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Abstract

The paper considers nearness to singularity for which the @Garearmatrix in the least squares
equation is well known. A synchronization of the condition numisih ill-conditioning is
highlighted which relates the quality of approximate solutiorh&described system. Various
theoretical lower and upper bounds to the perturbed lgaates problems have been described
for which, reach ability theory has strong representafiorparticular, a theorem due to Rump

as exemplified by Popova was revisited and examined in detslight modification was made
to the theorem by neglecting the second term appearing imtia¢ien. This was found to have
strong favourable appeals on the interval least squares proBlsna comparison to the
computed results, a procedure described in Kramer/Rohrnuseb to crop the corner points
solution of the linear interval system which is obtained fteast squares equation based on|the
appropriate choice of the orthant (where there are ilplitéss). This leads to solving systems
of linear inequalities for the interval Hull of solutioets Furthermore, the Rump/Krawczyk
method was used to narrow, the computed corner point solitiamder to obtain tighter
approximate solution bounds of the interval Hull which may dpplicable to both non
parametric and parametric interval linear equations. Theflosction for the computed result
obtained from Rump method for the set of data points iarteg. T

Keywords: Least squares problem, diffeomorphism, reachalifiéory, condition number,

interval arithmetic, regulator in least squares problems.

1 Introduction

The paper considers condition numbers associated with sobasgdquares equations with some
noise in the data. The Covariance matrix in least squentesval equations is often Ill-
conditioned. lll-conditioned problems are often encoudt@regeophysics, signal processing, and
medical imaging, see [1] and the cited references thefeinexample, Auto-Covariance Least
squares are used in the study of Kalma filter [2].nkalfilter has been widely applied in
navigation and control of vehicles, as for example, aircesfd space craft. In its widest
application areas, Kalma filter is used in the navigatigstesn of nuclear ballistic missile
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submarines, and cruise missiles —e.g., the US Navy's Rawlamissile, US Air Launched Cruise
missile are a few typical examples for this purpose iithvleast squares equations are involved
in their formulations [2]. Interval arithmetic has betound useful in the study of fractal
mechanics where a fracture in any part of aircraft makesy other part inoperable. Computing
reachable set is an essential aspect of nonlinear dynanhicoatrol systems. Reach ability is an
essential tool in the theory of validation of interval guting, since safety is always a paramount
interest in scientific and engineering designs whidtedainto consideration scenarios of worst
case error bounds, [3-5] and [6].

Reach ability problem comes in different flavours as fomgla, the approximate estimates for
the solution to the linear system in least squares equatignbmaaken as ellipsoids which

depends on the operator parameter. For the exhaustive discassibeory of reach ability, the

importance of topological space cannot be underscored.

The least squares problem is formulated in the form:

Find SOR" 0 min

BOR"

Y -T4| , (1.1)

In what follows, we signify our notation by the conventioR",IR", R™" IR™" as
representing real n- vector, interval n-vector, f@8X N rectangular matrix and intervélnxn

WhereT OR™", YOR™, m=n and rank(T)=n.

Equation 1.1 is the minimum-length solution in wh is minimized among the infinitely

2
many solutions that minimiZ(ﬂ?{ —T,B”2 .

matrix respectively. The interval T is represented [ds, T ] in the form of lower and upper

bounds. The midpoint of interval matrix T as well aginal vector b is respectively defined in
the form

T, = 05(T+T),

b, = 0.5(@+ 5)

The interval radius of interval matrix T as well as intémector b is given by

AT = o.s(f_T_j D= 0.5(5_ t_)j
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Interval arithmetic operations possess strict validatfavery computed result in any calculation,
and any such computed result, is always perfectlyecorwhen faithfully implemented .This
process captures all possible conversion errors, roundnogs.eapproximation errors and are
always vigorously estimated, [6].

As a follow up in the discussion, we ndtet R" itself is convex, and all interval boxes R"
are convex. A subsetD OR" is convex if for any £,5,0D, we have

tB,+(1-1)3,0D,0<t<1.

The separation theorem for convex set, [7], states thmird outside a closed convex set is
separated fronD by a hyper plane.

It is expected that readers acquaint themselves withaheept of well known implicit function
theorem which gives necessary conditions under whiobnéinuously differentiable function has
an inverse. This leads us to the concept of a diffeomorpf8§nthat transforms a nonlinear
system in equation 1.1 to a linear system

TTR=TY = p=(TT)' Ty =T"Y , (1.2)

Where T/ is well defined.
It is assumed thatX [JID O IR™ be closed inR™. A function f:ID - IR" is a
diffeomorphism of ID ontoits imageY = f (ID) if it is one-to-one, smooth, and of full rank n.

By full rank, would imply the maximal possible rank, ethe case of a rectangular matrix of size
mxn, the full rank is given by mi{‘m, n}.

Solving least squares problems in interval form is ntheut some combinatorial difficulties.
As a typical example, the Co-Variance matrix from syst#f equation 1.1 is sometimes nearly
singular or, even singular. Thus, there is need to resolveehissingularity or even singularity

problem.

Resolution of singularity in the least squares using the agubarameter has been addressed in
[9] and the cited references therein. Therefore proldléhis re written in the form

L=T'T+r*N)*T'Y k=2 (1.3)

1
The term7 is taken to be——, whereT * is the pseudo inverse operator . Interestingly [10]

Il

proved that the best possible value for k in equation 23 is
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Hence forth, the matrix produ?ft’T will now be denoted by another matrix B, and the matrix-

vector producT’Y as a vector b. The inverse of the matrix B is the @dance matrix. It will
play a major role in our analysis hereafter.

In the mean time, the paper is categorized as followsti& 2 gives the condition numbers
associated with least squares problems. Section 3 disahespsrturbation error bounds for the
lower and upper chain reachable set of the approximéi€icsoto the least squares problems
wherein, the residual error plays vital roles in tHeimulation. In section 4 the theorem due to
[10], exemplified in [11] has been re-examined, modified adapted for a useful purpose in the
realization of numerical results.

2 Condition Numbersof Linear Least Squares Problem

Condition number has a very useful property in both ScientificEEngineering designs. It is also
used in economics.

The quality of results computed from the least squares equatameffection on the condition
numbers of the system given as equation 1.2. Condition numbes dfawthe solution to the
described system fits the data under study. Conditionbeu also measures how a change in input
data is propagated to a change in output process. Higtiton number implies high non
linearity in any computed result as solution set tostfstem 1.1.

For a real matrix B which is not singular and whose nH)Hnis known, the condition number
[12,13], was defined to be

K(B)=¢ - 0 |oB]< 8] |(oee)” e |
=£ - <€ . ; (2.1)
ZEN
whereas, the traditional condition number has been known to be
K(B)=|B" /8| (2.2)

If condition number K(B) of a matrix B is known in advandeisipossible to calculate the loss

function, the digits of accuracy of solution in the vagaf§ compared to precision of matrix B
by taking the logarithm of K(B) .

A

The derivation of condition number in equation (2.2) faybtained as follows: Suppose thi#t

denotes the numerical approximate solution which minimizes iequhtl. Let,B* be the known
rigorous solution to equation 1.1. Then, following [14], it wasvpd that
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B5 -1

((,6’) | " ” was the size of optimal backward error to systemqgofagon 1.2. Using

definition of absolute condition number for the matrix B as

A lim sup b_ ,3* ‘
K (@9 (B) = ,8 ,8* . _ , it was deduced from [14] that
—
H(B)

SR il AP s LR

W Ieo

As a result, the relative condition number is defined tthbeguantity

K(B)=7—rK*9(B)=|B7B].

In what follows, given the right hand side vector b, the conditionbrer for the solution spagg
is defined by the equation

el
A

Let B be perturbed byAB for which the solution to the perturbed system of equatibregists.
The perturbation in b is approximately bounded by

il
A =K, <K(B),  (23a)
IEIE

and,

K(B)[b].|aB

N

Assuming B is perturbed bAB and b is given, then the perturbationfnis approximately
equal to:
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|28

s

sl (®)
5

———— =K, <K(B)= || =

(2.4)
|28} /|8

The product norm for the data space which hold%

[4} as the solution space [15] is given by
2

[(B,b). =+/IB]: +[d; - (25)

1
As result of equation 2.5, Frobenius noHB"F is defined asHB"F =[izn:|hj|2}2 while

i=1 j=1
o/

the P-norm |si| B"P =sup——— for P = 12,00 . We note in passing that both the Frobenius

20 ,8‘
P

and P-norms satisfy certain inequalities in the form:

the equation:

8], < 8], <<nl8], . (2.6)

Max |b; | < [B], < ~/'mn max|o |, 27)

8], <IBl. ], - 28)

Meanwhile, the reciprocal of condition number is knownecehual to the distance to the nearest
singular matrix for all structured perturbations. Most imgatly, [13] used the Bauer-Skeel
condition number for a weighted matrix to show that

Conds(B,E)=|[B7| E| . (2.9)

E, being defined a*sB|. Equation (2.9) relates condition number with spectral radiushe

equation:
inf cond,

CondB,E) = pQB‘1| E): D,,D, (D,BD,). (2.10)

D,,D, , appearing in equation 2.11 is diagonal scaling gnis the spectral radius. It follows
from reasoning deduced in [12] that
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;qBT‘E) < J(B, E) < p B‘l‘ E . (2.11)

The expressiorﬁ(B, E) in equation 2.11 is the familiar singular value of (B,Eyjuation 2.11
showed the extent to which a matrix that is not stronggylar can become singular if an attempt

is made to increase the radius of this matrix by eofaaft (3+ 2\/5) In any case, [12] warned

that the factor (3+ 2\/5) cannot be replaced by 1 since computationally
n

5QB|,E)=M.

3 Backward Perturbation Error Bound for Least Squares
Equation

The smallest Frobenius perturbation matfil3 for the matrix B that makes a given non-zero
min

approximate solutioff into a solution space of the perturbed problegfh

b-(B+AB)3 S

2
was estimated [16,17] to be

. 2
/YI(:LS)(ﬂ) — ”t"z + min{o’A} (3.1)
G

2
2

Where,

)
A=A |B-1" a3

min All2
ﬁ‘ 2
The numberA is the smallest singular value of B. The lower boundetpration 3.1 was found to
be

. \ \
ﬁxﬁs)(ﬂ) <y < x=)(g) (3.3)
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More complicated upper error bound for the leagtsgs solution set to problem 1.1 was
later found in [18] to be

(9 =+ [res]

Ao 1]

H :L (3.5)
1+1-n ' '

A(rTB,Zsz

n :ﬁ (3.6)
(e
2

Two conditions were adduced for least squares problem tdwaysaill-conditioned in [19],
namely, either b could be nearly orthogonal to the column spad®, @fr, B itself is ill-
conditioned.

(3.4)

Wherefrom, it was defined that:

In what follows, assuming thaBB'AB = AB, and B/B(AB)/ = (AB)/. Let the range of
((AB)/) O ranggB’) and range(AB) O range (B) , then via truncated Taylor Series
expansion, the perturbed Covariance ma(B<+ AB)/ is approximated [20] by the equation

(B+nB)* =B*-B(aB)B +0(¢?) (38)

Since it was known that

B+ =(B+0B) (b+ )= B+ Bdb-B(8B)Bb+0(e?). 38)

and,

__ABS | (3.9)
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A

It follows that O [ is approximated by the equation

o [3 =-B7AB [3 1+ ”b" (3.10)
cle
Thus the condition number for the solution set is
atototH totiaeraylPA
(8.b) =[5 {lef+ |54 = 67l « 5L

A A

As said earlier at the beginning of the paper, computalsit is a very important issue in
nonlinear dynamic and control theory, [21,22]. Reachtgiplioblem comes in different flavours,
depending on the nature of algorithms in use. For instaricen @ diffeomorphism which
transforms a nonlinear system to a linear system, theosipmate estimates for the solution set
may be considered in the form of ellipsoids which depesrdshe operator. Various values of
parameters will lead to a family of ellipsoids whose isgetion is the exact reach set.

4 Computability of Reachable Sets

As it were, one can apply ellipsoid on linear systenolitain the reach set where the inverse
operator becomes very necessary to approximate the nordysem 1.1 for the convex bodies.
The only worry one has is “ which is the best operatdoegaused as a tool for this objective?”.

Thus we need the best selection of interval HE(B, b) as solution set to the given problem
1.1.
After transforming system 1.1 into an equivalent lineatesy4.2 an introduction of some kind of

affliction as data noise into the parameters descrilliegriterval linear system was established
which hereafter, will be referred to as parametrigeghl interval system in the form:

B(p).5 =b(p) (4.1)

Where B(p) O R™" and b(p) OR" all depend on parameter vecpf] R, and p varies

within a rangd p] O IR, the set of solution to aB(p).B3 = b( p), p [ p] .Because of [10],
the solution set is given by the equation
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> =z(B(p),b(p),[p])={2mRn

Where,

B(p).3 = b p)},(for somepO[p]) ., (4.2)

B(p) and b(p) are defined by
m (V)
bl,j(p):b|,j(0)+2 ph; . (j=11,...n)

v=1

m (V)
h(p)=b®+> ph

v=1

The following theorem is useful for adoption in our work.

Theorem 4.1[11]. Let B(p).8=b(p) with B(p) OJR™,b(p)OR", pOR* be a
parametrised  linear  system,  where B(p),b(p) are  given.  Assuming

ROR™,[W]OIR", BOR", define[N]JIR", [C]TIR™ by

[N]| = R(bv(()) - BV(O) b) + i [pv](Rb(V) - RB(V)bj '
[c(pD =1 -RB," - [p](RBY).
Define [V]JIR" by means of the following iteration enclosure
1<i<n:[v] ={{N]+[C].U}
U=V, Vo W, W, )

If, [V] O [W], then R and every matriB(p), pJ[ p] are regular, and for everp [ p],
the unique solution

B =B7(p)b(p) . 4.3)

satisfies 8 = B, +[V] , with [A] = {[C].[\/] O IR”} the radius of Krawczyk operator and the

solution setZ:.p as defined by equation 4.2, the following inner and outénasbn hold true

[5. —inf(IN]) +sup(ia]), B, +sup(IN]) +inf([A]) O [inf(Z-‘;),SUpQ‘,-’})] (4.4)
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Because of the fruitfulness of above detailed discussiorfarseve are inspired to invoke the
procedures described in [23] as a tool to crop the corner galimion on(B, b)ﬂok , Where

O is the sign vectors = (SI)D s, (s D{—l+1}, i=1(1)n, it corresponds to the signs of the

components of an interior point of O called the orthant2@3¥pr example. The exact solution to
the parameterised linear interval system [23] of equatidnobtained from least squares system
1.1 can be represented in the form:

Z(B,b)ﬂO:Q(I%ﬂéijﬂo. (4.5)

The B,B  appearing in equation 4.5 are half spaces computgblenss of linear inequalities

and they are dependent on the choice of orthant O Blitpossibiliies) . Following ideas

expressed in [23,24,25],exact solution set of the lineaniat system of equation 4.1 assuming
iterative methods are used will be in the form:

Z(B,b):Q[ [ﬁ(@fﬂé.kjmokJ ] (4.6)

The expression in the right hand side bracket [ .], mayrelibez or a convex polytope. As a

result, we are led to the following theorem, an extensio@etitli-Prager theorem [4,6] which
narrows closely what is discussed in equations 4.5 and 4.6.

Theorem4.2,[26]. Let B=[B,-AB,B,+AB] be an NnXn interval matrix,
b=[b, —J,b, + &] an interval n-vector, wherAB and db are as defined in section 1. Let Z

be a subset o5, having the following properties:

(i) sgn(B,) 0 Z for some /3, DZ(B,b),

(ii ) for eachz L1 Z the systems of inequalities:
(QB. -1)0, 2|QAB, .7)
(QB.-1)o_, 2|QaB (4.8)

have matrix solution§), and Q_,, respectively.
(ii)if zOZ, Q_b, -|Q_,|0<Q,b, +|Q,|J, and
(@b, -[Q../3). (@b, +|Q.J3), <O
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for some j, thenz—2z,e, 1 Z..

Then, there holds good that interval matrix B is regulad &rthermore, the interval Hull
solution set

S (B.0)0 I8, 5,1. “9)

2z, -
converges on the dense subset of equation 4.6, where
Z,={z0z | T (BO)NR! # ¢} (4.10)

Let us note that an improvement on the computed results frethoas 4.5 and 4.10 can be
further tightened using Rump/Krawczyk method [23]

Rk +(1 -RBJU] Oint(U), ([U 0> (B,b)) (4.12)
5 Numerical Example

Problem 1.1:
As an illustration, the Planetary elliptical orbit &n observations of its position in the (X,Y)
plane is considered based on the sample data taken froms[@isplayed in Table 1.

Table 1l

X Y

1.02 0.39
0.9 0.3z
0.87 0.27
0.77 0.22
0.67 0.18
0.56 0.15
0.44 0.1z
0.30 0.12
0.1¢€ 0.1z
0.01 0.15

m

Take interval uncertainty vector as data noise to[tg] =0.000%[g], whereg ={-11}",

for the dependent variabM and independent variablX; where i=1,2,3,...,m.

Using cubic polynomial fit, result for the Least squasesblem 1 assuming without noise in the
data set is computed with MATLAB 2007 Windows version as
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A

B =(0.1550-0.25780.4694-0.0295'.

Similarly, the following results are displayed in Tabt2 and 3 as approximate solutions to the
given problem 1.1 with the presence of noise as parameter datheset.

Table 2. Showing results computed from probleml.1 based on theorem [10]

Results from modi-Fied rump/ popova Method [10,11] for [ 5]

[0.1549994,0.15500067]
[-0.2578065¢-0.2577921
[0.46940375,0.46940565]
[-0.0295007¢-0.029494¢

Table 3. Showing results computed from method 4.5 and improved results with
rump/krawczyk method

Corner point solution with Cropping from  Improved resultswith rump/Krawczyk

method 4.5 for [ ] method [10] for [ 5]
[0.1553,0.155: [0.1552891,0.155311
[-0.2611,-0.2620] [-0.2617332,-0.2614201]
[0.4772,0.4803] [0.4787567,0.4790004]
[-0.0367-0.0342 [-0.0355532-0.0353243

n

As a consequence of what has been computed as approximatensédutjs, the value of
p.-P

6.8446].

was evaluated and the loss function for modified method [18olitjd to be [6.8446,

In addition, the condition number for the approximate solutiomawit noise in the data using
equation 3.11 was found to b 684x10* .

Polynomial fit of order three was used for modifiedtmoel [10,11] and is given in the form:

Y =45+ BX +182x2 +183X3
=[0.15499940.15500067+[-0.25780655-0.257792]1X +[0.46940279.46940565X 2 +
[-0.02950075-0.0294949X 3.

To demonstrate the faithfulness of our implementatiothéodescribed method, we take as an

example, arbitrary value of X =0.12 and compu¥d [0.1308, 0.1308] for modified method
[10,11]. This coincides within the values of the vector Y frma given data set. The same
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analogy goes for Table 3 as given in equation 4.5. Allltesvere computed using MATLAB
Version 2007.

6 Conclusion

The paper considered the roles of condition number in theestudfi least squares interval
equations using polynomial fit of order three. In thegoapossible areas of applications of least
squares were highlighted, for instance, extension to tokwamd perturbation errors in least
squares problems also discussed. A diffeomorphism was ioddaoto system 1.1 which relates
the reachability theory for the computable set in the riegulinear interval system from which,
an ellipsoid may be applied. Here, in the paper, a sedfothe theorem due to [10], as
exemplified by Popova in [11], was adopted which provides validbounds to the linear interval
system obtained from the Least squares equation. Thdulostion was computed based on the
approximate results from Table 2.

As can be expected, the computed results in Table 2 approdireatéiciently close to the
theoretical floating point results obtained in the absesfcroise in the data using MATLAB
2007.

In addition, theoretical approximation technique for cropping cquogts solution in the sense of
[23,24,25] was adopted in the paper to advance the approximat®solThis involves solving
systems of inequalities. The Rump/Krawczyk method wsed to narrow further the computed
approximate result as showed in Table 3. Further insightgivas on how to estimat¥ based
on the given value of input data in order to further aagerthe correctness or otherwise of
computed approximate solution from the described numerical method.
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