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ABSTRACT 
 

This paper focuses on analyzing the influence of chaotic oscillations on Markov process using 
numerical simulation based on qualitative methods to detect different types of chaotic oscillations 
depending on Transition-Probability matrix of Markov process. The dissipative chaotic system 
whose evolution is given by set of ordinary differential equations had been considered and the 
results of limited probabilities of different types of chaotic processes had been calculated and 
verified. 
 

 
Keywords: Markov process; chaotic oscillations; chaotic processes; dissipative chaotic system; 

perturbed chaos. 
 

1. INTRODUCTION 
 
Many real processes in engineering, economics, 
biology and medicine due to their nature are 
endowed with the so-called Markov property, 

which can be described as: the future is 
determined by the present [1,2]. An important 
aspect in the theory of Markov systems is the 
study of processes in which there is stabilization 
[12,7,18]. Under stabilization we can understand 
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process’ property; where at � → ��

main characteristics can accept certain values.
 

For Markov process, this means that there is a 
set of stationary probabilities, which tend over 
time corresponding to the probability of finding 
the process in their states. Such a process we 
can consider as a dynamic system having a 
stable equilibrium point [4,6,16]. 
 
Let us assume that matrix � is as a transition 
probability of the process with � states, which is 
in general, depends on time which defines 
system evolution. 
 

�(�) = �

���(�) ���(�) ⋯ ���(�

���(�) ���(�) ⋯ ���(�
⋮

���(�)
⋮

���(�)
     ⋮      
⋯ ���(�

 

Then on each time step matrix �(�) 

��(�) = 

�

���(�) + ∆��(�) ���(�) + ∆��(�) ⋯ ���

���(�) + ∆��(�) ���(�) + ∆��(�) ⋯ ���

⋮
���(�) + ∆��(�)

⋮
���(�) + ∆��(�)

     
⋯ ���

 

Where 
 

"� � ���(�) + ∆��(�) = 1

�

���

 

 
At each time step �� the vector of unconditional 
probabilities �(�) = (��(�), ��(�), …
perturbed system can be defined as 

�(������(����) for a given initial distribution 
 
Let the perturbing factor of Markov system to be 
as one component of continuous chaotic process
 

�(�) = ���(�), ��(�), … , ��(�)�        

 
Chaos is a special type of behavior of a 
deterministic system in the steady-
although the evolution of this system is uniquely 
determined by the dynamic laws, while its 
dynamics is stochastic. 
 
In this paper we consider the dissipative chaotic 
systems whose evolution is given by a set 
ordinary differential equations. 
 
Phase trajectories of such systems are 
presented in an infinite form, where lines never 
intersected and at � → ∞ trajectory does not 
leave the closed area. Such systems are 
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� , (�� ≤ ∞) its 
main characteristics can accept certain values. 

For Markov process, this means that there is a 
set of stationary probabilities, which tend over 
time corresponding to the probability of finding 

a process we 
can consider as a dynamic system having a 

is as a transition 
states, which is 

in general, depends on time which defines 

�)

�)
   
�)

�               (1) 

 will look like: 
 

�(�) + ∆��(�)

��(�) + ∆��(�)
       ⋮        

��(�) + ∆��(�)

� (2) 

the vector of unconditional 
( ) … , ��) of the 

perturbed system can be defined as �(��) =

given initial distribution �(0). 

Let the perturbing factor of Markov system to be 
as one component of continuous chaotic process 

�                       (3) 

Chaos is a special type of behavior of a 
-state regime, 

although the evolution of this system is uniquely 
determined by the dynamic laws, while its 

In this paper we consider the dissipative chaotic 
systems whose evolution is given by a set of 

Phase trajectories of such systems are 
presented in an infinite form, where lines never 

trajectory does not 
leave the closed area. Such systems are 

common in fluid dynamics, mechanics, plasma 
physics, etc. [3,5,11]. 
 
So, we are observing the evolution of a Markov 
process, which affected by the chaotic 
oscillations, presented in a tempora
vectors: 
 

�(��) = ���(��), ��(��), … , ��(��)�

 
Fig. 1 shows the components of the vector 
of Markov system with dimension �
under the influence of chaotic process. Das
lines represent the stationary probability of the 
unperturbed process. 
 

2. DETERMINING WHAT KIND OF CHAOS 
DISTURB MARKOV PROCESS

 
To determine what kind of chaos disturb Markov 
process, let us consider one remarkable feature 
of the strange attractor which allows us to 
recover it based on a sequence of samples 
obtained from only one component of its state at 
a given period of time. 
 

 
Fig. 1. The components of �(�

process under the influence of chaotic 
oscillations 

 
The recovery function � can be defined as 
follows: Consider an attractor � 
compact manifold �, having the dimension of 
Then the recovery function that defines the 
mapping: � → ����� , can be formulated as 
follows: 
 

�(�) = [��(�), ��(� + �), ��(� + 2
 
Where 
 

��(� + ��) − i
th
 component of the trajectory 

system; 
� > � − Sampling period is chosen arbitrarily.

 
 
 
 

, 2015; Article no.JSRR.2015.211 
 
 

common in fluid dynamics, mechanics, plasma 

So, we are observing the evolution of a Markov 
process, which affected by the chaotic 
oscillations, presented in a temporal sequence of 

( )�                      (4) 

1 shows the components of the vector �(�) 
� = 3, which is 

under the influence of chaotic process. Dashed 
lines represent the stationary probability of the 

DETERMINING WHAT KIND OF CHAOS 
DISTURB MARKOV PROCESS 

To determine what kind of chaos disturb Markov 
process, let us consider one remarkable feature 

ich allows us to 
recover it based on a sequence of samples 
obtained from only one component of its state at 

 

�) of Markov 
process under the influence of chaotic 

can be defined as 
 disposed in a 

, having the dimension of �. 
Then the recovery function that defines the 

, can be formulated as 

2��)]             (5) 

component of the trajectory 

Sampling period is chosen arbitrarily. 



In general, mapping of � will represent some 
enclosure [8,13,17]. Space ����

sufficient to recover the attractor; however, such 
recovery can be carried out in a space whose 
dimension is less than 2� + 1 [4]. 
 
Recovering attractor can be implemented 
practically for any value of �, but still there are 
certain limitations: 
 

 If the value of � is too small, then the 
following equality will be used:

 

��(� + ��) ≈ ��(� + (� + 1)�)        
 

And a recovered attractor is the limited ar
the diagonal of the space in which recovery is 
carried out. 

 

 If the value of � is too large, and the 
system is chaotic, then both values 
��(� + ��) and ��(� + (�
uncorrelated and the structure of the 
attractor disappears. 

 If value t proves to be too close to the 
value of any period of the system, then that 
component, which is characterized by the 
specified period during the recovery 
process, will be presented inadequately.

 

Fig. 2 shows the phase portrait of the Chua’s 
attractor in the space of variables 
where Fig. 3 shows recovered values of the 
components of �(�) at � = 0.35. 
 

 

Fig. 2.  Phase portrait of the Chua’s attractor
 

Now let us consider a temporary implementation 
of any component of the vector 
unconditional probabilities of perturbed system 
shown in Fig. 1. 
 

By selecting the values of �, depending on the 
size of the sample interval and its dimension, we 
can reconstruct the phase portrait of perturbing 
chaotic process. 
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Fig. 2.  Phase portrait of the Chua’s attractor 

Now let us consider a temporary implementation 
of any component of the vector �⃑(�) of 

bilities of perturbed system 

, depending on the 
size of the sample interval and its dimension, we 
can reconstruct the phase portrait of perturbing 

 

Fig. 3. Recovered values of the components
of �(�) 

 

Fig. 4 shows the phase portrait of the Rossler 
attractor in the space of variables 
where Fig. 5 shows recovered values of the 
components of the vector ��(�) of unconditional 
probabilities of a perturbed Markov process at 
� = 0.75. Portraits were built using a length of 50 
time units. 
 

 

Fig. 4. Phase portrait of Rossler‘s attractor
 

 

Fig 5. Recovered values of the components of 
the vector ��(�) 
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Descriptive information about the properties of a 
dynamical system can give us calculation of the 
power spectrum of the process [9,19,14].  
 
Calculations of the Fourier spectrum are also 
important because in the physical experiments 
measuring the spectrum, as a rule, is the only 
information about the system. Typically, the 
power spectra are calculated directly by the 
realization of data processing using fast Fourier 
transform algorithm [12,9,13]. 
 
In order to decrease the error in the calculation 
due to final realization, it is possible to use the 
methods of special windows; however, for 
qualitative analysis it may well be limited to 
rectangular windows, but can handle with 
relatively long implementation. 
 
The need for averaging the calculated results of 
the spectra is more important. This procedure is 
adequate to the calculation of spectrum 
according to a certain given number of different 
periodograms of identical duration with the 
subsequent averaging of the results. 
 
In the present work I carried out periodogram 
averaging to 20, each of which was built on the 
realization of a length of about 10 time units. 
 
Fig. 6 shows the power spectra of �(�) 
components of Lorenz system, and Fig. 7 shows 
the components of ��(�) vector of unconditional 
probabilities of a perturbed Markov process. 
Figs. 8 and 9 show respectively the 
corresponding spectra of Rossler system to Figs. 
6 and 7. 
 
Complete information about the probabilistic 
properties of the chaotic process gives density 
function of distribution �(�, �), so by assuming 
that the process �(�) in the system is stationary 
and ergodic, then we can and it is possible to 
considerably simplify its presence. 
 
As a result, stationarity is excluded the 
dependence of the steady probability distribution 
with respect to the time, while ergodicity makes it 
possible to replace the ensemble average by 
averaging over time along a single realization. 
 
The density distribution �(�) of stationary 
ergodic process can be calculated as the limit of 
the relative residence time of trajectory system in 
the volume element of phase space 
corresponding to some discrete partition 
[10,15,20]. 

 
 

Fig. 6. The power spectra of �(�) components 
of Lorenz system 

 

 
 

Fig. 7. The components of ��(�) vector of 
unconditional probabilities of a perturbed 

Markov process 
 

 
 

Fig. 8. Corresponding spectra of Rossler 
system to Fig. 6 

 

Fig. 10 shows the components distribution 
density �(�) of Lorenz system and Fig. 11 shows 
the components of the vector ��(�) of 
unconditional probabilities of the perturbed 
Markov process. Density function is based on the 
realizations of length 100 time units and the 
range of variation in the argument was broken 
into 80 equal intervals. 



 
Fig. 9. Corresponding spectra of Rossler 

system to Fig. 7 
 

 
Fig. 10. The components distribution density 

�(�) of Lorenz system
 

 
Fig. 11. The components of the vector  

of unconditional probabilities of the 
perturbed Markov process

 

3. CONCLUSION 
 
Summing up, we can say that the “perturbed 
chaos" of unconditional probabilities of a Markov 
process acquire the topological structure inherent 
in this type of chaotic system. Using techniques 
such as the construction of the phase portrait, 
power spectrum and density distribution can be 
adequately establishing the type of chaotic 
process. 
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