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ABSTRACT

Very Simple Optimization (VSO) is introduced as a new a new global search design and
optimization algorithm that is applied to a seminal antenna optimization problem:
achieving uniform hemispherical coverage in a dipole-loaded monopole.  The VSO-
optimized monopole's performance is compared to genetic algorithm and hill-climber
designs, and VSO is tested against two suites of benchmark functions and several other
algorithms.

Keywords: Antenna; wire antenna; monopole; loaded antenna; electromagnetic; Very Simple
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1. INTRODUCTION

This paper introduces Very Simple Optimization (VSO), a new design and optimization
(D&O) methodology (met heuristic) with specific application in applied electromagnetic (EM).
VSO is used to optimize a dipole-loaded monopole (DLM) antenna as a practical example
and also is tested against recognized suites of benchmark functions and other algorithms.
VSO thus is generally applicable to any D&O problem regardless of its nature, antenna
design or otherwise.

The prototype DLM was introduced by Altshuler [1], and its design subsequently refined
using Genetic Algorithm (GA) optimization [2]. GA's have been applied to a variety of wire
and other antenna problems including Yagi-Uda arrays, GPS antennas, electrically small
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self-resonant structures, dielectric-imbedded antennas, impedance-loaded devices,
amorphous antennas, and microstrip patches [3-14].

VSO is introduced as a new deterministic D&O methodology that is applied to the seminal
DLM problem and tested against two benchmark suites using several other algorithms.  Wire
antenna design generally has benefitted substantially from computer-based optimization,
and VSO hopefully will become another effective tool to that end.

While GA is fundamentally stochastic, consequently producing a different antenna design
every time it is run, VSO is not.  Uncertain results can be a significant impediment because
there is no good way of knowing why any particular antenna design is different from others.
It could be the result of changing the fitness function, or, what is more likely, due to GA's (or
another stochastic algorithm's) inherent randomness.  The effects of different objective
functions are best investigated using deterministic D&O algorithms like VSO because every
run with the same setup returns the same results. VSO solves the DLM problem much more
efficiently than GA and additionally performs very well against suites of recognized
optimization benchmark functions optimized using a variety of other algorithms including
Vibrational-PSO, Group Search Optimizer, Genetic Algorithm and Particle Swarm
Optimization.

This paper is organized as follows: Section 2.1 describes VSO; Section 2.2 applies it to the
DLM problem; and Section 2.3 applies VSO to two suites of benchmark functions and
compares its results to those of several other algorithms.  In every case VSO's performance
is superior, which strongly suggests that this new D&O approach merits further investigation.

2. METHODOLOGY AND RESULTS

2.1 Very Simple Optimization (VSO)

VSO is a novel deterministic iterative D&O algorithm based on a very simple idea, and it
appears to work well for a wide range of functions.  This section describes the VSO
algorithm.  Many global search and optimization metaheuristics are drawn from Nature,
prime examples being GA, Particle Swarm Optimization (PSO), Ant Colony Optimization
(ACO), Synthetic Annealing (SA), and Biogeography Based Optimization (BBO) as
representative metaheuristics.  These algorithms are inherently stochastic because they
"explore" a decision space in a random manner, just as "survival of the fittest" randomly
improves a species, or just as bees or ants randomly search for food, or as other natural
processes seek minima, for example, energy level, or maxima, for example, a friendlier
habitat.  These approaches necessarily return different results on successive runs because
some variables must be computed from a probability distribution and cannot be known in
advance (true randomness is quite different from pseudo or quasirandomness; see, for
example, [15]. VSO by contrast is entirely deterministic because it is purely geometrical in
nature (although some measure of randomness can be included if the algorithm designer
wishes).

The basic idea underlying VSO is that at every iteration each sample point in the decision
space (DS) is moved along a straight line towards the point with the previous iteration's best
fitness (which remains fixed).  The best fitness can be a maximum or minimum (many
algorithms perform minimization), but here VSO is used to maximize an objective function.
The VSO algorithm is shown diagrammatically in Fig. 1 (O is the coordinate system origin).
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.  The value 5.0 was used for
all VSO runs reported here, but some other fixed value might work better (other values were
not tested).  It also may be advantageous to use a variable value for , but this also was not
tested.  The question of exactly how  should be specified has not been investigated further
because 5.0 provides good results by bisecting at each step the distance between the
sample point's starting location and the location of the best previous fitness.  This value
serves well for the DLM problem and for the benchmark testing described in Section 2.3.

Fig. 2 shows VSO pseudo code.  It is evident that VSO is quite simple (hence the name).
Initialization begins with the specification of an Initial Sample Point Distribution (ISPD)
against which the initial fitnesses are calculated to determine the best starting fitness.  The
ISPD can be deterministic, as it is here, or stochastic or hybrid in nature.  As a general
proposition, randomness increases an algorithm's ability to explore DS, which is why Nature-
based stochastic metaheuristics are so popular.  By comparison, VSO offers the "best of
both worlds" because at any iteration full or partial randomness can be added if doing so
improves performance.  For the runs reported here a variant of the deterministic "probe line"
distribution described in [16,17] was employed to create ISPD.

VSO's ISPD is generated by placing sample points uniformly along lines parallel to the
coordinate system axes that intersect at a point along the decision space principal diagonal.
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are the diagonal’s endpoint vectors.  Parameter 10   determines

where along the diagonal the orthogonal sample point array is placed. Ten  values were
used for the runs reported here uniformly spaced in the intervals 49.005.0   and

95.051.0   .  To avoid the possibility of a biased ISPD, 5.0 is intentionally excluded
so that no sample points are placed at the origin in a symmetrical DS, and an even number
of sample points, in this case 14 per line, was used for the same reason.  A typical three-
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dimensional ISPD using these parameter values is shown in Fig. 3 (the oblique line is the
principal diagonal).  VSO then evolves ISPD iteration-by-iteration according to the simple
repositioning scheme described above.

A VSO run ends when a user-specified termination criterion is met, often a predetermined
number of iterations or saturation of the best returned fitness.  The runs reported here
terminated on the earlier of 15 iterations or fitness saturation within 0.001 over 4 iterations
tested every third step, that is, when 03MOD j .  In almost every case this early
termination criterion was met in fewer than 15 iterations.

Fig. 1. VSO's Simple Sample Point Relocation Scheme
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Fig. 2. VSO Pseudocode

Fig. 3. Typical VSO Three Dimensional ISPD

2.2 VSO Applied to the Dipole-Loaded Monopole

The VSO-optimized DLM is shown schematically in Fig. 4. It comprises eight straight wire
segments (the long wire parallel to the X-axis consists of two separate wires along the ±X
axes). Additional geometry details may be found in [2, Fig. 1]. All wires are perfectly
electrically conducting (PEC), and the antenna is fed at its base against an infinite PEC
ground in the plane Z=0 (X-Y plane). This seminal antenna optimization problem was

Algorithm VSO

I - Initialization:
j ← 0
(a) ISPD
(b) Compute initial fitnesses
(c) Best fitness: )( *
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proposed by Altshuler [1,2] and solved using GA.  The same problem is solved here using
VSO with novel results that are better than GA's.

VSO is reminiscent of the stochastic Hill Climbing algorithm [private communication between
Dr. Robert C. Green II, CS Dept., Bowling Green State Univ., and the author] and
consequently merits comparison to that approach as well as to GA. The loaded monopole
therefore also was optimized using SAHC, a hill climbing variant described in §2.3 below.
Perspective views of the VSO, GA, and SAHC-optimized antennas appear in Figs. 5(a-c),
respectively (axis length 0.1 meter, frequency 299.8 MHz).  While the VSO antenna is quite
different from the GA and SAHC designs, whose geometries are similar, the radiation
patterns of all three monopoles are quite similar as discussed below.

Fig. 4. Geometry of VSO-optimized base-fed DLM

The VSO/SAHC-optimized monopoles' performance was computed using the Numerical
Electromagnetics Code version 4.2 double precision (NEC-4.2D) [18] as the optimizer's
modeling engine. An earlier version of NEC was used in [2], and details of the GA setup can
be found there.  NEC is widely regarded as the "gold standard" in wire antenna modeling.
Based on the Method of Moments, its development began with the groundbreaking work of
Richmond and Mei in 1965 and continues to this day at Lawrence Livermore National
Laboratory (USA). Wires comprising the antenna are broken into small segments, and the
current amplitude and phase computed segment-by-segment subject to Maxwell's equations
with appropriate boundary conditions. NEC's performance has been validated against other
analytical and numerical models and against extensive experiments over many years with
excellent results.

For the DLM problem considered here, Altshuler defines the design objective as a uniform
hemispherical radiation pattern without regard to input impedance. The resulting NEC input
files for the three optimized monopoles appear in Figs. 6(a-c). The VSO/SAHC fitness

function (to be maximized) was
 

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as a function of the angles ),(  in standard right-handed spherical polar coordinates. avgG
is the average gain over all calculation angles.  Gain was computed at 5 increments in 
and 45 in  .  This fitness function minimizes the difference between the actual and
average gains at each calculation point, which has the effect of smoothing the pattern.

(a) (b)

(c)

Fig. 5. VSO (a), GA(b), and SAHC(c) Optimized DLM (0.1 m axis length, 299.8 MHz)

The antenna designer must specify a suitable objective (fitness) function, but doing so can
be problematic [19]. What appears to be a perfectly reasonable function for achieving a
desired balance between various antenna performance measures in fact may be quite poor.
Because stochastic D&O algorithms return different results on every run, there is no good
way to test the effects of changing the fitness function, for example, by changing coefficient
values or by combining parameters differently. These issues are best addressed by using a
deterministic D&O methodology such as VSO. In addition, unlike benchmark testing that
uses purely analytical formulations, antenna design usually requires a stand-alone numerical
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modeling engine, in this case NEC, that frequently imposes long computation times making it
even more difficult to evaluate the quality of a specific objective function. Thus, in
implementing the VSO DLM optimization algorithm, NEC is used as a self-contained stand-
alone program shelled by VSO. NEC's data then are returned to VSO which computes each
candidate DLM design's fitness. Thus, VSO performs the optimization while NEC computes
the antenna's performance.

The VSO/SAHC loaded monopole designs are compared to the GA-optimized monopole by
using NEC-4.2D to compute the GA antenna's performance with the geometry data in Fig.
6(b) (taken from Table 1 in [2]. Following standard procedure, these geometry data are in
wavelengths ( ) at the operating frequency 0f because 8.2990 f MHz at which 1
meter precisely, thus permitting the antenna to be scaled to any other operating frequency.

Figs. 7(a-c), respectively, show the VSO, GA, and SAHC-optimized radiation patterns (total
power gain) in an azimuth plane containing the maximum gain, while Fig. 8 provides three-
dimensional (3-D) perspective views.  All three antennas meet the performance objective of
providing very uniform coverage of the upper hemisphere. The VSO monopole's gain ranges
from a minimum of 2.22 dBi to a maximum of 3.58 dBi (1.36 dB spread), while GA's is
between 2.12 and 4.89 dBi (2.77 dB spread), and the corresponding SAHC values are 2.73
to 3.46 dBi (0.73 dB spread). The VSO monopole's gain is 1.41 dB more uniform than the
GA's, but less uniform than the SAHC's by 0.68 dB.  VSO required far fewer function
evaluations than SAHC (8,600 vs. 183,120) because it is deterministic. Even though it was
not included as a design objective, NEC outputs antenna input impedance, with the VSO,
GA and SAHC values, respectively, being  4.1594.38 j ,  3.7554.298 j , and

 2152.70 j .

(a) (b)

CM File: MONO.NEC
CM VSO-OPTIMIZED DIPOLE-LOADED MONOPOLE
CM (see Altshuler, 1997)
CM Frequency, Fc = 299.8 MHz
CM Run ID: 06272013080333
CM Fitness: 1/Sum|Gtot(Th,Ph)-<G>|
CM G=Pwr Gain(dBi); Th,Ph=angles
CM Note: all dimensions are in METERS.
CM File ID 06272013080916
CM Nd= 6, p= 42, j= 9
CE
GW1,16,0,0,0,0,0,.1625,.0005
GW2,14,0,0,.1625,.1351,0,.1625,.0005
GW3,3,.1351,0,.1625,.1351,0,.1895,.0005
GW4,14,.1351,0,.1895,0,0,.1895,.0005
GW5,16,0,0,.1895,-.1565,0,.1895,.0005
GW6,3,-.1565,0,.1895,-.1565,0,.2165,.0005
GW7,16,-.1565,0,.2165,0,0,.2165,.0005
GW8,9,0,0,.2165,0,0,.3082,.0005
GE1
GN1
FR0,1,0,0,299.8,0
EX0,1,1,1,1.,0.
RP0,19,8,1001,0.,0.,5,45,100000.
EN

CM ALTSHULER'S DIPOLE-LOADED MONOPOLE
CM Ref: Altshuler, 1997
CM Frequency, Fc = 299.8 MHz
CM Note: all dimensions are in METERS.
CE
GW1,3,0,0,0,0,0,.0299,.0005
GW2,46,0,0,.0299,.4565,0,.0299,.0005
GW3,1,.4565,0,.0299,.4565,0,.0427,.0005
GW4,46,.4565,0,.0427,0,0,.0427,.0005
GW5,15,0,0,.0427,-.1515,0,.0427,.0005
GW6,4,-.1515,0,.0427,-.1515,0,.0848,.0005
GW7,15,-.1515,0,.0848,0,0,.0848,.0005
GW8,13,0,0,.0848,0,0,.2107,.0005
GE1
GN1
FR0,1,0,0,299.8,0
EX0,1,1,1,1.,0.
RP0,19,8,1001,0.,0.,5,45,100000.
EN
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(c)

Fig. 6. Optimized DLM NEC Input Files: VSO(a), GA(b), SAHC(c)

(a)                                                                         (b)

CM File: MONO.NEC
CM SAHC-OPTIMIZED DIPOLE-LOADED MONOPOLE
CM (see Altshuler, 1997)
CM Frequency, Fc = 299.8 MHz
CM Run ID: 07012013170847
CM Fitness: 1/Sum|Gtot(Th,Ph)-<G>|
CM G=Pwr Gain(dBi); Th,Ph=angles
CM Note: All dimensions are in METERS.
CM File ID 07012013173527
CM Nd= 6, p= 577, j= 1
CE
GW1,3,0,0,0,0,0,.0318,.0005
GW2,40,0,0,.0318,.4048,0,.0318,.0005
GW3,1,.4048,0,.0318,.4048,0,.0418,.0005
GW4,40,.4048,0,.0418,0,0,.0418,.0005
GW5,14,0,0,.0418,-.1368,0,.0418,.0005
GW6,8,-.1368,0,.0418,-.1368,0,.1179,.0005
GW7,14,-.1368,0,.1179,0,0,.1179,.0005
GW8,10,0,0,.1179,0,0,.2198,.0005
GE1
GN1
FR 0,1,0,0,299.8,0
EX 0,1,1,1,1.,0.
RP0,19,8,1001,0.,0.,5,45,100000.
EN
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(c)

Fig. 7. Optimized DLM Radiation Patterns: VSO(a), GA(b), SAHC(c)

(a)                                      (b)

(c)

Fig. 8. Optimized DLM 3-D Patterns: VSO(a), GA(b), SAHC(c)
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2.3 VSO Applied to Benchmark Functions

Global search and optimization algorithms typically are tested against standard suites of
benchmark functions.  Two sets of benchmarks were used to test VSO.  The six-function
vibrational-PSO (v-PSO) suite [20] was selected because it provides a direct comparison to
v-PSO, which is a new state-of-the-art D&O methodology tested against both
benchmark functions and practical engineering problems in the same way VSO has been
tested.  Table 1 shows the form of the test functions, DS, and the location and value of the
known maximum (same notation as [20]).  Note that the signs have been changed because
VSO performs maximization whereas v-PSO performs minimization, and that the form of f1 in
[20] is missing the last two terms and DS is slightly smaller (see f10 in [21]).

Because v-PSO is stochastic, it was tested statistically in [20] by making 100 runs and
averaging the results.  The algorithm was applied to each benchmark in 10, 20 and 30
dimensions using a total of 200,000 function evaluations per run (10,000 generations, 20
particle swarm), thus resulting in a total of 20,000,000 evaluations for each of the six
benchmarks.  Results for v-PSO are reported in Table IV in [20] and reproduced here in
Table 2, along with VSO's results for the same cases.

VSO out-performed v-PSO in every case, both in terms of the quality of its solution and by
far in the number of function evaluations, evalN .  Compared to 20,000,000 evaluations per
function for v-PSO, VSO required a worst case maximum of only 67,200 for the 30-
dimensional Schwefel and returned much better results.  VSO's determinism greatly reduces
the number of function evaluations, but at the same time VSO may not explore DS as well as
a stochastic algorithm.  It is evident that how VSO's ISPD is configured is an important
consideration, perhaps the most important single factor in setting up effective VSO runs, an
issue that requires further investigation.

In addition to testing against the v-PSO benchmarks, VSO also was tested against a
recognized suite of twenty three benchmarks.  Those results are summarized in Table 3.
This suite's description appears in detail in [16,21,22] and consequently is not repeated here
(note that there is some overlap with the v-PSO suite).  In Table 3, VSO is compared directly
to Central Force Optimization (CFO) and to Group Search Optimizer (GSO), which is based
on a metaphor of animal foraging [22], and indirectly to two other GA and PSO variants.
CFO was selected because, like VSO, it is deterministic.  GSO was selected because it has
been extensively tested and was itself compared to two other algorithms, GA and PSO, as
described in [22].

The test functions in Table 3 are numbered as they are in the GSO paper. maxf is the
known global maximum (note that the negative of each function is used because, unlike the
other algorithms, CFO, like VSO, searches for maxima instead of minima). The 
brackets denote mean value because all the algorithms discussed in [22] are stochastic,
thus requiring a statistical assessment.  The data in Table 3 for the other algorithms are
reproduced from [22]. As noted, the high dimensionality results are averages over 1,000
runs, whereas the lower dimensionality data are 50 run averages. The GSO experimental
setup is described in detail in [22]. By contrast, because both CFO and VSO are
deterministic, their results are repeatable over runs with the same parameters so that only a
single run is required. The same VSO setup described above for the v-PSO suite was used
for the 23-benchmark suite.
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The results in Table 3 speak for themselves.  VSO returned the best or equal fitness on 12
of the benchmarks, which is a very robust performance in view of the relatively small number
of function evaluations (maximum of 67,200 in only two cases). In every other case, VSO's
best fitness was close to the actual maximum, except for benchmark f14 where its returned
fitness was poor compared to the known maximum.  It is likely that VSO would perform
considerably better against f14 using a different ISPD, which again highlights ISPD's
importance.

A version of Steepest Ascent Hill Climbing with Replacement (SAHC) [23] was implemented
using essentially the same setup parameters as VSO. The number of sample points was
equalized by increasing the number per dimension from 14 to 140 because VSO utilized 10
gamma values in its ISPD, whereas gamma is not a parameter in SAHC.  Its ISPD was

computed as k
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where 1.01.0  jr is a uniformly

distributed RV and 2

1

minmax )(



dN

k
jjdiag xxL the length of DS's principal diagonal.  Each

tweaked coordinate is constrained to remain inside DS by setting it to max
ix or min

ix if it is
greater or less than the boundary value, respectively. The same VSO early termination
criterion was applied.  A total of 1,000 independent SAHC runs was made, each with a new
random ISPD, and the best fitness over all runs returned.

Results comparing VSO and SAHC using the GSO benchmark suite appear in Table 4.
VSO returned the best fitness against all but five benchmarks, and those were all low-
dimensionality functions. Perhaps the most important data in Table 4 are the number of
function evaluations. VSO never required more than 67,200 calculations, whereas SAHC
required no fewer than 1,120,840, which is a staggering difference.  On the 30-D functions
the difference is even greater, with SAHC requiring at least 16,850,400 function evaluations
and yielding solutions that generally were quite poor compared to VSO. It is evident that
VSO markedly outperforms SAHC for real-world problems like antenna design where the
number of modeling engine runs can be a significant impediment in formulating an effective
objective function.
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Table 1.  v-PSO benchmark functions

f Function f(x) DS x* f(x*)

f1 Ackley

ex
N

x
N

d

d

N

i i
d

N

i i
d




























20)2cos(1exp

12.0exp20

1

1
2



dN]30,30[ dN]0[ 0

f2 Cosine
Mixture  

 dd N

i i
N

i i xx
11

2 )5cos(1.0 
dN]1,1[ dN]0[ dN1.0

f3 Exponential )5.0exp(
1
2 

 dN

i ix
dN]1,1[ dN]0[ 1

f4 Griewank















 



d

d

N

i
i

N

i i

i
x

x

1

2
1

1100cos

)100(
4000
1 dN]600,600[ dN]0[ 0

f5 Rastrigin ]10)2cos(10[
1

2   i
N

i i xxd  dN]12.5,12.5[ dN]0[ 0

f6 Schwefel )]sin([9829.418
1 i
N

i id xxN d 
 dN]500,500[ dN]9687.420[ 0

Table 2.  VSO results for v-PSO benchmarks

f Nd v-PSO* VSO Neval

f1
10
20
30

–1.84e-15±2.9e-16
–2.84e-15±1.5e-16
–4.93e-15±3.4e-16

4.77e-18
4.77e-18
4.77e-18

9,800
19,600
29,400

f2
10
20
30

1±0
2±0
3±0

1
2
3

9,800
19,600
29,400

f3
10
20
30

1±0
1±3e-18
1±1e-17

1
1
1

9,800
19,600
29,400

f4
10
20
30

–0.020±0.006
–0.0026±0.002
–8.8568e-4±0.001

0
0
0

9,800
19,600
29,400

f5
10
20
30

0±0
0±0
–5.6843e-16±1e-15

0
0
0

9,800
19,600
29,400

f6
10
20
30

–620.8131±50.4
–1.3384e+3±68.5
–2.1395e+3±103.3

–1.305e-4
–2.551e-4
–3.827e-4

18,200
44,800
67,200

* average best fitness; data reproduced from Table IV in [20]
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Table 3. Comparative results for GSO 23-function benchmark suite

f dN (1)
maxf <Best

Fitness>/
Other Alg.

CFO VSO
Best
Fitness evalN Best

Fitness evalN

Unimodal Functions (other algorithms: average of 1000 runs)
f1 30 0 -3.6927x10-37 /

PSO
-2.6592x10-2 108,660 -1.2037x10-35 29,400

f2 30 0 -2.9168x10-24 /
PSO

-4x10-8 161,640 -4.3368x10-19 29,400

f3 30 0 -1.1979x10-3 /
PSO

-6x10-8 239,340 0 29,400

f4 30 0 -0.1078 / GSO -4.2x10-7 59,160 -3.4694x10-18 29,400
f5 30 0 -37.3582 / PSO -2.1719x10-2 164,160 -1.3154x10-5 54,600
f6 30 0 -1.6000x10-2 /

GSO
0 73,620 0 29,600

f7 30 0 -9.9024x10-3 /
PSO

-3.5599x10-3 66,660 -7.7487x10-4 29,400

Multimodal Functions, Many Local Maxima (other algorithms: average of 1000 runs)
f8 30 12,569.5 12,569.4882 /

GSO
12,569.4852 69,720 12,569.4866 67,200

f9 30 0 -0.6509 / GA -3.52x10-6 117,120 0 29,400
f10 30 0 -2.6548x10-5 /

GSO
-1.5x10-7 111,660 4.7705x10-18 29,400

f11 30 0 -3.0792x10-2 /
GSO

-2.00124 160,680 -8.2269x10-2 67,200

f12 30 0 -2.7648x10-11 /
GSO

-0.105859 68,220 -5.0111x10-6 29,400

f13 30 0 -4.6948x10-5 /
GSO

-6.5966x10-2 103,320 -3.2007x10-6 42,000

Multimodal Functions, Few Local Maxima (other algorithms: average of 50 runs)
f14 2 -1 -0.9980 / GSO -1.005284 12,824 -6.9034 2,800
f15 4 -3.075x10-3 -3.7713x10-4 /

GSO
-2.4163x10-3 19,920 -1.6333x10-3 3,920

f16 2 1.0316285 1.031628 /
GSO

1.031607 9,256 1.0316239 2,800

f17 2 -0.398 -0.3979 / GSO -0.398 8,824 -0.3979 2,800
f18 2 -3 -3 / GSO -3 15,784 -3 2,800
f19 3 3.86 3.8628 / GSO 3.86157 12,612 3.774 4,200
f20 6 3.32 3.2697 / GSO 3.31976 52,128 3.0333 10,920
f21 4 10 7.5439 / PSO 10.1466 25,376 10.1532 7,280
f22 4 10 8.3553 / PSO 10.4028 29,168 10.4029 7,280
f23 4 10 8.9439 / PSO 10.5362 24,784 10.5364 7,280

(1) Negative of the functions in [22] computed by CFO/VSO because they search for maxima instead of
minima.
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Table 4. Comparative results SAHC & VSO

f dN (1)
maxf SAHC VSO

Best Fitness
(1,000 runs) evalN Best Fitness

evalN

Unimodal Functions
f1 30 0 -3.1296x104 16,850,400 -1.2037x10-35 29,400
f2 30 0 -118.1927 16,863,000 -4.3368x10-19 29,400
f3 30 0 -2.9379x104 16,900,800 0 29,400
f4 30 0 -56.9567 16,888,200 -3.4694x10-18 29,400
f5 30 0 -1.9033x1014 16,938,600 -1.3154x10-5 54,600
f6 30 0 -2.6567x104 16,888,200 0 29,600
f7 30 0 -23.7855 16,900,800 -7.7487x10-4 29,400
Multimodal Functions, Many Local Maxima
f8 30 12,569.5 5,462.47 16,913,400 12,569.4866 67,200
f9 30 0 -4,340.43 16,850,400 0 29,400
f10 30 0 -18.8522 16,850,400 4.7705x10-18 29,400
f11 30 0 -263.789 16,913,400 -8.2269x10-2 67,200
f12 30 0 -5.0287x107 16,913,400 -5.0111x10-6 29,400
f13 30 0 -1.2672x108 16,888,200 -3.2007x10-6 42,000
Multimodal Functions, Few Local Maxima
f14 2 -1 -0.998 1,126,720 -6.9034 2,800
f15 4 -0.0003075 -9.3807x10-4 2,246,720 -1.6333x10-3 3,920
f16 2 1.0316285 1.0316071 1,125,880 1.0316239 2,800
f17 2 -0.398 -0.397986 1,120,840 -0.3979 2,800
f18 2 -3 -3.00144 1,125,880 -3 2,800
f19 3 3.86 3.8625 1,690,080 3.774 4,200
f20 6 3.32 3.2756 3,372,600 3.0333 10,920
f21 4 10 8.9088 2,248,400 10.1532 7,280
f22 4 10 9.2653 2,250,080 10.4029 7,280
f23 4 10 9.5548 2,245,040 10.5364 7,280

3. CONCLUSION

This paper applies VSO to the optimization of a dipole-loaded monopole antenna with very
good results. It describes VSO as a new easily implemented deterministic, iterative D&O
algorithm, and reports test data using two benchmark suites that compare it to other
stochastic algorithms, again with very good results.  VSO holds promise as an effective D&O
methodology, especially for problems requiring the formulation of a suitable objective
function like antenna D&O, and consequently merits further study, especially with respect to
how ISPD should be specified. Wire antenna design has improved dramatically using
optimization tools such as GA, and VSO holds promise to further extend this capability.
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