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Abstract 
 
The paper considers nearness to singularity for which the Co-variance matrix in the least squares 
equation is well known. A synchronization of the condition number with ill-conditioning is 
highlighted which relates the quality of approximate solution to the described system. Various 
theoretical lower and upper bounds to the perturbed least squares problems have been described 
for which, reach ability theory has strong representation. In particular, a theorem due to Rump 
as exemplified by Popova was revisited and examined in detail; a slight modification was made 
to the theorem by neglecting the second term appearing in the equation. This was found to have 
strong favourable appeals on the interval least squares problem. As a comparison to the 
computed results, a procedure described in Kramer/Rohn was used to crop the corner points 
solution of the linear interval system which is obtained from least squares equation based on the 
appropriate choice of the orthant (where there are   possibilities). This leads to solving systems 
of linear inequalities for the interval Hull of solution set. Furthermore, the Rump/Krawczyk 
method was used to narrow, the computed corner point solution in order to obtain tighter 
approximate solution bounds of the interval Hull which may be applicable to both non-
parametric and parametric interval linear equations. The loss function for the computed result 
obtained from Rump method for the set of data points is reported. 

Keywords:  Least squares problem, diffeomorphism, reachability theory, condition number, 
interval arithmetic, regulator in least squares problems. 

 

1 Introduction 
 
The paper considers condition numbers associated with solving least squares equations with some 
noise in the data. The Covariance matrix in least squares interval equations is often Ill-
conditioned.  Ill-conditioned problems are often encountered in geophysics, signal processing, and 
medical imaging, see [1] and the cited references therein. For example, Auto-Covariance Least 
squares are used in the study of Kalma filter [2]. Kalma filter has been widely applied in 
navigation and control of vehicles, as for example, aircraft and space craft. In its widest 
application areas, Kalma filter is used in the navigation system of nuclear ballistic missile 
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submarines, and cruise missiles –e.g., the US Navy’s Tomahawk missile, US Air Launched Cruise 
missile are  a few typical examples for this purpose in which least squares equations are involved 
in their formulations [2]. Interval arithmetic has been found useful in the study of fractal 
mechanics where a fracture in any part of aircraft makes every other part inoperable. Computing 
reachable set is an essential aspect of nonlinear dynamic and control systems. Reach ability is an 
essential tool in the theory of validation of interval computing, since safety is always a paramount 
interest in scientific and engineering designs which takes into consideration scenarios of worst 
case error bounds, [3-5] and [6]. 
 
Reach ability problem comes in different flavours as for example, the approximate estimates for 
the solution to the linear system in least squares equation may be taken as ellipsoids which 
depends on the operator parameter. For the exhaustive discussion on theory of reach ability, the 
importance of topological space cannot be underscored. 
 
The least squares problem is formulated in the form: 
 

  Find ∋∈ nR
^

β      
2

min β
β

TY
nR

−
∈

                                             (1.1) 

 

Where nmRT ×∈ ,  nmRY m ≥∈ ,  and rank(T)=n. 

 Equation 1.1 is the minimum-length solution in which 
2

^

β is minimized among the infinitely 

many solutions that minimized
2

βTY − . 

In what follows, we signify our notation by the convention: nmnmnn IRRIRR ×× ,,,  as 

representing real n- vector, interval n-vector, real nm×  rectangular matrix and interval nm×  

matrix respectively. The interval T is represented as  
−

−
],[ TT  in the form of lower and upper 

bounds. The midpoint of interval matrix T as well as interval vector b is respectively defined in 
the form 

)(5.0
−

−
+= TTTc , 

 








 +=
−

−
bbbc 5.0

 
 

The interval radius of interval matrix T as well as interval vector b is given by  
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Interval arithmetic operations possess strict validation of every computed result in any calculation, 
and any such computed result, is always perfectly correct when faithfully implemented .This 
process captures all possible conversion errors, rounding errors, approximation errors and are 
always vigorously estimated, [6]. 
 

As a follow up in the discussion, we note that nR  itself is convex, and all interval boxes in nR  

are convex. A subset nRD ⊆  is convex if for any ,, 21 D∈ββ   we have  

( ) 10,1 21 ≤≤∈−+ tDtt ββ  . 
 
The separation theorem for convex set, [7], states that a point outside a closed convex set is 
separated from D  by a hyper plane. 
 
It is expected that readers acquaint themselves with the concept of well known implicit function 
theorem which gives necessary conditions under which a continuously differentiable function has 
an inverse. This leads us to the concept of a diffeomorphism [8], that transforms a nonlinear 
system in equation 1.1 to a linear system 
 

    ( ) YTYTTTYTTT +− ==⇒= /1/
^

// ββ  ,                             (1.2) 
 

Where  /T  is well defined. 

It is assumed that, mIRIDX ⊂∈  be closed in mIR . A function nIRIDf →:  is a 

diffeomorphism of ID onto its image )(IDfY =  if it is one-to-one, smooth, and of full rank n.  
 
By full rank, would imply the maximal possible rank, e.g., the case of a rectangular matrix of size 

nm× ,  the full rank is  given by min{ }nm, . 

 
Solving least squares problems in interval form is not without some combinatorial difficulties. 
 
As a typical example, the Co-Variance matrix from system of equation 1.1 is sometimes nearly 
singular or, even singular. Thus, there is need to resolve this near singularity or even singularity 
problem.  
 
Resolution of singularity in the least squares using the regulator parameter has been addressed in 
[9] and the cited references therein. Therefore problem 1.2 is re written in the form 
 

2,)( /1/
^

≥+= − kYTITT kτβ                                             (1.3) 

 

The term τ  is taken to be  
+T

1
, where +T  is the pseudo inverse operator . Interestingly [10] 

proved that the best possible value for k in equation 1.3 is 2. 
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Hence forth, the matrix product TT /  will now be denoted by another matrix B, and the matrix-

vector product YT /  as a vector b. The inverse of the matrix B is the Co-Variance matrix. It will 
play a major role in our analysis hereafter. 
 
In the mean time, the paper is categorized as follows: Section 2 gives the condition numbers 
associated with least squares problems. Section 3 discusses the perturbation error bounds for the 
lower and upper chain reachable set of the approximate solution to the least squares problems 
wherein, the residual error plays vital roles in their formulation. In section 4 the theorem due to 
[10], exemplified in [11] has been re-examined, modified and adopted for a useful purpose in the 
realization of numerical results.  
 

2 Condition Numbers of Linear Least Squares Problem 
 
Condition number has a very useful property in both Scientific and Engineering designs. It is also 
used in economics. 
 
The quality of results computed from the least squares equation is a reflection on the condition 
numbers of the system given as equation 1.2. Condition number shows how the solution to the 
described system fits the data under study. Condition number also measures how a change in input 
data is propagated to a change in output process. High condition number implies high non 
linearity in any computed result as solution set to the system 1.1.   
 

For a real matrix B which is not singular and whose norm .  is known, the condition number 

[12,13], was defined to be  
 

( )
1

11
suplim

0)(
−

−−

+
−∆+

≤∆→=
B

BBB
BBBK

ε
εε  ,                  (2.1) 

 
whereas, the traditional condition number has been known to be  
 

                   BBBK .)( 1−=                                                                          (2.2) 

 
If condition number K(B) of a matrix B is known in advance, it is possible to calculate the loss 

function, the digits of accuracy of solution in the variable 
^

β  compared to precision of  matrix B 

by taking the logarithm of K(B) . 
 

The derivation of condition number in equation (2.2) may be obtained as follows: Suppose that 
^

β
denotes the numerical approximate solution which minimizes equation 1.1. Let *β  be the known 

rigorous solution to equation 1.1. Then, following [14], it was proved that 
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  ( )
*

*

(
β

β
βµ

bB −
=  was the size of optimal backward error to system of equation 1.2. Using 

definition of absolute condition number for the matrix B as   

 
^

*
^

suplim

)(

)(
*

^
)(

βµ

ββ

ββ
−

= →BK abs , it was deduced from [14] that  

 

( )( ) *1

^

*
^

suplim
^

^

**
^

lim

*
^

.0 β
βδ

ββδ
βδ

β

βββ
ββ −=→=

−

−
→= B

BbB
BK abs . 

 
As a result, the relative condition number is defined to be the quantity 
 

( ) ( )( ) BBBK
B

BK abs .1)(

*

−==
β

. 

In what follows, given the right hand side vector b, the condition number for the solution space
^

β  
is defined by the equation 

b

B
K

^
1

^

β

β

−

=  . 

 
Let B be perturbed by B∆  for which the solution to the perturbed system of equation 1.1 exists. 
The perturbation in b is approximately bounded by  
 

)3.2(
.)(

,

)3.2(,)(
/

/

b
B

BbBK
b

and

aBKK
BB

bb
b

∆
≤

≤≈
∆

δ

δ

 
 

Assuming B is perturbed by B∆  and b is given, then the perturbation in
^

β  is approximately 
equal to: 
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B

BBK
BKK

BB

∆
≈⇒≤=

∆

^^

)(
)(

/

/ β
δβ

βδβ
β            (2.4) 

The product norm for the data space which holds for 
2

^

β  as the solution space [15] is given by 

the equation: 

( ) 2

2

2
, bBbB

FF
+=   .                                                   (2.5) 

 As result of equation 2.5, Frobenius norm 
F

B   is defined as 
2

1

1 1

2









= ∑∑

= =

m

i

n

j
jiF

bB   while 

the P-norm  is 

P

P
P

B
B

^

^

0
sup

β

β

β ≠
=  for ∞= ,2,1P  . We note in passing that both the Frobenius 

and P-norms satisfy certain inequalities in the form: 
 

22
BnBB

F
≤≤   ,                                                      (2.6) 

 

Max ijij bmnBb max
2

≤≤ ,                                        (2.7) 

 

∞
≤ BBB .

12
.                                                                 (2.8) 

 
Meanwhile, the reciprocal of condition number is known to be equal to the distance to the nearest 
singular matrix for all structured perturbations. Most importantly, [13] used the Bauer-Skeel 
condition number for a weighted matrix to show that 
 

( ) EBEBCondBS
1, −=  ,                                                  (2.9) 

 

E, being defined as B . Equation (2.9) relates condition number with spectral radius by the 

equation: 

( ) ( ) )(,, 21

inf

21
1 BDDDDEBEBCond

cond∞

== −ρ .                  (2.10) 

 

21,DD  , appearing in equation 2.11 is diagonal scaling and ρ  is the spectral radius. It follows 
from reasoning deduced in [12] that  
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( ) ( ) ( )
( )EB

EB
EB 11

223
,

1
−−

+<≤
ρ

δ
ρ

 .                                   (2.11) 

 

The expression ( )EB,δ  in equation 2.11 is the familiar singular value of (B,E) .Equation 2.11 
showed the extent to which a matrix that is not strongly regular can become singular if an attempt 

is made to increase the radius of this matrix by a factor of ( )223+ . In any case, [12] warned 

that the factor ( )223+  cannot be replaced by 1 since computationally, 

( ) ( )BB

n
EB

1
,

−
=

ρ
δ .  

 

3 Backward Perturbation Error Bound for Least Squares 
Equation 

 
The smallest Frobenius perturbation matrix B∆  for the matrix B that makes a given non-zero 

approximate solution
^

β  into a solution space of the perturbed problem ( )
2

^
min

^

βββ BBb ∆+−   

was estimated [16,17] to be  

 

( ) { }

2

1

2

2

^

2

2
^

,0min)(



















+= λ
β

βχ
rLS

F                                          (3.1) 

Where, 



















−= 2

2

^
min

β
λλ

Trr
B                                                  (3.2) 

The number λ  is the smallest singular value of B. The lower bound for equation 3.1 was found to 
be  
 

( ) ( ) ( ) )()(
2

1 ^

2

^

βχχβχ LS
F

LSLS
F ≤≤                                       (3.3) 
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More complicated upper error bound for the least squares solution set to problem 1.1 was 
later found in [18] to be 

( )














+










=








2

2

2

2

^2

2

^

2^

2^

2 )(

rB

Br
H

T

LS

ββ

β
βχ                                   (3.4) 

 
Wherefrom, it was defined that: 
 

η−+
=

11

2
H  ,                                                           (3.5) 

 

2

2

2

2

2

^

2^

4














+










=

rB

Br T

β

β
η                                                           (3.6) 

 
Two conditions were adduced for least squares problem to be always ill-conditioned in [19], 
namely, either b could be nearly orthogonal to the column space of B, or, B itself is ill-
conditioned. 
 

In what follows, assuming that ,/ BBBB ∆=∆  and ( ) ( )/// BBBB ∆=∆ . Let the range of

( ) )()( // BrangeB ⊆∆  and ( ) ⊆∆Brange range )(B , then via truncated Taylor Series 

expansion, the perturbed Covariance matrix ( )/BB ∆+  is approximated [20] by the equation 
 

( ) ( ) ( )2111 0 ε+∆−=∆+ −−− BBBBBB  .                                 (3.8)  
 

Since it was known that 
 

( ) ( ) ( ) ( )211
^

1
^^

0 εδβδβδβ +∆−+=+∆+=+ −−− BbBBbBbbBB , (3.8) 
 

and, 
^

^
β

β
δ B

B

b
b ∆−=  ,                                                       (3.9) 
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It follows that 
^

βδ  is approximated by the equation 

 



















+∆−= −
^

^
1

^

1
β

ββδ
B

b
BB .                                     (3.10) 

 
Thus the condition number for the solution set is  

^

^

11

^

11 .),(
β

β

β

B
BBB

b
BBBbBK −−−− +≈+=    (3.11) 

 

4 Computability of Reachable Sets  
 
As said earlier at the beginning of the paper, computability set is a very important issue in 
nonlinear dynamic and control theory, [21,22]. Reach-ability problem comes in different flavours, 
depending on the nature of algorithms in use. For instance, given a diffeomorphism which 
transforms a nonlinear system to a linear system, the approximate estimates for the solution set 
may be considered in the form of ellipsoids which depends on the operator. Various values of 
parameters will lead to a family of ellipsoids whose intersection is the exact reach set.  
 
As it were, one can apply ellipsoid on linear system to obtain the reach set where the inverse 
operator becomes very necessary to approximate the nonlinear system 1.1 for the convex bodies. 
The only worry one has is ‘’ which is the best operator to be used as a tool for this objective?’’. 

Thus we need the best selection of interval Hull  ( )∑ bB,  as solution set to the given problem 

1.1. 
 
After transforming system 1.1 into an equivalent linear system1.2  an introduction of some kind of 
affliction  as data noise into the parameters describing the interval linear system was established  
which hereafter, will be referred to as parametrised linear interval system in the form: 
 

( )pbpB =β).(                                   (4.1)  
 

Where nmRpB ×∈)(  and nRpb ∈)(  all depend on parameter vector kRp∈ , and p varies 

within a range kIRp ∈][ , the set of solution to all ( ) ][,).( pppbpB ∈=β .Because of [10], 

the solution set is given by the equation 
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( ) ( )( ) ( ) ])[(,)(.][,,.
^^

ppsomeforpbpBRppbpB np ∈






 =∈==∑∑ ββ , (4.2) 

Where, 
 

)( pB  and b(p) are defined by  

( )
( )vm

v
jivjiji bpbpb ∑

=

+=
1

,
0

,, )( , (i,j=1,1,…,n) 

 

( )
( )vm

v
ivii bpbpb ∑

=

+=
1

0)( . 

 
The following theorem is useful for adoption in our work.  
 

Theorem 4.1[11]. Let )().( pbpB =β  with knnn RpRpbRpB ∈∈∈ × ,)(,)(  be a 

parametrised linear system, where )(),( pbpB are given. Assuming
nnnn RIRWRR ∈∈∈ × β,][, , define nnn IRCIRN ×∈∈ ][,][   by 

 

( ) ( ) [ ] ( ) ( )∑
=

−−








 −+






 −=
k

v

vv
vvvi RBRbpBbRN

1

00 ..][ ββ . 

 

( ) [ ] ( )( )∑
=

−−=
k

v

v
vv BRpBRIpC

1

0 ..)])([ . 

 

Define  nIRV ∈][  by means of the following iteration enclosure 
 

{ }ii UCNVni ].[[][][:1 +=≤≤
 

 

( ) ,,...,,,...,,][ /
121 nii WWVVVU −=

 
 

If, ][][ WV ⊂ , then R and every matrix ][),( pppB ∈  are regular, and for every ][ pp ∈ , 
the unique solution  

)().(1
^

pbpB−=β  ,                                                       (4.3) 

 

satisfies ][
^

Vc += ββ  , with { }nIRVC ∈=∆ ]].[[][  the radius of Krawczyk operator and the 

solution set ∑ p.  as defined by equation 4.2, the following inner and outer estimation hold true 

∑ ∑⊆∆++∆+− )].sup(),.[inf(])inf([])sup([]),sup([])inf([[
^^
ββββ NN cc   (4.4) 
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Because of the fruitfulness of above detailed discussions so far, we are inspired to invoke the 

procedures described in [23] as a tool to crop the corner point solution of ( )∑ I kObB, , where 

O is the sign vector  ( ) { }1,1(, +−∈∈= i
n

i sSss , i=1(1)n, it corresponds to the signs of the 

components of an interior point of O  called the orthant, [23,24] for example. The exact solution to 
the parameterised linear interval system [23] of equation 4.1 obtained from least squares system 
1.1 can be represented in the form:  

( )∑
=

−

−







=I III
n

i
ii OBBObB

1

, .                                       (4.5) 

The 
−

−
ii BB ,   appearing in equation 4.5 are half spaces computable systems of linear inequalities 

and they are dependent on the choice of orthant O (with )2 iespossibilitn . Following ideas 

expressed in [23,24,25],exact solution set of the linear interval system of equation 4.1  assuming 
iterative methods  are used will be  in the form: 
 

( )∑
= =

−

− 
















= ][,
2

1 1
U I II

n

k

n

i
k

k
i

k

i
OBBbB                          (4.6) 

 
The expression in the right hand side bracket [ .], may either be φ  or a convex polytope. As a 
result, we are led to the following theorem, an extension of Oettli-Prager theorem [4,6] which 
narrows closely what is discussed in equations 4.5 and 4.6. 
 

Theorem4.2,[26]. Let ],[ BBBBB cc ∆+∆−=  be an nn×  interval matrix, 

],[ bbbb cc δδ +−=  an interval n-vector, where B∆ and bδ  are as defined in section 1. Let Z 

be a subset of nS  having the following properties: 

 

)(i  Z∈)sgn( 0β  for some ( )∑∈ bB,0β , 

( )ii  for each Zz∈  the systems of inequalities: 

 

                                            ( ) ,BQOIQB zc ∆≥−                                                       (4.7) 

 

                                            ( ) BQOIQB zc ∆≥− −  ,                                                    (4.8) 

 
 have matrix solutions zQ  and zQ− , respectively. 

 )(iii if δδ zczzcz QbQQbQZz +≤−∈ −−, , and  

( ) ( ) 0≤+− −− jzczjzcz QbQQbQ δδ
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for some j, then Zezz jj ∈− 2 .  

 
Then, there holds good that interval matrix B is regular, and furthermore, the interval Hull 
solution set  

            ( )∑
∈

−

−
⊆ U

0

],[,
^^

Zz
zzbB ββ ,                                                    (4.9) 

 
  converges on the dense subset of equation 4.6, where  
 

         ( ){ }φ≠∈= ∑ n
zRbBZzZ I,0                                           (4.10) 

 
Let us note that an improvement on the computed results from methods 4.5 and 4.10 can be 
further tightened using Rump/Krawczyk method [23] 
 

( ) ( ) ( )),([,int][ ∑⊃⊂−+ bBUUURBIRbc                        (4.11) 

 

5 Numerical Example 
 
Problem 1.1: 
As an illustration, the Planetary elliptical orbit of ten observations of its position in the (X,Y) 
plane is considered based on the sample data taken from [27] as displayed in Table 1. 
 

Table 1 
 

X Y 
1.02 0.39 
0.95 0.32 
0.87 0.27 
0.77 0.22 
0.67 0.18 
0.56 0.15 
0.44 0.13 
0.30 0.12 
0.16 0.13 
0.01 0.15 

 

Take interval uncertainty vector as data noise to be  0005.0][ =p ][ ie , where { }m
iie 11,1 =−=  

for the dependent variable iY  and independent variable iX  where i=1,2,3,…,m.  

Using cubic polynomial fit, result for the Least squares problem 1 assuming without noise in the 
data set is computed with MATLAB 2007 Windows version as  
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( )/
^

0295.0,4694.0,2578.0,1550.0 −−=β . 
 

Similarly, the following results are displayed in Tables 2 and 3 as approximate solutions to the 
given problem 1.1 with the presence of noise as parameter in the data set. 
 

Table 2. Showing results computed from problem1.1 based on theorem [10] 
 

Results from modi-Fied rump/ popova Method [10,11] for ][
^

β  

[0.1549994,0.15500067] 
[-0.25780655,-0.2577921] 
[0.46940375,0.46940565] 
[-0.02950075,-0.0294949] 

 
Table 3. Showing results computed from method 4.5 and improved results with 

rump/krawczyk method 
 

Corner point solution with Cropping from 

method 4.5 for 
^

][β  

Improved results with rump/Krawczyk 

method [10] for ][
^

β  

[0.1553,0.1553] [0.1552891,0.1553112] 
[-0.2611,-0.2620] [-0.2617332,-0.2614201] 
[0.4772,0.4803] [0.4787567,0.4790004] 
[-0.0367,-0.0342] [-0.0355532,-0.0353243] 

As a consequence of what has been computed as approximate solution for 
^

β ,  the value of  

^

^

β

ββ −c

 was evaluated and the loss function for modified method [10,11] found to be [6.8446, 

6.8446]. 
 
In addition, the condition number for the approximate solution without noise in the data using 

equation 3.11 was found to be 4101684.1 × . 
 
Polynomial fit of order three was used for modified method [10,11] and is given in the form: 
 

.]0294949.0,02950075.0[

]46940565.0,46940275.0[]2577921.0,25780655.0[]15500067.0,1549994.0[
3

2

3
3

2
210

X

XX

XXXY

−−
++−−+=

+++= ββββ

 
To demonstrate the faithfulness of our implementation to the described method, we take as an 
example, arbitrary value of X =0.12 and computed Y = [0.1308, 0.1308] for modified method 
[10,11]. This coincides within the values of the vector Y from the given data set. The same 
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analogy goes for Table 3 as given in equation 4.5. All results were computed using MATLAB 
Version 2007. 
 

6 Conclusion 
 
The paper considered the roles of condition number in the studies of least squares interval 
equations using polynomial fit of order three. In the paper, possible areas of applications of least 
squares were highlighted, for instance, extension to the backward perturbation errors in least 
squares problems also discussed. A diffeomorphism was introduced into system 1.1 which relates 
the reachability theory for the computable set in the resulting linear interval system from which, 
an ellipsoid may be applied. Here, in the paper, a section of the theorem due to [10], as 
exemplified by Popova in [11], was adopted which provides validated bounds to the linear interval 
system obtained from the Least squares equation. The loss function was computed based on the 
approximate results from Table 2.  
 
As can be expected, the computed results in Table 2 approximated sufficiently close to the 
theoretical floating point results obtained in the absence of noise in the data using MATLAB 
2007. 
 
In addition, theoretical approximation technique for cropping corner points solution in the sense of 
[23,24,25] was adopted in the paper to advance the approximate solution. This involves solving 
systems of inequalities. The Rump/Krawczyk method was used to narrow further the computed 
approximate result as showed in Table 3. Further insight was given on how to estimate Y  based 
on the given value of input data in order to further ascertain the correctness or otherwise of 
computed approximate solution from the described numerical method. 
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