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Abstract
In this paper, we study the possibility of finite time or asymptotic compensation of disturbances f ,
for a class of linear lumped systems{ .

z(t) = Az(t) +Bu(t) + f(t)
z(0) = z0

augmented with the output equation
y(t) = Cz(t)

using directly feedback controls u = K f , where K is a linear operator. We give appropriate
definitions and characterization results of this notion, called K-remediability. We also examine the
relationship with the remediability as studied in previous works. Illustrative examples are presented
and various situations are considered. The relation u = K f includes the usual form u = K yf ,
where yf is the term corresponding, in the expression of the observation y, to the disturbance f . In
the linear case, yf may be deduced easily from the observation y, even if f is not known.
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1 Introduction and Problem Statement

1.1 Introduction
Let us consider without loss of generality, a class of finite dimension linear dynamical systems
described by the following state equation

(S)

{ .
z(t) = Az(t) +Bu(t) + f(t) ; 0 < t < T
z(0) = z0

(1.1)

augmented with the following output equation

(E) y(t) = Cz(t) (1.2)
with A ∈ Mn(R) ≡ Mn,n(R), B ∈ Mn,p(R), C ∈ Mq,n(R); n, p, q ≥ 1. f ∈ L2(0, T ;Rn);

u ∈ L2(0, T ;Rn). The observation at the final time T is given by

y(T ) = CeAT z0 + CHTu+ CHT f

= CeAT z0 + CHTu+ yf (T )

where
HT : L2(0, T ;Rp) → Rn

u → HTu =
∫ T
0
eA(T−t)Bu(t)dt

(1.3)

HT : L2(0, T ;Rn) → Rn

f → HT f =
∫ T
0
eA(T−t)f(t)dt

(1.4)

and

yf (t) =

∫ t

0

CeA(t−s)f(s)ds (1.5)

In the case where the system is autonomous (f = 0 and u = 0), the observation is normal. At
the final time, it is given by y(T ) = CeAT z0. But if f 6= 0 and u = 0, generally

y(T ) 6= CeAT z0

The problem of compensation (remediability) is to study the existence of a control operatorB ensuring
the compensation of the effect of any disturbance f .

Hence, the system (S), augmented with the output (E) (or (S) + (E), or also indifferently
(A,B,C)) is remediable on [0, T ], if for any f ∈ L2(0, T ;Rn), there exists u ∈ L2(0, T ;Rp) such
that ∫ T

0

CeA(T−s)Bu(s)ds+

∫ T

0

CeA(T−s)f(s)ds = 0

i.e.

CHTu+RC(T )f = 0

where
RC(t)f = CHtf = yf (t)

The problem of remediability as defined above for finite (as well as for infinite) dimension linear
systems, has been studied. Characterization results have been established for various types of
systems [Afifi, L. et al. ([1], [2], [3], [4], [5], [6])], applications were given and different situations
have been considered. In each case, and under convenient hypothesis, it has been shown how to
find, from the observation only, a control uf ensuring the exact compensation of a disturbance f .
Such a control depends certainly on f , but the nature of this dependance is not generally obvious.
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1.2 Problem statement

In this work, we consider a natural question which consists to examine this relation. More precisely,
we study the possibility of compensation using controls

u = K f (1.6)

depending linearly on the disturbance, that is to say, as a feedback of the disturbance (or its
corresponding observation yf ). Hence, the problem consists to study, with respect to the matrices A,
B and C, the existence of an operator

K : L2(0, T ;Rn)→ L2(0, T ;Rp)

such that for any disturbance f ∈ L2(0, T ;Rn), we have∫ T

0

CeA(T−s)f(s)ds+

∫ T

0

CeA(T−s)BKf(s)ds = 0

which is equivalent to
CHT f + CHTBKf = 0

or
CHT [I +BK]f = 0

Let us note that a disturbance f may be known or unknown. However in the linear case, its
corresponding observation yf given by

yf (t) = y(t)− CeAtz0 − CHtu

is generally known. Hence, the relation (1.6) is not restrictive and includes practical cases where
the controls are of the form u = Kyf and ũ = K̃RC(T )f . We define and we characterize this
notion called K-remediability. We also study its relationship with the classical remediability studied in
previous works. An extension to the asymptotic case is also presented. In both cases, properties are
given and various situations are considered.

The developments and results presented in this paper can be extended to linear distributed
systems [Afifi, L. et al [6], Balakrishnan, A.V. [7], Curtain, R.F. and Pritchard, A.J. [8], Curtain, R.F.
and Zwart, H.J. [9], El Jai, A. [10], Lions, J.-L. [11]] and also to other situations (non linear systems,
delayed systems, ....).

2 K-remediability

We have the following definitions.

Definition 2.1.
i) A disturbance f ∈ L2(0, T ;Rn) is said to be K-remediable if

CHT (I +BK)f = 0

i.e.
f ∈ ker[CHT (I +BK)]

The operator K do not depend on the disturbance f .
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ii) If F is a subspace of E ≡ L2(0, T ;Rn), we say that the system (S) + (E) is K-remediable on
F , if any disturbance f ∈ F is K-remediable, this is equivalent to

F ⊂ ker[CHT (I +BK)]

iii) If F = E , we say that the system (S) + (E) is K- remediable on E , or simply K-remediable.
In this case, we have

ker[CHT (I +BK)] = E

or

CHT (I +BK) = 0 on E

The notion of K-remediability on the whole space E as defined above in part iii), may seems
strong. But as it will be seen in the next section, it is not stronger than the remediability in the open
loop case, which itself is weaker than the notion of controllability.

Moreover, the restriction of the problem to a subspace (or a subset) F of E is more flexible
and allows to examine the problem of remediability for particular disturbances (constant, piecewise
constant, periodic, sinusoidal, of the form f(t) = Dv(t), ...). One can also consider the case of
disturbances f ∈ L2(0, T ;G), where G is a subspace (or a subset) of Rn, and consequently the case
where the disturbance involves only some variables (components) among n.

We have the following properties.

Proposition 2.1.
1) If the system (S) + (E) is K-remediable on F1, then it is on every F2 ⊂ F1.
2) Particularly, if (S) + (E) is K-remediable, then it is K-remediable on any subspace F of E .
3) In each case, the converse is not generally true.

Proof.
- The properties 1) and 2) derive from the definition.
- The property 3) is illustrated in example 3.1

Let us note that for controls of type u = K̃RC(T )f , definitions, properties and results are
analogous by replacing the operator K by KRC(T ). In this case, if f ∈ ker(I +BKRC(T ), then

CHT [I +BKRC(T )]f = 0

The converse is not necessarily true. This is illustrated in the following example.

Example 2.1. We consider the case where

A =

[
1 0
0 2

]
; I =

[
1 0
0 1

]

f =

(
f1
f2

)
with f2 6= 0; C = (1, 0); B =

(
1

0

)
and K = 1.

It is easy to show that

[I +BKRC(T )]

(
f1
f2

)
6=

(
0

0

)

One can assume without loss of generality, that F is a closed subspace (or just a subset) of E .
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However

CHT [I +BKRC(T )]

(
f1
f2

)
=

(
0

0

)

In the next section, we examine the problem of existence of an operator K ensuring the K-
remediability of (S) + (E), that is to say, on the whole space E , and hence its relation with the
”open-loop” remediability.

3 Remediability and K-remediability
Under the remediability assumption, and using Hilbert Uniqueness Method, we show that such an
operator K exists. The converse will be then examined. Let us first give the following characterization
of the remediability which depends on the matrices A, B and C [Afifi, L. et al [5]].

Proposition 3.1. (S) + (E) is remediable on [0, T ] if and only if

rank(CB CAB ... CAn−1B) = rank(C) (3.1)

Proof. Since Im(CHT ) ⊂ Im(RC(T )), then (S)+(E) is remediable on [0, T ] if and only if Im(RC(T )) ⊂
Im(CHT ), or equivalently

ker((HT )∗Ctr) ⊂ ker((RC(T ))∗)

Hence, using Caylay-Hamilton theorem and the fact that (HT )∗ = BtreA
tr(T−.), we have

θ ∈ ker((HT )∗Ctr) ⇐⇒


BtrCtr

BtrAtrCtr

...
Btr(Atr)n−1Ctr

 θ = 0

On an other hand, we have ker((RC(T ))∗) = ker(Ctr), consequently the remediability of (S) +
(E) is equivalent to

ker


BtrCtr

BtrAtrCtr

...
Btr(Atr)n−1Ctr

 = ker(Ctr)

we then have the result.

Concerning the existence of K, we have the following result.

Proposition 3.2. If the system (S), augmented with the output (E), is remediable on [0, T ], then it is
K-remediable on [0, T ], with

K = −(HT )∗Ctr(ΛT )−1RC(T )

where ΛT is the isomorphism defined from Rq to Rq by

ΛT θ =

∫ T

0

CeA(T−s)BBtreA
tr(T−s)Ctrθds = CHT (HT )? Ctrθ

and in general, M tr is the transposal matrix of M .
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Proof. For θ ∈ Rn, we define on Rq the semi-norm

‖θ‖Rq =

(∫ T

0

∥∥∥BtreAtr(T−s)Ctrθ
∥∥∥2
Rn
ds

) 1
2

We assume that ‖.‖Rq is a norm, or equivalently ker((HT )∗Ctr) = {0}, using the fact that
BtreA

tr(T−.)Ctr = (HT )∗Ctr. (A,B,C) is then remediable on [0, T ].

Under this condition, Rq is a Hilbert space with the inner product

〈θ, τ〉Rq =

∫ T

0

〈
BtreA

tr(T−s)Ctrθ,BtreA
tr(T−s)Ctrτ

〉
ds; ∀θ, τ ∈ Rq

and the operator ΛT : Rq −→ Rq is an isomorphism such that :

〈ΛT θ, τ〉Rq = 〈θ, τ〉Rq ; ∀θ, τ ∈ Rq and ‖ΛT θ‖Rq = ‖θ‖Rq ; ∀θ ∈ Rq

Moreover, if f ∈ L2(0, T ;Rn), then there exists a unique θf in Rq such that

ΛT θf = −RC(T )f

and the control uθf defined by

uθf (s) = BtreA
tr(T−s)Ctrθf (s) = H∗Ctrθf ; 0 < s < T

satisfies
RC(T )f + CHTuθf = 0

and is optimal with
∥∥uθf ∥∥L2(0,T ;Rp)

= ‖θf‖Rq .

Since θf = −(ΛT )−1RC(T )f , we have

uθf = −(HT )∗Ctr(ΛT )−1RC(T )f

Consequently, the operator

K = − (HT )∗Ctr(ΛT )−1RC(T )

ensures the compensation of any disturbance f ∈ L2(0, T ;Rn), i.e., the K-remediability of
(S) + (E).

Concerning the converse, we have the following result.

Proposition 3.3. If the system (S), augmented with the output (E), is K-remediable on [0, T ], then
it is remediable on [0, T ].

Proof. If (S) + (E) is K-remediable on [0, T ], then

ker[CHT (I +BK)] = E

and hence, for any f ∈ L2(0, T ;Rn), we have

CHT f + CHTBKf = 0

or equivalently CHT f + CHTKf = 0. Therefore

CHT f + CHTu = 0

where u = Kf ∈ L2(0, T ;Rp). (S) + (E) is then remediable on [0, T ].
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Let us note the following.

Remark 3.1. The system (S), augmented with the output equation (E) may be K-remediable on a
subspace F , without being remediable. This situation is illustrated in the following example.

Example 3.1. We consider the case where A, B and C are such that

rank(CB CAB .... CAn−1B) 6= rank(C)

for example that where n = 2, p = 1, A =

(
1 0
0 1

)
, B =

(
1
1

)
, C =

(
1 0
0 1

)
.

The system (S) + (E) is not remediable according to proposition 3.1. Consequently, using
proposition 3.3, it is not K-remediable for every operator

K : L2(0, T ;Rn)→ L2(0, T ;Rp)

However, for a given operator K, it is K-remediable on the subspace

F = ker[CHT (I +BK)]

Let us note also that in the case of disturbances of the form

f(t) = Dv(t)

with D ∈ Mn,r(R) and v ∈ L2(0, T ;Rr), the definitions and the results are similar by replacing
the operator HT by HTD and CHT (I +BK) by CHT (I +BK)D.

We give hereafter, an extension to the case of an infinite time horizon.

4 Asymptotic Case
In this section, we give an asymptotic analysis of the problem. We consider the system:

(S∞)

{ .
z(t) = Az(t) +Bu(t) + f(t) ; t > 0
z(0) = z0

augmented with the output equation :

(E∞) y(t) = Cz(t) ; t > 0

with A ∈ Mn(R), B ∈ Mn,p(R), C ∈ Mq,n(R); f ∈ L2(0,+∞;Rn), u ∈ L2(0,+∞;Rp). We have
y ∈ L2(0,+∞;Rq).

Remark 4.1. As seen in the previous section, the finite time compensation problem is equivalent to:

For any f ∈ L2(0, T ;Rn), does exists a control u ∈ L2(0, T ;Rp) such that∫ T

0

CeA(T−s)Bu(s)ds+

∫ T

0

eA(T−s)f(s)ds = 0

or equivalently ∫ T

0

CeAtBv(t)ds+

∫ T

0

eAtg(t)dt = 0 (4.1)
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where g(t) = f(T−t) and v(t) = u(T−t). Consequently, the finite time remediability of (S)+(E)
can be also formulated as follows:

For any g ∈ L2(0, T ;Rn), does exists a control v ∈ L2(0, T ;Rp) satisfying (4.1) ?

Concerning the problem of asymptotic compensation [Afifi, L. et al ([4], [6])], let us recall that
the system (S∞), augmented with (E∞), is remediable asymptotically if for any disturbance f ∈
L2(0,+∞;Rn), there exists a control u ∈ L2(0,+∞;Rp) such that

CH∞f + CH∞u = 0

where

H∞u =

∫ +∞

0

eAtBu(t)dt

and

H∞f =

∫ +∞

0

eAtf(t)dt

Note that the operators H∞ and H∞ are not generally well defined. They are, if and only if,
the system is exponentially stable [Afifi, L. et al ([5], [6]), Balakrishnan, A.V. [7], Curtain, R.F. and
Pritchard, A.J. [8], Curtain, R.F. and Zwart, H.J. [9]], i.e.

sup
i=1,n

Re(λi) < 0

where λ1, λ2, ..., λn are the eigenvalues of A. This condition is not necessary for the study of the
asymptotic compensation because the considered problem depends also on the choice of the output
operator C [Afifi, L. et al ([4], [5], [6])]. In fact, we are concerned with the operators H∞C and R∞C
defined by

H∞C u =

∫ +∞

0

CeAtBu(t)dt

and

R∞C f =

∫ +∞

0

CeAtf(t)dt

which may be well defined even ifH∞ andH∞ are not. This is illustrated in the following example.

Example 4.1. We consider a two dimension system with

A =

[
1 0
0 −1

]
; B =

[
1 2
3 4

]
and C =

[
0 1

]
u =

[
u1

u2

]
∈ L2(0,+∞;R2) and f =

[
f1
f2

]
∈ L2(0,+∞;R2).

We have

H∞C u =
∫ +∞
0

CeAtBu(t)dt =
∫ +∞
0

[
0 1

] [et 0
0 e−t

] [
u1(t) + 2u2(t)
3u1(t) + 4u2(t)

]
dt

=
∫ +∞
0

[
0 e−t

] [ u1(t) + 2u2(t)
3u1(t) + 4u2(t)

]
dt =

∫ +∞
0

(3u1(t) + 4u2(t))e−tdt

which is finite since u1 and u2 ∈ L2(0,+∞;R).
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For f ∈ L2(0,+∞;R2), we have

R∞C f =

∫ +∞

0

CeAtf(t)dt =

∫ +∞

0

[
0 e−t

] [f1(t)
f2(t)

]
dt =

∫ +∞

0

f2(t)e−tdt

which is convergent (finite). Consequently, the operators H∞C and R∞C depending on C, are well
defined even if the system is not exponentially stable.

The system (S∞) + (E∞), is asymptotically remediable if for any f ∈ L2(0,+∞;Rn), there exists
u ∈ L2(0,+∞;Rp) such that

R∞C f +H∞C u = 0

This is equivalent, as in the case of a finite time horizon, to

rank(CB CAB .... CAn−1B) = rank(C)

The proof is similar to that of proposition 4.1. Here also, we study with respect to the matrices A,
B and C, the existence of an operator

K : L2(0,+∞;Rn)→ L2(0,+∞;Rp)

such that for any f ∈ L2(0,+∞;Rn), the control u = K f ensures asymptotically, the compensation
of the disturbance f . We give hereafter the corresponding definitions.

Definition 4.1.
i) A disturbance f ∈ L2(0,+∞;Rn) is said to be K-remediable asymptotically if

f ∈ ker[R∞C +H∞C K]

ii) If F is a subspace (or a subset) of E∞ ≡ L2(0,+∞;Rn), we say that the system (S∞) + (E∞)
is K-remediable asymptotically on F , if any disturbance f ∈ F is K-remediable asymptotically, or
equivalently

F ⊂ ker[R∞C +H∞C K]

iii) If F = E∞, we say that (S∞) + (E∞) is asymptotically K-remediable on E∞, or simply K-
remediable asymptotically. Then we have

ker[R∞C +H∞C K] = E∞

This is equivalent to R∞C +H∞C K = 0 on E∞.

In the last case where F = E∞, the following result shows the relation between the global
asymptotic remediability and the existence of an operator K ensuring the K-remediability.

Proposition 4.1.
1) If (S∞) + (E∞), is asymptotically remediable, then it is K-remediable asymptotically with

K = − (H∞C )∗(Λ∞)−1R∞C

where Λ∞ is the bijection defined from Rq to Rq by

Λ∞θ =

∫ +∞

0

CeAtBBtreA
trtCtrθdt = H∞C (H∞C )∗θ

2) Conversely, if there exists an operator K : L2(0,+∞;Rn)→ L2(0,+∞;Rp) such that (S∞) +
(E∞) is asymptotically K-remediable, then (S∞) + (E∞) is asymptotically remediable.
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Proof. :
1) For θ ∈ Rn, we consider the semi-norm

‖θ‖Rq = (

∫ +∞

0

∥∥∥BtreAtrtCtrθ
∥∥∥2
Rn
ds)

1
2

‖.‖Rq is a norm if and only if, (S∞) + (E∞) is asymptotically remediable. We suppose that ‖.‖Rq

is a norm, then Rq is a Hilbert space with the inner product

〈θ, τ〉Rq =

∫ +∞

0

〈
BtreA

trtCtrθ,BtreA
trtCtrτ

〉
ds;∀θ, τ ∈ Rq

and the operator Λ∞ is an isomorphism from Rq to Rq such that :

〈Λ∞θ, τ〉Rq = 〈θ, τ〉Rq ; ∀θ, τ ∈ Rq and ‖Λ∞θ‖Rq = ‖θ‖Rq ; ∀θ ∈ Rq

Hence, for f ∈ L2(0,+∞;Rn), there exists a unique θf in Rq such that

Λ∞θf = −R∞C f

and the control uθf given by uθf = (H∞C )∗θf verifies R∞C f +H∞C uθf = 0. Note also that it is optimal
with

∥∥uθf ∥∥L2(0,T ;Rp)
= ‖θf‖Rq . On the other hand, we have θf = −(Λ∞)−1R∞C f , then

uθf = −(R∞C )∗Λ−1
∞ R∞C f

Hence, if K is the linear operator defined by

K = − (H∞C )∗(Λ∞)−1R∞C

the system (S∞) augmented with (E∞), is K-remediable asymptotically.

2) Now, if (S∞) + (E∞) is K-remediable asymptotically, we have

ker[R∞C +H∞C K] = E∞

then, for any f ∈ L2(0,+∞;Rn), we have

R∞C f +H∞C Kf = 0

which may be written R∞C f +H∞C u = 0, with u = K f ∈ L2(0,+∞;Rp). Consequently (S∞) + (E∞)
is asymptotically remediable.

We give hereafter an application to a two dimension system.

Example 4.2. We consider, without loss of generality, a two dimension system{ .
z(t) = Az(t) +Bu(t) + f(t) ; t > 0
z(0) = z0

augmented with the output equation :

y(t) = Cz(t) ; t > 0

where

A =

[
−1 0
0 −2

]
; B =

[
1 2
3 4

]
and C =

[
0 1

]
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u =

[
u1

u2

]
∈ L2(0,+∞;R2) and f =

[
f1
f2

]
∈ L2(0,+∞;R2). Using the rank condition, the

considered system is obviously remediable, and hence K-remediable with K = −(H∞C )∗(Λ∞)−1R∞C .
We have

R∞C f =

∫ +∞

0

CeAtf(t)dt =

∫ +∞

0

[
0 e−t

] [f1(t)
f2(t)

]
dt =

∫ +∞

0

f2(t)e−2tdt

Hence, if f2(t) = te−t, then

R∞C f =

∫ +∞

0

te−3tdt =
1

3

On another hand, the corresponding linear operator Λ∞ : R −→ R is defined as follows:

Λ∞θ =

∫ +∞

0

CeAtBBtreA
trtCtrθdt

=

∫ +∞

0

[
0 1

] [e−t 0
0 e−2t

] [
1 2
3 4

] [
1 3
2 4

] [
e−t 0
0 e−2t

] [
0
1

]
θdt

It is easy to show that

Λ∞θ = 25 θ

∫ +∞

0

e−4tdt =
25 θ

4

Consequently Λ−1
∞ is defined by Λ−1

∞ θ =
4 θ

25
. Hence, the control u is given by

u = Kf = −(H∞C )∗(Λ∞)−1R∞C f = −(H∞C )∗
4

25
× 1

3
= −(H∞C )∗

4

75

We obtain easily (H∞C )∗θ =

[
3e−2t

4e−2t

]
θ, then

u = − 4

75

[
3e−2t

4e−2t

]
Consequently

H∞C u =

∫ +∞

0

CeAtBu(t)dt = − 4

75

∫ +∞

0

[
0 1

] [et 0
0 e−2t

] [
1 2
3 4

] [
3e−2t

4e−2t

]
dt

We have

H∞C u = − 4

75

∫ +∞

0

25e−4tdt = −1

3

Consequently,

R∞C f +H∞C u =
1

3
− 1

3
= 0

i.e. the control u = Kf compensates asymptotically the disturbance f . This result remain true
for any disturbance f . One can also examine by the same the case of a finite time horizon. The
results are similar.

In this section concerning the asymptotic case, we obtain analogous properties and results to
those given in the previous sections concerning a finite time horizon.

Note also that for a given operatorK : L2(0,+∞;Rn)→ L2(0,+∞;Rp), the system (S∞)+(E∞)
is K-remediable asymptotically on F = ker[R∞C + H∞C K]. Thus asymptotically, (S∞) + (E∞) may
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be K-remediable on a subspace F ⊂ L2(0,+∞;Rn), without being K-remediable on the whole
space L2(0,+∞;Rn). In the case of disturbances of the form f(t) = Dv(t), with D ∈ Mn,r(R) and
v ∈ L2(0,+∞;Rr), the definitions and the results are analogous.

5 Conclusion
In this paper, we first studied the possibility of finite time compensation of any disturbance f , or
a class of disturbances, using directly feedback controls u = K f , where K is a linear operator.
Appropriate definitions, characterization results and illustrative examples are given. The relationship
with the remediability and the existence of such operators K is also examined and an extension to
the asymptotic case is considered. The considered approach which depend on the matrices A, B
and C, includes the case where the disturbances f may be unknown.

In fact, for distributed parameter (infinite dimension) systems in finite time or asymptotic cases,
there are two notions: weak and exact remediability [Afifi, L. et al ([1], [2], [3], [4], [6])]. These notions
are equivalent in the case where the observation is given by a finite number of sensors and for lumped
systems.
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