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Abstract

We use compiled high-precision pulsar timing measurements to directly measure the Galactic acceleration of
binary pulsars relative to the solar system barycenter. Given the vertical accelerations, we use the Poisson equation
to derive the Oort limit, i.e., the total volume mass density in the Galactic mid-plane. Our best-fitting model gives
an Oort limit of -

-M0.08 pc0.02
0.05 3, which is close to estimates from recent Jeans analyses. Given the accounting of

the baryon budget from McKee et al., we obtain a local dark matter density of - -
-M0.004 pc0.02

0.05 3, which is
slightly below other modern estimates but consistent within the current uncertainties of our method. The error bars
are currently about five times larger than kinematical estimates, but should improve in the future for this novel
dynamical method. We also constrain the oblateness of the potential, finding it consistent with that expected from
the disk and inconsistent with a potential dominated by a spherical halo, as is appropriate for our sample that is
within a ∼kpc of the Sun. We find that current measurements of binary pulsar accelerations lead to large
uncertainties in the slope of the rotation curve. We give a fitting function for the vertical acceleration az:
az=− α1z; ( )a =-

-log Gyr 3.6910 1
2

0.12
0.19 . By analyzing interacting simulations of the Milky Way, we find that

large asymmetric variations in daz/dz as a function of vertical height may be a signature of sub-structure. We end
by discussing the power of combining constraints from pulsar timing and high-precision radial velocity
measurements toward lines-of-sight near pulsars, to test theories of gravity and constrain dark matter sub-structure.

Unified Astronomy Thesaurus concepts: Dark matter (353); Milky Way dark matter halo (1049); Pulsars (1306);
Binary pulsars (153)

1. Introduction

By serving as precise astrophysical clocks, pulsars have been
used in many tests of fundamental physics (see, e.g.,
Will 2014). Among these tests, pulsars can enable the detection
of the cosmological gravitational wave background (see e.g.,
Burke-Spolaor et al. 2019) and provide constraints on the
nature of gravity (e.g., Weisberg & Huang 2016; Zhu et al.
2019). Here, we explore the idea that pulsars with precisely
measured binary orbital periods can serve as effective
accelerometers that can be used to directly measure the
Galactic acceleration.

It has been proposed that high-precision radial velocity (RV)
measurements can be used to directly measure the Galactic
acceleration (Ravi et al. 2019; Silverwood & Easther 2019;
Chakrabarti et al. 2020). By quantifying the contamination from
planets and binaries to the Galactic RV signal in Chakrabarti et al.
(2020), we showed that even for modest sample sizes, we can
reliably expect to extract the Galactic signal by measuring the
ΔRV over a 10-year baseline, despite the presence of planets and
binaries in a realistic Galactic population. Time-dependent
potentials, as in interacting simulations of the Milky Way, lead
to asymmetries in the vertical acceleration relative to static
models, especially at heights |z|> 1 kpc relative to the Galactic
mid-plane (Chakrabarti et al. 2020). Prior work has focused
mainly on kinematical analysis (Kuijken & Gilmore 1989;
Holmberg & Flynn 2000; Bovy & Tremaine 2012) of various
stellar tracers to estimate the Galactic acceleration rather than
directly measuring it. The analysis of an interacting simulation of
the Milky Way by Haines et al. (2019) indicates that there are
differences in the true density in the simulation relative to that

determined from kinematics (such as in the Jeans approximation,
which assumes spherical symmetry and equilibrium), especially
for perturbed regions of the disk. In view of the dynamically
evolving picture of the Galaxy as manifested by Gaia data (Helmi
et al. 2018), kinematic estimates should be tested against direct
measurements of the acceleration.
Here, we analyze line-of-sight accelerations of 14 pulsar

systems in binaries that have precise measurements of their
orbital periods (Pb) and rate of change in the orbital period ( Pb ).
We determine the radial and vertical Galactic accelerations of
binary pulsars relative to the solar system barycenter. We then
fit these values as a low-order polynomial as a function of R
and z to measure the local potential and its derivatives. Given
these accelerations, we use the Poisson equation to determine
the mid-plane density, and accounting for the baryon density
from recent work (Bienaymé et al. 2014; McKee et al. 2015),
we then determine the local dark matter density. Measurements
of the local dark matter density can be used to interpret direct
detection measurements of dark matter to ultimately understand
the nature of the dark matter particle (Read 2014).
Pulsar timing has previously been used to infer the potential in

globular clusters (Prager et al. 2017), and very recently used to
measure Galactic accelerations (Phillips et al. 2020). The work by
Phillips et al. (2020) is contemporaneous with ours. A key
difference in our work arises from our analysis of orbital periods
(rather than spin periods), as well as our inclusion of both the
vertical and radial components of the acceleration. Phillips et al.
(2020)ʼs value of the acceleration corresponds to a velocity for the
local standard of rest VLSR∼ 350 km s−1. This value is at odds
with the value determined by Quillen et al. (2020) using the
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Galactocentric radius of the Sun measured by the GRAVITY
Collaboration et al. (2018), the proper motion of the radio source
associated with Sgr Aå, and the tangential component of the solar
peculiar motion by Schönrich et al. (2010), which gives
233.3± 1.4 km s−1. The value in Quillen et al. (2020) is
consistent with the measurement using trigonometric parallaxes
of high-mass star formation regions from Reid et al. (2019). The
discrepancy may be due to their statistical analysis of spin periods
rather than the direct analysis that can be done for orbital periods.
Measurements of the Galactic acceleration by use of observed
spin periods are statistical in nature as they require knowledge of
the intrinsic distribution of spin periods and spindowns, whereas
the use of binary orbital periods do not.

The current distribution of pulsars with precisely measured Pb

corresponds to approximately a square kpc in area. A small area
coverage like this provides significantly more leverage in
measuring gradients in vertical accelerations than radial accelera-
tions.6 Thus, while we solve for both components of the
acceleration simultaneously, we will focus here on vertical
accelerations.

This Letter is organized as follows. In Section 2.1, we review
the properties of the pulsars that we have selected here, and our
method for determining Galactic accelerations from pulsar
timing data. We compare the line-of-sight accelerations of the
pulsars to various static models and give the best-fit values in
Section 2.2. Here, we also we present our values for the Oort
limit, the local dark matter density, and a parameter that is
sensitive to the oblateness of the potential. In Section 3, we
compare the results to interacting simulations, and discuss
some additional implications of our work. We summarize our
findings in Section 4.

2. Analysis and Results

2.1. Pulsar Timing Measurements

We select binary pulsars from the Australia Telescope National
Facility (ATNF) pulsar catalog (Manchester et al. 2005) that have
precisely measured Pb (non-zero within 2-sigma), distances, and
proper motions (either from pulsar timing or very-long-baseline
interferometry (VLBI)). We do not include pulsars (i) in globular
clusters where the additional accelerations induce a change to the
observed Pb, (ii) in systems undergoing ablation or mass transfer
that changes the orbital parameters, or (iii) without parameter
uncertainties. Our sources along with their parameters are
provided in Table 1; the measurements are given here relative
to the solar system barycenter.
For some sources, there are multiple measurements of the

observed binary period Pb
Obs

reported. In that case, we choose the

data set with lowest uncertainty on Pb
Obs

, and use the other timing
model parameters from that data set required for our analysis.
Additionally, for some sources, there are multiple measurements
of the parallax, e.g., timing parallax and VLBI measurements, and
we adopt the parallax value with the lowest uncertainty. In
the case of PSRs J0737−3039A/B and J2222−0137, where
insufficient astrometric information was measured, we used
the parallaxes and proper motions derived from VLBI for the
purpose of improving gravitational tests with these systems
(Deller et al. 2009, 2013). Because all of our sources are within
∼kpc of the Sun, we cannot yet probe the global halo potential.
The Hulse–Taylor system (Weisberg & Huang 2016) is at present
the only source that is at a larger radial distance. We do not
include it currently in our analysis as a single source does not help
in constraining global potentials, and therefore we focus on the
simple potentials we outline below.
Lorimer & Kramer (2004) have discussed the procedure of

obtaining astrometric measurements from the times of arrival
(TOA) of the pulses, and these measurements have been compared
to VLBI measurements (Chatterjee et al. 2009; Deller et al. 2019),
and found to be in good agreement. While there can be potential
systematic uncertainties in the TOA analysis due to red noise

Table 1
Observed Pulsar Parameters

PSR l b ϖ μ Pb Pb
Obs Pb

GR References
(deg) (deg) (mas) (mas yr−1) (d) (10−12 s s−1) (10−12 s s−1)

J0437−4715 253.39 −41.96 6.37(9) 140.911(2) 5.7410459(4) 3.728(6) −0.00273(5) Reardon et al. (2016)
J0613−0200 210.41 −4.1 1.25(13) 10.514(17) 1.198512575184(13) 0.048(11) L Desvignes et al. (2016)
J0737−3039A/B 245.24 −4.5 0.87(14)b 4.37(55)b 0.10225156248(5) −1.252(17) −1.24787(13) Kramer et al. (2006)
J0751 + 1807 202.73 21.09 0.82(17) 13.7(3) 0.263144270792(7) −0.0350(25) −0.0434(38) Desvignes et al. (2016)
J1012 + 5307 160.35 50.86 0.71(17) 25.615(11) 0.604672722901(13) 0.061(4) −0.0109(17) Desvignes et al. (2016)
J1022 + 1001 231.79 51.10 1.39(4)c 17.09(3) 7.8051360(16) 0.55(23) −0.0014(13) Reardon et al. (2016)
B1534 + 12a 19.85 48.34 0.86(18) 25.33(1) 0.420737298879(2) −0.1366(3) −0.19245(3) Fonseca et al. (2014)
J1603−7202 316.63 −14.50 1.1(8) 7.73(5) 6.3086296991(5) 0.31(15) L Reardon et al. (2016)
J1614−2230 352.64 20.19 1.54(10) 32.4(5) 8.68661942256(5) 1.57(13) L Alam et al. (2020)
J1713 + 0747 28.75 25.22 0.87(4) 6.286(4) 67.8251299228(5) 0.34(15) L Zhu et al. (2019)
J1738 + 0333 27.72 17.74 0.68(5) 8.675(8) 0.3547907398724(13) −0.0170(31) −0.0277(17) Freire et al. (2012)
J1909−3744 359.73 −19.60 0.861(13) 37.025(5) 1.533449474305(5) 0.51087(13) −0.00279(3) Liu et al. (2020)
J2129−5721 338.01 −43.57 1.9(9) 13.32(4) 6.6254930923(13) 0.79(36) L Reardon et al. (2016)
J2222−0137 62.02 −46.08 3.742(15)d 45.09(2)d 2.44576469(13) 0.20(9) −0.0077(4) Cognard et al. (2017)

Notes. Blank Pb
GR entries are either too small or the masses are not known.

a PSR J1537 + 1155.
b Astrometric parameters from Deller et al. (2009).
c Parallax measurement from Deller et al. (2019).
d Astrometric parameters from Deller et al. (2013).

6 After this work was submitted for publication, a similar work appeared by
Bovy (2020). Contrary to the statement in that work that we determined only
“the relative Galactic acceleration at the binary pulsar location and the Sun,”
we in fact determine absolute accelerations. The difference between this work
and Bovy (2020) is that we base our results on earlier measurements of VLSR, as
described above. In addition, our value of the radial gradient of the rotation
curve and Bovy (2020)’s are consistent within the uncertainties.
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(Deller et al. 2019), millisecond pulsars afford the highest precision
due to their short frequent bursts and stable rotation. For pulsars
with white-dwarf companions, pulsar timing measurements of the
proper motion and parallax have also been compared to Gaia
parallaxes, and found to agree with Gaia parallaxes in general
(Jennings et al. 2018). For sources approaching Gaia’s limiting
magnitude pulsar timing measurements can be more precise than
Gaia parallaxes (Jennings et al. 2018). The overall agreement in
astrometric quantities derived pulsar timing and other methods
(VLBI, Gaia) indicates that pulsar timing astrometric measure-
ments are reliable.

For a binary system in the Galaxy not undergoing mass transfer,
we may write the observed orbital period drift rate Pb

Obs
as

( )   = + +P P P P , 1b b b b
Obs Gal Shk GR

where  =P P a cb b
Gal

Gal is the rate induced by the Galactic
potential, aGal is the relative line-of-sight Galactic acceleration
between the Solar system barycenter and the pulsar, c is the
speed of light, and Pb

Shk
is the apparent drift rate caused by the

binary’s transverse motion (known as the Shklovskii effect;
Shklovskii 1970; Damour & Taylor 1991), which is given by

( ) m=P d
P

c
, 2b

bShk 2

for a system at distance d with a proper motion μ. The term
Pb

GR
describes the rate at which the system is losing energy due

to gravitational radiation (Weisberg & Huang 2016), and can
be computed given the orbital period, eccentricity e, and the
masses of the pulsar mp and its companion mc (determined from
Shapiro delay; Shapiro 1964) as

⎜ ⎟

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )

( )
( )

 p
p

=- -

´ + +
+

-
-P

G

c

P
e

e e
m m

m m

192

5 2
1

1
73

24

37

96
. 3

b
b

p c

p c

GR
5 3

5

5 3
2 7 2

2 4
1 3

Given these terms, we can then calculate the line-of-sight
Galactic acceleration, aGal as

( )


=a c
P

P
. 4b

b
Gal

Gal

We define the observed line-of-sight acceleration, aLOS
Obs, as

( )


=a
cP

P
. 5b

b
LOS
Obs

Obs

This is simply a redefinition of the observed binary period drift rate
Pb

Obs
. As a result, it cannot be compared to a true acceleration as it

includes both the Shklovskii effect and secular general relativity
(GR) effects, Pb

GR
. Likewise, we also compute a model line-of-

sight acceleration, aLOS
Mod , that includes these additional effects,

which we compare to the observed values. VLBI measurements of
the Solar System barycenter (Titov & Lambert 2013) give a value
for the solar system acceleration of (9.3, 0.4, 0.3)± (1.1, 1.1,
1.3)mm s−1 yr−1 in the Galactic reference frame, i.e., the vertical
component is not statistically significant. The acceleration of the
Solar System barycenter for the models that we consider here are
consistent with the VLBI measurements within the uncertainties.

2.2. Comparison of Pulsar Timing Data with Static Models of
the Milky Way

Figure 1 shows the fractional difference between the model
line-of-sight acceleration aLOS

Mod for various static potentials and
the observed values (aLOS

Obs) for all the pulsars in our sample. Our
focus will be on simple forms of the potential or low-order
expansions of the potential near the position of the Sun,
as these pulsars cover a small area near the Sun. We express
the potentials in terms of Galactocentric cylindrical radius

= +R x y2 2 and z. The static models that we consider
include a potential that is separable in the radial and vertical
coordinates with potential Φ(R, z)=ΦR(R)+Φz(z), as in
Quillen et al. (2020). The radial component may be written as

⎧
⎨⎪

⎩⎪
( )

( )
( ) ( )



b

b
F =

=

¹
b

bR
V ln for 0

for 0.
6R

R

R

V R

R

LSR
2

2

2
LSR
2

where VLSR is the local standard of rest rotational velocity
VLSR= 233.3± 1.4 km s−1 (Schönrich 2012), and Re= 8.122±
0.031 kpc is the radial location of the Sun determined by the
GRAVITY Collaboration et al. (2018), and β is the slope of the
rotation curve, i.e., ∣ 

b = dv

dr R
R

V
c

LSR
, where vc is the circular

velocity. We write the potential in the vertical direction as

( ) ∣ ∣ ( )a aF = +z z z
1

2

1

3
7z 1

2
2

3

and the components of the acceleration as

( ) ( ) ( )=
¶
¶

F = -
¶
¶

Fa
R

R z a
z

R z, , , 8R z

for an axisymmetric potential. For this and all other potentials, we
fit for the vertical and radial accelerations simultaneously. We
refer to the β= 0, α2= 0 case as the α1 model, the β= 0, α2≠ 0
as the (α1, α2) model, and the β≠ 0, α2= 0 case as the (α1, β)
model in Table 2. We also consider an exponential disk model of
the form ( ∣ ∣ )rF = - z zexp0 0 , as well as the Hernquist potential
(Hernquist 1990), where Mh and aH are the mass normalization
and scale length, respectively, for the Hernquist potential. We also
compare to the MWPotential2014 model that was presented by
Bovy (2015), which is denoted “MWP” in Table 1. Finally, we
consider a variant of the potential given in Equations (6) and (7)
and introduce a cross-term:

( ) ( ) ( ) ( )/ /  g aF = + +R z V R R R R z z, ln ln
1

2
. 9LSR

2 2
1

2

This model assumes that the potential is symmetric about the
Galactic plane and expands to second order in z. To first order
in R− Re we can write ( ) ( )  ~ -R R R R Rln . We
discuss below the sensitivity of γ to the oblateness of the
potential. We refer to this model as the “cross”-term model.
We use the Markov-chain Monte Carlo (MCMC) code

EMCEE (Foreman-Mackey et al. 2013) to explore the likelihood
distribution of the data. The log likelihood function is given by

( ) ( ( )) ( ) ( )åq
s

= -
-

L P
a a

log log
2

10
i

N

i

LOS
Obs

LOS
Mod 2

2

where ( ( ))qPlog is the log prior on the parameters, θ, N is the
number of pulsars, and σi are the uncertainties. The number of

3
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parameters used are k+ 3N, where k is the number of parameters
used in the various galactic models. The three parameters that we
use per pulsar are the parallax, e.g., distance, proper motion, μ, and

the secular GR effect, PGR. As these parameters have constraints
on them, we use a log prior of the form ( )q q s- -i i i,Obs

2
,Obs
2 ,

where σi,Obs is the published 1-σ error on these measurements. For
the k parameters used in galactic models, we choose a flat
distribution, but test its effects on our results. Thus, in the MCMC
calculation of the posterior distribution, we incorporate uncertain-
ties in the measured Pb

Obs
as well as uncertainties in terms that

affect the calculation of the Shklovskii term (the distance and
proper motion uncertainties) and the uncertainties in the calculation
of Pb

GR (i.e., the uncertainties on the mass of the pulsar and its
companion and the eccentricity).
As shown in Figure 1(a), the agreement between models and

the observations are mostly within the errors of the measured
uncertainties; those outside the measured uncertainties are
within 2 σ. Table 2 gives the 16th, 50th, and 84th percentiles of
the posterior probability distribution from the MCMC analysis,
which reflects the uncertainty in the Pb

Obs
values, as well as the

uncertainty in the parallaxes, proper motions, and in the masses
and eccentricities. Figure 1(b) displays the residuals of the line-
of-sight Galactic acceleration (having subtracted out the
Shklovskii term and the GR term) at the pulsar positions in R
and z, for a representative model, the (α1, β) model. Figure 1(b)
shows that this model fits the data at the factor of ∼2 level in
general, and that there are no clear patterns in the residuals. A
similar trend is observed for other models with comparable χ2

values. Figure 1(c) shows the observed vertical acceleration
compared to the (α1, β) model.
To provide a measure of which models provide a better fit to

the data, we also list here the AIC (Akaike 1974), which is
given by:

( )= - +L kAIC 2 ln 2 11

where L is the likelihood and k is the number of parameters in
the model. The model with the lowest AIC is considered better

Figure 1. Panel (a): residuals of the line-of-sight acceleration for the individual
pulsars we analyze here relative to static models of the Milky Way, as well as a
local expansion and a polynomial fit. The different models are shown with
different color points. Panel (b): residuals of the Galactic acceleration,
( )-a a aG G G,LOS

Obs
,LOS

Mod
,LOS

Obs , shown at the pulsar positions in R and z for the (α1,
β) model, with the colorbar displaying the values of the residuals. Panel (c): the
observed Galactic vertical acceleration compared to our fit for az, with the red
shading showing the Markov-chain Monte Carlo (MCMC) confidence
intervals.

Table 2
Models, Best-fit Parameters, Akaike Information Criteria (AIC), and Reduced

χ2 Values

Model Best-fit Values AIC cn
2

α1 ( )a =-
-
+log Gyr 3.6110 1

2
0.10
0.13 21 1.5

α1, β ( )a =-
-
+log Gyr 3.6910 1

2
0.12
0.19, 22 1.5

b = - -
+0.18 0.30

0.22

α1, γ ( )a =-
-log Gyr 3.7710 1

2
0.10

0.17 , 24 1.7

( )g = --
-
+log Gyr 4.8710

2
0.11
0.09

α1, α2 ( )a =-
-
+log Gyr 3.6510 1

2
0.11
0.14, 29 2.0

a = - -
+ - -279 Gyr kpc2 215

940 2 1

Local ( ) ( ) = - -
+da dr V R 1.3 ,LSR

2
0.61
0.45 25 1.7

( ) ( )f = - -
+da d V R 0.16LSR

2
0.72
0.59,

( ) =-
-
+da dzlog Gyr 3.7310

2
0.12
0.20

( )∣ ∣r -exp z

z0 0
( )r = --

-
+Mlog pc 110 0

3
0.4
0.2, 43 3.3

( ) = -
+zlog pc 310 0 0.7

0.9

Hernquist = ´-
+M M0.7 10h 0.5

1.5 12 , 27 1.9

= -
+a 220H 183

1540 kpc

MWP Bovy (2015) values 25 1.8

4
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at describing the data. A ΔAIC of 2 is considered positive
evidence in favor of the model with the lower AIC, while a
ΔAIC of 6 indicates strong evidence (Kass & Raftery 1995).
The α1, (α1, β), and (α1, γ) models all have a best-fit value of

( )a » --log Gyr 3.6 3.810 1
2 . Our best-fit value for α1 (which

describes the frequency of low-amplitude vertical oscillations)
is close to a recent estimate by Quillen et al. (2020) to match
the data presented from the Jeans analysis by Holmberg &
Flynn (2000).

We may express a log-oblate (LO) potential with a core as

⎛
⎝⎜

⎞
⎠⎟( ) ( )

  
F = + +R z

V R

R

z

q R

r

R
,

2
ln 12LO

LSR
2 2

2

2

2 2
c
2

2

where rc is the core size and q< 1 gives an oblate potential. A
second-order expansion in z and first-order expansion in R
about Re gives

( )
( )


g = -

+

V R

R r q
13

c
LO

LSR
2 2

2 2 2 2

Evaluating this term for a log-spherical potential with rc= 0
gives ( )g = --log Gyr 2.9310 LO

2 , for VLSR= 233.3 km s−1.
For the Miyamoto-Nagai (MN) disk:

( )
( )

( )F =
-

+ + +
R z

GM

R a z b
, 14d

MN
2 2 2 2

where Md, a, b are the mass of the disk and the scale lengths,
respectively. By expanding this potential to second order in z
near z= 0 and to first order in R near Re, one can show that the
oblateness parameter for the Miyamoto-Nagai disk can be
written as

( ( ) )
( )



g = -
+

+ +
GM

b

a b

R a b

R3

2
15d

MN 2 2 5 2

2

Evaluating this quantity using the values listed in Candlish
et al. (2014), i.e., Md= 1011Me, b= 0.26 kpc, a= 6.5 kpc,
gives ( )g = --log Gyr 3.9410 MN

2 , which is closer to our best-
fit value for γ. The oblateness inferred from pulsars is therefore
consistent with that dominated by the disk potential and does
not require a halo contribution, but which is consistent with
expectations for a sample within a ∼kpc of the Sun.

Figure 2 displays the posterior distribution for the (α1, β)
and (α1, γ) models. We do not obtain constraints on β, the
slope of the rotation curve, though the best-fit values are
comparable to recent works (Li et al. 2019; Mróz et al. 2019). It
is not surprising that we do not obtain a constraint for β as our
radial range is restricted to ∼1 kpc. Expressed in dimensional
terms, the slope is »- -

-5 km s kpc8
6 1 .

Models that are not symmetrical about the galactic plane
(due to a warp or a lopsided mass distribution) or are non-
axisymmetric may be constrained in future studies. While our
focus here has been in measuring the acceleration with a small
sample of pulsars, direct acceleration measurements have the
potential to provide a clear view of dark matter sub-structure
for a sample of pulsars that are located at larger vertical heights,
where the effects of interactions are more clearly manifest
(Chakrabarti et al. 2020).

2.3. The Oort Limit from Pulsar Timing

The Oort limit, or the volume mass density at the Galactic
mid-plane, has traditionally been determined using kinematical
tracers of the gravitational field (Kuijken & Gilmore 1989;
Holmberg & Flynn 2000), which assume spherical symmetry
and equilibrium. Poisson’s equation in cylindrical coordinates

is ( ) ( ) p rF + F =¶
¶

¶
¶

¶
¶

R R z R z G, , 4
R R R z

1
0

2

2 , which we evaluate
at z= 0, R= Re. Using Equations (6) and (7) and Poisson’s

Figure 2. Top panels: posterior probability distributions of α1 (which
corresponds to the square of the frequency of low-amplitude vertical
oscillations) and β (the slope of the rotation curve). Bottom panels: posterior
probability distribution of α1 and γ (which is sensitive to oblateness).
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equation applied in the mid-plane at Re, we can determine the
frequency of low-amplitude vertical oscillations:

( )a n p r b= = - WG4 2 161
2

0
2

where ρ0 is the mid-plane mass density and we have used the
potential of Equation (6) for the radial derivative terms. In the
special case of β= 0, α1= 4πGρ0. Using the values of α1 and β

from Table 1, we obtain an Oort limit of -
-M0.08 pc0.02

0.05 3. This
value of the Oort limit is close, but somewhat lower relative,
to recent estimates using the Jeans equation (Holmberg &
Flynn 2000; McKee et al. 2015). Considering the baryon budget
found by McKee et al. (2015) of 0.084± 0.012Me pc−3, we
obtain a local dark matter density r = - -

-M0.004 pcDM 0.02
0.05 3,

which is lower than, but within the range of, prior work by
McKee et al. (2015), who found ρDM= 0.013± 0.003Me/pc

3.
It is close to, but lower than, the work by Bovy & Tremaine
(2012), who found ρDM= 0.008± 0.003Me/pc

3. It is also
consistent with having no dark matter in the mid-plane. Using
the values of the baryon density from Bienaymé et al. (2014)
of 0.077± 0.007Me pc−3 gives r = -

-M0.0034 pcDM 0.02
0.05 3.

While the uncertainties on these values are large, our analysis
does suggest that ρDM from the Jeans estimate may be an
overestimate. Improving the uncertainties on the Oort limit would
allow us to directly determine the viability of disk dark matter
models (Randall & Reece 2014). Recent work using Gaia first
data release (DR1) values by Schutz et al. (2018) using the Jeans
analysis finds a local dark matter density of -

-0.038 M pc0.015
0.012 3

using A stars as tracers, -
-0.019 M pc0.011

0.012 3 using F stars as
tracers, and -

-0.004 M pc0.004
0.01 3 using G stars as tracers. Their

value using G stars as tracers is close to our value for the local
dark matter density.

3. Discussion

Figure 3 depicts a comparison of the quantity daz/dz from
simulations of the Antlia 2 dwarf interacting with the Milky
Way and the Sgr dwarf from Chakrabarti et al. (2019). For our

linear fitting function, daz/dz=− α1. We compare to our value
over the range of positions where we have analyzed pulsar
timing data, along with the value for daz/dz for the static
Hernquist potential with Mh= 2× 1012Me and aH= 30 kpc,
and for the MWPotential2014 model from Bovy (2015). As the
interacting simulations do not resolve the Solar neighborhood,
we follow our earlier work (Chakrabarti et al. 2020), and
calculate the acceleration in a ring of radius R= 8.1 kpc, as a
function of z. The average value is shown in the colored
symbols, and the standard deviation along azimuth is shown in
the error bars. As is clear, daz/dz for interacting simulations
varies in an asymmetric manner relative to the Galactic mid-
plane, and as shown in our earlier work, this asymmetry
develops as a result of the interaction with the dwarf galaxy.
The interactions that we consider here are due to fairly massive
progenitor dwarf galaxies, with total masses∼ 1010Me prior to
the interaction. A sample of pulsars at larger heights should be
able to trace the asymmetry of daz/dz, which is a signature of
sub-structure, either due to interactions with dwarf galaxies, or
dark matter sub-structure (Chakrabarti et al. 2020).
We discuss here briefly additional implications of our work.

Pulsar timing measurements have been analyzed to constrain
GR and alternate theories of gravity, most notably in the
consistency of gravitational radiation (e.g., Weisberg &
Huang 2016; Cameron et al. 2018) but also in tests of the
strong equivalence principle (e.g., Freire et al. 2012; Archibald
et al. 2018), and the time-variability of the gravitational
constant, G (Damour et al. 1988; Lazaridis et al. 2009; Zhu
et al. 2019), while assuming a Galactic potential that is derived
from kinematical analysis (for example, McMillan 2017).
Obtaining high-precision RV measurements over 10-year
baselines toward lines of sight with pulsars can enable us to
measure the ΔRV and thereby measure the Galactic accelera-
tion via this complementary approach. This measurement can
then provide significantly more precise constraints on the
parameters described above and constrain theories of gravity.
Although the uncertainties in fits for the time rate of change of
the orbital period for binary pulsars due to gravitational
radiation have improved (for the Hulse–Taylor system they are
now within ∼1-sigma of the value predicted by relativity), they
are currently dominated by the assumed values for the Galactic
potential (Weisberg & Huang 2016). Direct measurement of the
potential would provide more robust constraints in these tests
of gravity.
The solar acceleration has been measured by VLBI

observations (Xu et al. 2012; Titov & Lambert 2013; Titov
& Krásná 2018). Zakamska & Tremaine (2005) have discussed
the intriguing possibility of obtaining constraints on undiscov-
ered planets or distant stellar companions from the acceleration
of the solar system barycenter using pulsar timing observations.
The effect of a distant giant planet as in the work by Batygin &
Brown (2016) or that of the nearest stars is too small to affect
our value of the Galactic acceleration, given current measure-
ment uncertainties.

4. Conclusion

We summarize our main findings below.

1. By fitting a low-order polynomial for the Galactic potential
to line-of-sight accelerations of 14 binary pulsar systems,
we infer an Oort limit of -

-M0.08 pc0.02
0.05 3. Given the

baryon budget from McKee et al. (2015), this gives

Figure 3. The quantity daz/dz for the static potentials (Hernquist profile with
M = 1012Me and aH = 30 kpc, and MWPotential2014 (Bovy 2015), and for
the simulations of the Sgr dwarf and the Antlia 2 dwarf interacting with the
Milky Way (Chakrabarti et al. 2019), compared to our linear fit for az, which
gives daz/dz = − α1. The shaded regions display the current uncertainties on
the fit.
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r = - -
-M0.004 pc ;DM 0.02

0.05 3 for the baryon budget from
Bienaymé et al. (2014), r = -

-M0.0034 pcDM 0.02
0.05 3. The

uncertainties in the local dark matter density are mainly due
to the current uncertainty in the Oort limit from pulsar
timing. Higher precision measurements (not only for Pb

Obs
,

but also for the distances and proper motions) would serve
to reduce the uncertainty of this measurement.

2. The vertical acceleration profile can be described by
az=− α1z; our best-fit value for α1 is ( )a =-log Gyr10 1

2

-3.69 0.12
0.19 . The posterior distribution of the slope of the

rotation curve is not constrained, with ∣ 
b = =dv

dr R
R

V
c

LSR

- -
+0.18 0.3

0.2 (or expressed in dimensional terms is
»- -

-5 km s kpc8
6 1 ). The slope of the rotation curve

could be measured in the future with a sample of pulsars
at larger radial distances.

3. The data imply an additional constraint on an oblateness
parameter, ( )g = --

-log Gyr 4.910
2

0.1
0.1 . This value of γ is

closer to that for disk models (which have larger γ) than
halo models. The oblateness inferred from pulsars is
therefore consistent with that dominated by the disk
potential and does not require a halo contribution, which
is consistent with expectations for a sample within ∼kpc of
the Sun.

4. Our analysis of dynamical simulations suggests that dark
matter sub-structure or interactions with dwarf galaxies
may manifest as asymmetries in daz/dz relative to a pure
polynomial fit (such as our α1) or static models. Never-
theless, the average value of daz/dz in the simulations we
have considered here is close to our fit for α1.

5. The measurement of the Galactic acceleration using high-
precision RV observations over 10-year baselines near
pulsars can provide significantly more precise constraints on
Pb

GR
, G, and other post-Newtonian parameters than has

been obtained thus far (for which prior work has assumed
pre-formulated potentials that employ kinematic estimates).
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