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Abstract 
 
This paper deals with the study of propagation of G type waves along the plane surface at the interface of 
two different types of media. The upper medium is taken as monoclinic magnetoelastic layer whereas the 
lower half-space is inhomogeneous isotropic. Dispersion equation and condition for maximum energy flow 
near the surface are obtained in compact form. The dispersion equation is in assertion with the classical 
Love-type wave equation for the isotropic case. Effect of magnetic field and inhomogeneity on phase veloc-
ity and variation of group velocity with scaled wave number has been depicted by means of graphs. It is ob-
served that inhomogenetity decreases phase velocity and the magnetic field has the favouring effect. A com-
parative study for the case of isotropic layer and monoclinic layer over the same isotropic inhomogeneous 
half space has been made through graphs. 
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1. Introduction 
 
Horizontally polarized surface wave of shear type is 
known as G-type wave after B. Gutenberg [1-2], who 
established the existence of a low velocity layer in the 
earth mantle. It has been studied by researchers that such 
waves propagate with a group velocity of 4.4 km/s [3-5] 
and since the group velocity of Love waves over the pe-
riod range from about 40 to 300 s is same, so on other 
hand Love waves with long periods (60 to 300 s) may 
also be recognized as G-waves. These waves are fol-
lowed by dispersed Love waves, especially for continen-
tal paths and they exhibit a transient pulse-like character 
in record. A sequence of G-waves may be observed after 
a large earthquake. An outstanding case of well devel-
oped G-type waves was provided by the earthquake in 
Peru (January, 1960). Bath and Arroyo [6] presented the 
result obtained from this earthquake, especially with re-
gard to absorption and velocity dispersion of G-waves. 
Aki [7] discussed the generation and propagation of G- 
waves from the Niigata earthquake of June 16, 1964. 
Some other notable works in this field are done by Jef-
freys [8], Bhattacharya [9], Chattopadhyay [10], Haskell 
[11] and others. Possibility of generation of G-waves in 
different medium has been investigated by different au-
thors. Mal [12] studied the generation of G-waves taking 
the medium to be isotropic. The wave propagation in 
crystalline media plays a very interesting role in geophy- 

sics and also in ultrasonic and signal processing. Chat-
topadhyay and Keshri [13] presented the low velocity 
layer by assuming the law of variation in the lower semi- 
infinite anisotropic medium of two different media of 
monoclinic symmetry. Recently, Chattopadhyay et al. [14] 
discussed the dispersion of G-type waves in low velocity 
layer. The variation for the half-space in elastic constants 
and density reduces the equation of motion into Hill’s 
equation with periodic coefficients which is solved by 
the method given by Valeev [15]. Valeev considered a 
certain class of system of linear differential equations 
with periodic coefficients which have the property that, 
by means of Laplace transformation, they may be con-
verted to a system of linear difference equations, which 
in turn may be solved by the method of infinite determi-
nants. This method of solving Hill’s differential equation 
has been successfully employed by Bhattacharya [9], Mal 
[12] and Chattopadhyay [10]. 

Theoretical and experimental studies regarding to bet-
ter understanding of the real earth has led a need for more 
realistic representation of the medium through which sei- 
smic waves propagate. The propagation of seismic waves 
is affected by the elastic properties of the layered materi-
als. Moreover, the materials of the layer might be mag-
netoelastic in nature and the interplay of electromagnetic 
field with the motion of a deformable solid has its impor- 
tance in various fields of science and technology. 

In the present paper we study of the propagation of G 
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type waves along the plane surface at the interface of two 
different types of media. The upper medium is taken as 
monoclinic magnetoelastic layer whereas the lower half- 
space is inhomogeneous isotropic. Keeping terms up to 
first order, the Laplace transform of the displacement is 
obtained. Dispersion equation and condition for maxi-
mum energy flow near the surface are obtained in com-
pact form. The dispersion equation is in assertion with 
the classical Love-type wave equation for the isotropic 
case. Effect of magnetic field and inhomogeneity on 
phase velocity and variation of group velocity with scaled 
wave number has been depicted by means of graphs. It is 
observed that inhomogenetity decreases phase velocity 
and the magnetic field has the favouring effect. A com-
parative study for the case of isotropic layer and mono-
clinic layer over the same isotropic inhomogeneous half 
space has been made through graphs. 

The formulation part and solution part of the problem 
has been dealt in Section 2. In the same section disper-
sion equation, the condition for maximum energy flow 
near the surface and the expression for group velocity 
have been obtained. Special cases for the dispersion 
equation obtained in Section 2 are considered in Section 
3. Section 4 deals with the numerical calculation and gra- 
phical illustration for the problem. Finally, Section 5 con- 
cludes the study. 
 
2. Formulation and Solution of the Problem 
 
We consider a monoclinic magnetoelastic layer of thick-
ness H lying over an inhomogeneous isotropic half-space. 
The variation for half-space is taken in following manner 

 
 

2 0

2 0

1 cos

1 cos
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sy

  

  
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

  
             (1) 

where   is small positive constant and s  is real depth 
parameter. The axes Z and Y are taken horizontally and 
vertically downwards respectively (Figure 1). 

At first, we deduce the equation governing the propa-
gation of shear wave in monoclinic magnetoelastic crus- 
tal layer. 

The strain-displacement relations for monoclinic me-
dium are 
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where , ,u v w  are displacement components in the di-
rection x, y, z respectively, and  1, 2, ,6iS i    are the 
strain components. 

Also, the stress-strain relation for a rotated y-cut quartz 
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Figure 1. Geometry of the problem. 
 
plate, which exhibits monoclinic symmetry with x being 
the diagonal axis are 
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where  1, 2, ,6iT i    are the stress components and 
 1, 2, ,6ij jiC C i    are the elastic constants. 

Equations governing the propagation of small elastic 
disturbances in a perfectly conducting monoclinic me-
dium having electromagnetic force J B  (the Lorentz 
force, J  being the electric current density and B  be-
ing the magnetic induction vector) as the only body for- 
ces are 
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where   is the density of the layer. 
For SH wave propagating in the z-direction and caus-

ing displacement in the x-direction only, we shall assume 
that 

 , , , 0 and 0.u u y z t v w
x


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
      (5) 

Using Equations (2) and (5), the stress-strain relation 
(3) becomes 
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Using Equation (6) in Equation (4), the only non-vani- 
shing equation we have 
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The well known Maxwell’s equations governing the 
electromagnetic field are 

0, ,
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where E is the induced electric field, J is the current 
density vector and magnetic field H includes both pri-
mary and induced magnetic fields. e  and   are the 
induced permeability and conduction coefficient respec-
tively. 

The linearized Maxwell’s stress tensor  0 xM

ij due to 
the magnetic field is given by  
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where ih  is the change in the magnetic field. In writing 
the above equations, we have neglected the displacement 
current. From Equation (8), we get 
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In component form, Equation (9) can be written as 
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For perfectly conducting medium i.e.   , the 
Equation (10) becomes 
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It is clear from Equation (11) that there is no perturba-
tion in 2H  and 3H , however from Equation (12) there 
may be perturbation in 1H . Therefore, taking small per-
turbation, say 1h  in 1H , we have 1 01 1H H h  , 

2 02H H  and 3 03H H , where  01 02 03, ,H H H  are 
components of the initial magnetic field 0H . 

We can write  0 0 00, sin , cosH H H , where 

0 0H  H  and   is the angle at which the wave 
crosses the magnetic field. Thus we have 

 1 0 0, sin , cosh H H H           (13) 

We shall take initial value of 1h  as 1 0h  . Using 
Equation (13) in Equation (12), we get 
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Integrating with respect to t , we get 
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Using Equations (7) and (17), we find the equation of 
motion for the magnetoelastic monoclinic medium in the 
form 
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
  is monoclinic-magnetoelastic cou- 

pling parameter. 
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Hence, the equation of motion for the propagation of 
shear wave in monoclinic magnetoelastic crustal layer is 
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Now we consider  
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where k  is wave number and c  is wave velocity. 
Substituting Equation (21) in Equation (20), we get 
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In lower inhomogeneous half-space the displacement  2 , ,u y z t  satisfy the differential equation 
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This is Hill’s differential equation, which we will solve 

by the method given by Valeev [15]. We apply Laplace 
transform with respect to y, i.e. we multiply (27) by 
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From (i) of Equation (29) we get 
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Then (ii) of Equation (29) gives  
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To find  F p  from Equation (33), we replace p by 
 p ism  and divide throughout by  n

ism ,  0m  . 
We then obtain the following infinite system of linear 
algebraic equations in the quantities  F p ism , 
 0, 1, 2,m      

          

      

          

    

22 2 20

0

2 2

22 2 20

0

1 2

1 1 1
2 2 2 2

1 1 1
2 2 2 2

n

n

n

n

is
ism k c k p is m p is m F p is m

ism p ism w F p ism

is
ism k c k p is m p is m F p is m

ism p ism

   


   










 
          
 

   

 
           

 

    

         (35) 

 
where p  may be considered as a parameter in the coef-
ficients. It should be noted that in order not to have to 
consider the special case 0m   separately, we include  

Equation (33) in (35) by agreeing to regard   1
n

ism
    

when 0m  . Solving the system of difference Equation  

(35), we obtain  F p  as the ratio of two infinite de-
terminants, viz. 

  1

2

F p





               (36) 

where 

         

   
 

   

         

2 2
1 2

2 2 2 2 2 20 0

0 0
1 1 2

2 2

2 2
1 2

0

2 2 2 2

2 2 2 2

0

n n

n n

is p is w is p is

k c k k c k

P
is is

p is p is p is p is

is p is is p is w

    
 

   

 

 



     

 
    
   

         
 

       

    

 

 

 

    
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and 

      

       

      

2 2 2 2 2 20

0

2 2 2 2 2 20 0

2 20 0
2

2 2

22 2 2 2 20

0

0
2 2 2 2

2 2 2 2

2 2 2 2

0
2 2 2 2

n n

n n

is
is p is w is k c k p p

k c k k c k

p w
is is

p is p is p is p is

is
is k c k p p is p is w

   


    
 

   

   


 

 



 
      

 
 
    
  

         
 

 
        

 

    

 

 

 

    

 

The first approximation of Equation (36) is 

     
   

1 21 2
2 2 2 2 0 2 2

2

1 1p B Bp
F P

p w p w p w

 




  
 

  
                         (37) 

where 

 66
1 1 56 66sin cos

2

M
B b ikM PH PM PH

      
  

 

and 

66 66
2 1 66 56 66 56 66
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56 56 66

sin cos cos sin
2 2 2

sin cos .
2

M M
B b M ikM PH PM PH P ikM PH PM PH

M
ikM ikM PH PM PH

 



                                     
      

  

 

The second approximation of Equation (36) is  

  3

4

F p





                                        (38) 

where 
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0
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Neglecting the terms containing 2  and higher powers, we get 

        

       
         

2 22 2 2 2 20
3 1 2

0

2 22 2
1 2

2 22 2 2 20
1 2

0

2 2 2 2

2 2 2 2

n is
s p p is w k c k p is p is

p p is w p is w

is
p is p is w k c k p is p is

   


   


 
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 
            

 

 

and 

       2 22 2 2 2 2
4 .ns p w p is w p is w        

Hence Equation (38) becomes 
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   
      

    

          (39) 

 
Then  2U y  will be obtained from the following in-

version formula: 

   2

1

2

i
py

i

U y F p e dp




 

 

            (40) 

The residues 1 2 3, ,R R R  at the poles p w , 
p w is  , p w is   are given respectively by 
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 (41) 
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2
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4 2
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 
  


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 (42) 

and 

     
 

 
2

2 1

3

0 0

4 2
is w y

q wV D w isw
R e

s w w is

  
  




  (43) 

where 

2 2 20
1

0

D k c k



   

Equations (41), (42) and (43) show the conditions for 
a large amount of energy to be confined near the surface 
are 

   2 0 0 0wV q              (44) 

2 22 0w s                 (45) 

and 

   20 0 0q wV  .           (46) 

Equations (44) and (46) give 

   20 0q wV                 (47) 

which finally gives the dispersion relation as 

 0

66

1
tan .

w
PH

PM

 
             (48) 

We will consider only the positive sign for further dis- 
cussion. 

Now Equation (45) gives  

 2 20

0

2
2

kc k s





    

and hence we get the expression for group velocity as 

 
2

2 2

2
.

2

k
G

k k s

 
 
 

         (49) 

It follows from Equation (49) that 2G  , i.e. the 
group velocity is less than the shear wave velocity in the 
upper mantle. 
 
3. Particular cases 
 

Case 1 
When 0   the Equation (48) reduces to 

0

66

tan
w

PH
PM


               (50) 

which is the dispersion relation for the case when mono-
clinic magnetoelastic layer lying over an isotropic half- 
space. 
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Case 2 
When 55 66 1 56, 0C C C    the Equation (48) re-

duces to 

 

 

   

2

1

2

2 2
0 2

2

12
1 2

tan 1
1 sin

(1 ) 1

1 sin 1
1 sin

H

H
H

c
kH

c

c


 

  


  

 

 
 
 
 

 


 


     (51) 

where 
2
0

1

e
H

H



 . 

Case 3 
When 55 66 1,C C    56 0,C   0Hm   the Equa-

tion (48) reduces to 

   
 

2 2
2

0 2

2 2 2
1 1 1

1 1
tan 1

1

cc
kH

c

  

  

  
  
   

    (52) 

which is the result obtained by Chattopadhyay et al. [14] 
for isotropic layer lying over an inhomogeneous isotropic 
half space. 

Case 4 
When 55 66 1,C C    56 0,C   0Hm   and 0   

the Equation (48) reduces to  

2

0 22
2

2 2
1

1 2
1

1

tan 1

1

c

c
kH

c









 
               

 

      (53) 

which is the usual dispersion equation for Love wave 
with 1 2c    (Chattopadhyay [10]). 
 
4. Numerical Examples and Discussion 
 
For the case of monoclinic magnetoelastic layer lying 
over a non homogeneous isotropic half-space, we select 
the following data: 

1) For monoclinic magnetoelastic layer (Tiersten [16]) 
9 2 9 2

55 66

9 2 3
56

94.0 10 N/m , 93.0 10 N/m ,

11.0 10 N/m , 7450 Kg/m .

C C

C 

   

   
 

2) For non homogeneous isotropic half-space (Gub-
bins [17]) 

9 2 3
0 078.4 10 N/m , 3535Kg/m .     

Moreover, the following data are used 

0, 0.8; 0,0.2,0.4Hm    

Figure 2 and Figure 3 represent the variation in di-
mensionless phase velocity 1c   against dimensionless 
wave number kH  in monoclinic magnetoelastic layer, 
for the case when magnetic field is absent and present 
respectively. By the comparative study of these two 
graphs we can conclude that presence of magnetic field 
increases the phase velocity, whereas increment in 
non-homogeneity parameter   decreases the phase 
velocity. Figure 3 and Figure 4 represent the variation 
in dimensionless phase velocity 1c   against dimen-
sionless wave number kH  in isotropic magnetoelastic  
 

 

Figure 2. Variation of dimensionless phase velocity against 
dimensionless wave number in an monoclinic magnetoelas-
tic layer over an inhomogeneous isotropic semi-infinite me-
dium when 0.0Hm . 

 

 

Figure 3. Variation of dimensionless phase velocity against 
dimensionless wave number in an monoclinic magnetoelas-
tic layer over an inhomogeneous isotropic semi-infinite me-
dium when 0.8Hm . 
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Figure 4. Variation of dimensionless phase velocity against 
dimensionless wave number in an isotropic magnetoelastic 
layer over an inhomogeneous isotropic semi-infinite me-
dium when 0.0H . 

 
layer, for the case when magnetic field is absent and 
present respectively. The presence of magnetic field in-
creases the phase velocity, whereas increase in the non- 
homogeneity parameter   decreases the phase velocity. 
It is observed from Figures 2-4 that presence of mono-
clinic medium favours more to the phase velocity as 
compared to simply isotropic one. The magnetic field and 
inhomogeneity parameter show similar type of tendency 
for both the isotropic and monoclinic medium. 

Figure 6 shows the variation in dimensionless group 
velocity 2G  with respect to scaled wave number k s . 
This graph explains that group velocity increases with 
scaled wave number and approaches to shear wave ve-
locity asymptotically. Keeping in the mind the depend-
ence of group velocity G  on wave number k and depth 
parameter s, surface plot of group velocity against vary-
ing k  and s  has been drawn in Figure 7. 

For the case of magnetoelastic isotropic layer lying 
over a non homogeneous isotropic half-space, we select 
the following data: 

3) For isotropic magnetoelastic layer (Gubbins [17]) 

9 2 3
1 163.4 10 N/m , 3364Kg/m .     

4) For non homogeneous isotropic half-space (Gub-
bins [17]) 

9 2 3
0 078.4 10 N/m , 3535Kg/m .     

Moreover, the following data are used 

2
0

1

0, 0.8; 0,0.2,0.4e
H

H
 


    

 

Figure 5. Variation of dimensionless phase velocity against 
dimensionless wave number in an isotropic magnetoelastic 
layer over an inhomogeneous isotropic semi-infinite me-
dium when 0.8H . 

 

 

Figure 6. Variation of dimensionless group velocity  G  
against scaled wave number k s . 

 
5. Conclusions 
 
Dispersion equation for the propagation of G-type seis-
mic wave in monoclinic magnetoelastic layer lying over 
an inhomogeneous isotropic half space is obtained, using 
the transform technique and Valeev’s method [15]. Con-
dition for maximum energy to be confined near the sur-
face and expression for group velocity are found. Phase 
and group velocity curves against wave number are plot-
ted taking variation in inhomogeneity parameter. It is ob- 
served that the presence of non-homogeneity decreases 
the phase velocity whereas the presence of magnetic field 
increases the phase velocity, in both the cases when there 
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Figure 7. Variation of group velocity  G  with respect to 
parameter k and s. 
 
is isotropic magnetoelastic layer or monoclinic magneto-
elastic layer. It is also observed from the comparative 
study that presence of monoclinic medium favours more 
to the phase velocity as compared to simply isotropic one. 
Group velocity is found lower than the shear wave ve-
locity in the upper mantle. The present study has its ap-
plication especially to the problem of waves and vibra-
tions where the wave signals have to travel through dif-
ferent layers of different material properties. This study 
may be helpful to understand the cause of damages dur-
ing large earthquakes; also it may be useful to predict the 
nature of long period Love waves. These results can also 
be utilized in the interpretation and analysis of data of 
geophysical studies. The findings will be useful in fore-
casting formation details at greater depth through signal 
processing and seismic data analysis. The present study 
may be effectively utilized to generate initial data prior 
to exploitation of the formation. This study may be useful 
to geophysicist and metallurgist for analysis of rock and 
material structures through Non-Destructive Testing 
(NDT). 
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