indicated from the results, the optimal GAV of the MLE of 
the model parameters is decreasing as the sample size n is increasing. 

 

Table 9. The E1, RAB1, ER1 and RE1 of the estimates at different sample sizes 
 

n Parameter E1 RAB1 ER1 RE1 
20 a 0.4023 0.1954 0.0293 0.1712 

b 1.3283 0.1145 0.0217 0.1473 
β 1.3544 0.1287 0.0238 0.1543 

30 a 0.4283 0.1434 0.0246 0.1568 
b 1.3391 0.1073 0.0185 0.1360 
β 1.3214 0.1012 0.0193 0.1389 

60 a 0.4578 0.0844 0.0209 0.1044 
b 1.3816 0.0789 0.0154 0.1241 
β 1.2914 0.0762 0.0138 0.1175 

100 a 0.4703 0.0594 0.0095 0.0975 
b 1.4669 0.0227 0.0121 0.1100 
β 1.2285 0.0237 0.0108 0.1039 

 

Table 10. The estimated shape parameter, rf and hrf under usual condition  
at different samples sizes 

 
n ®�¶° t0 ±�¶°�²³� RABR1 �́¶°�²³� RABh1 
20 2.9051 

 
 
 

0.3 0.9583 0.0237 0.6961 0.9225 
0.5 0.6605 0.1345 3.2825 0.3324 
0.7 0.2475 0.2814 6.5168 0.1842 
1 0.0184 0.4880 10.6450 0.1348 

30 2.9977 
 
 
 

0.3 0.9636 0.0184 0.6252 0.7266 
0.5 0.6803 0.1085 3.1206 0.2667 
0.7 0.2646 0.2317 6.3101 0.1466 
1 0.0211 0.4124 10.3766 0.1062 

60 3.1538 
 
 
 

0.3 0.9704 0.0114 0.5308 0.4658 
0.5 0.7071 0.0734 2.9186 0.1847 
0.7 0.2871 0.1663 6.0886 0.1064 
1 0.0245 0.3164 10.1263 0.0796 

100 3.3326 
 
 
 

0.3 0.9772 0.0004 0.4289 0.1843 
0.5 0.9406 0.0295 2.3689 0.0711 
0.7 0.3215 0.0664 5.7077 0.0372 
1 0.0325 0.1255 9.6170 0.0253 
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Table 11. Confidence bounds of the parameters at confidence level 95%  
at different sample sizes 

 
n Parameters E1 SE1 L1 U1 Length 
20 a 

b 
β 

0.4023 0.0293 0.3258 0.4788 0.1531 
1.3283 0.0217 1.2624 1.3942 0.1318 
1.3544 0.0238 1.2854 1.4234 0.1380 

30 a 
b 
β 

0.4283 0.1712 0.3658 0.4908 0.1250 
1.3391 0.1473 1.2853 1.3929 0.1076 
1.3214 0.1543 1.2651 1.3777 0.1127 

60 a 
b 
β 

0.4578 0.1446 0.4205 0.4951 0.0746 
1.3816 0.1241 1.3496 1.4136 0.0641 
1.2914 0.1175 1.2110 1.3217 0.0607 

100 a 
b 
β 

0.4703 0.0975 0.4508 0.4898 0.0390 
1.4669 0.1100 1.4449 1.4889 0.0440 
1.2285 0.1039 1.2077 1.2493 0.0416 

 
Table 12. The results of optimal design of the life test at different sample sizes 

 under Type I censoring in step-stress 
 

n n1 n2 º¶∗  ²»∗ µ¶∗  µ∗̄  GAV 
20 
30 
60 
100 

10 
15 
30 
50 

10 
15 
30 
50 

2.81 
2.94 
3.06 
3.39 

4.82 11 3 0.00728 
4.79 19 7 0.00095 
4.53 37 13 0.000249 
4.10 61 16 0.0000583 

 
Remarks  
 
The results obtained in this paper can be modified to obtain results for sub-models of KumW 
distribution under Type I and Type II censored samples such as 
 

• The Kum exponential distribution if φ = 1. 
• The Kum Rayleigh distribution if φ = 2. 
• The exponentiated Weibull distribution if β = 1. 
• The exponentiated Rayleigh distribution if β = 1, φ= 2. 
• The exponentiated exponential distribution if β = φ= 1. 
• The Weibull distribution if β = θ = 1, see [29]. 
• The Rayleigh distribution if φ = 2, β = θ = 1. 
• The exponential distribution if φ = β = θ = 1. 
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