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Abstract

A high energy power law is a common feature in the spectra of many astrophysical objects. We show that the
photons in an unmagnetized relativistic plasma composed of electrons and protons with a variable Lorentz factor
(or a velocity shear) go through repeated scattering with electrons to gain energy. The escaped population of
photons naturally produces a power-law-shaped spectrum making it a photon’s analog to the conventional Fermi
acceleration mechanism for charged particles. Thus, this mechanism provides a natural alternative to current
explanations of high energy power-law spectra via synchrotron or thermal Comptonization. The model is
applicable to any relativistic plasma beam with an arbitrary Lorentz factor profile. We implement the theory to the
gamma-ray burst prompt phase and show that the obtained range of the photon indices is compatible with the
observed values and the results of Monte Carlo simulations that we carry out independently. Therefore, the
observed high energy spectral indices provide a unique indicator of the jet structure.

Unified Astronomy Thesaurus concepts: High energy astrophysics (739); Gamma-ray bursts (629); Relativistic jets
(1390); Theoretical models (2107)

1. Introduction

A power-law spectrum at high energies appears ubiquitously
in several astrophysical sources like active galactic nuclei
(Nandra & Pounds 1994; Reeves & Turner 2000; Page et al.
2005), and gamma-ray bursts (GRBs; Band et al. 1993; Preece
et al. 1998, 2000; Barraud et al. 2003; Kaneko et al. 2006;
Bošnjak et al. 2014; Pe’er 2015).

These objects are characterized by trans- or highly
relativistic jets, namely having Lorentz factor Γ? 1. Such
jets are produced by the collapse of a massive star, merger of
two compact objects (in the case of GRBs; Levinson &
Eichler 1993; Woosley 1993; MacFadyen & Woosley 1999;
Vyas 2022), or through an accretion disk surrounding a black
hole (Junor et al. 1999; Doeleman et al. 2012; Vyas et al. 2015;
Vyas & Chattopadhyay 2017, 2018a; Le et al. 2018; Vyas &
Chattopadhyay 2018b, 2019; Aneesha & Mandal 2020;
Fukue 2021). Although the geometric shape of these jets is
uncertain, numerical modeling shows some typical jet profiles
where the jet’s Lorentz factor is a function of its polar angle, (
i.e., Γ= Γ(θ)), which may be universal (Zhang et al. 2003;
Lundman et al. 2013; Pe’er & Ryde 2017). This internal jet
structure with a velocity shear within the plasma implies that
the photons emitted deep inside the flow are scattered in
regions with different velocities before escaping. As we show
here, a part of the photon population gains energy, resulting in
a power-law-shaped spectrum at high energies. This process
draws similarity with second-order Fermi acceleration of
charged particles interacting with randomly moving magnetic
irregularities (Blandford & Eichler 1987). In this process, the
photons gain energy from the bulk kinetic energy of the jet
itself. In few studies, nonthermal high energy spectra due to
shear layers of plasma is reported through numerical

simulations (Reig et al. 2001, also see Kylafis et al. 2003;
Lundman et al. 2013; Ito et al. 2013; Kaufman & Blaes 2016;
Kaufman et al. 2017). However, the theoretical modeling of the
process is not carried out and it is attempted in this Letter. This
mechanism, thus, is a viable alternative to the known
mechanisms that are invoked in producing the power-law
spectra, such as synchrotron (Tavani 1996; Cohen et al. 1997;
Schaefer et al. 1998; Frontera et al. 2000; Ryde & Pe’er 2009;
Wang et al. 2009; Burgess et al. 2014; Pe’er 2015; Yu et al.
2015; Zdziarski et al. 2017) or inverse Compton from power-
law accelerated electrons, or by thermal Comptonization (Vyas
et al. 2021a, 2021b). Within this framework, the dependence of
the emerging high energy spectral indices on the dynamical
variables of the system thus provides a novel signature of the
jet structural profile, Γ= Γ(θ).

2. Photon Energy Gain Due to Velocity Shear

An astrophysical jet can be pictured as a relativistic plasma
beam expanding in space at angles θ� θout with the
propagation axis being at θ= 0. Assuming axial symmetry
(where system parameters are independent of azimuthal
rotation or change in f), we consider a Lorentz factor profile
of the plasma to be a function of the radial and angular
coordinates, Γ= Γ(r, θ).
The conditions deep inside the jet, namely high density, high

temperature, and strong magnetic fields (Pe’er 2015) imply a
bright emission of photons at some characteristic inner radii r0.
These photons, then propagate and interact with the electrons
inside the plasma until they escape. In describing the scattering
process, we omit the random thermal motion of the electrons,
an assumption that is valid as long as adiabatic losses dominate
over possible heating mechanisms inside the jet. This
assumption implies that the Lorentz factor associated with the
thermal motion is small (i.e., γ− 1<< 1 or γ∼ 1). Further, to
keep the system simple enough, we consider unmagnetized
plasma consists of electrons and protons. As our main goal is to
have a physical insight into the mechanism of photon energy

The Astrophysical Journal Letters, 943:L3 (7pp), 2023 January 20 https://doi.org/10.3847/2041-8213/acaefa
© 2023. The Author(s). Published by the American Astronomical Society.

Original content from this work may be used under the terms
of the Creative Commons Attribution 4.0 licence. Any further

distribution of this work must maintain attribution to the author(s) and the title
of the work, journal citation and DOI.

1

https://orcid.org/0000-0001-6560-0902
https://orcid.org/0000-0001-6560-0902
https://orcid.org/0000-0001-6560-0902
https://orcid.org/0000-0001-8667-0889
https://orcid.org/0000-0001-8667-0889
https://orcid.org/0000-0001-8667-0889
mailto:mukeshkvys@gmail.com
http://astrothesaurus.org/uat/739
http://astrothesaurus.org/uat/629
http://astrothesaurus.org/uat/1390
http://astrothesaurus.org/uat/1390
http://astrothesaurus.org/uat/2107
https://doi.org/10.3847/2041-8213/acaefa
https://crossmark.crossref.org/dialog/?doi=10.3847/2041-8213/acaefa&domain=pdf&date_stamp=2023-01-20
https://crossmark.crossref.org/dialog/?doi=10.3847/2041-8213/acaefa&domain=pdf&date_stamp=2023-01-20
http://creativecommons.org/licenses/by/4.0/


gain by shear layers of the jet, we omit all possible conditions
that may lead to plasma heating. We do not refuse the
possibility of hot plasma and their effects on the emergent
spectra as we have explicitly dealt with such cases in our
previous papers (Vyas et al. 2021a, 2021b).

As the emitted photons propagate inside the expanding jetted
plasma, they gain energy (on average) by multiple scattering
with the electrons. Consider a photon that undergoes a
scattering with an electron having a (bulk) Lorentz factor Γ
at location (r, θ), and emerges with energy ε at an angle θs with
respect to the direction of the electron (all quantities are
measured in the lab frame; see Figure 1).

After being scattered, the photon interacts with a second
electron having Lorentz factor Γ2 at a new location, and is
scattered at an angle θ2 with emerging energy ε2.

2.1. Average Mean Free Path and Average Scattering Angle

In order to compute the energy gain of the photons in the
scattering process, we need to estimate the average mean free
path at a given location as well as the average scattering angles.
The mean free path λ1 transforms from the comoving frame
(λ0) of the first electron to the lab frame as
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Here σT is the Thomson scattering cross section, ne¢ is electron
number density in the local comoving frame of the first
electron, and v is the bulk speed of the first electron in terms of
light speed.
From Equation (1), the average mean free path λ has to be

associated with average scattering angle θs or,
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Solving this equation for narrow relativistic flows with Γ>> 1
and θs<< 1, we obtain

1
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G

Similarly the average scattering angle from the second electron
is θ2= 1/Γ2.

2.2. Energy Gain in the Scattering Process

We consider the Thomson limit, namely that the energy of
the photon before and after the second scattering, as measured
in the (second) electron’s rest frame, v1 cos2 2 0[ ( )]e e q¢ = G -
and v1 cos2 2 2 2 2[ ( )]e e q¢ = G - are equal, i.e., 2e e¢ = ¢. Here v2
is the velocity of the second electron (in units of light speed)
and θ0 is the angle between the electron’s direction and the
incoming photon’s direction in the lab frame. Denoted by θel is
the angular shift of the photon location between the two
scattering events in the lab frame. From the geometry, one has
θ0= θs− θel, or v1 cos2 2 s el[ ( )]e e q q¢ = G - - . The energy
gain in this scattering process is therefore
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where a≡ λ/r. For a relatively small mean free path in an
optically thick and dense plasma, λ= r,1 one has Γ2= Γ+ δΓ,

Figure 1. Geometry of scattering in lab frame in spherical coordinates r, θ, f.
The origin lies at the center of the star; θ is the location of a certain scattering
event of the photon with electron e1 at r radial distance; θ + θel is the angular
location of the next scattering event with electron e2; θs and θ2 are the scattering
angles in the lab frame for both scattering events, respectively.

1 The mechanism is valid for the collimated jets with narrow angles or
θout < <1. Hence it is applied for highly relativistic jets.
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This expression implies that the photon can gain (g> 1) or lose
energy (g< 1) in a single scattering event. A sharp fractional
Lorentz factor gradient followed by a large positive term
[( x xlog i i) ]d¶ G ¶ may be sufficiently steep to overcome the
adiabatic losses due to the plasma expansion (the (1+ a)−2

term). It results in a net energy gain for the photon (i.e., g> 1).
On the other hand, the net gain due to the shear may be
insufficient, in which case the energy loss due to the expansion
would dominate, leading to a net energy loss, (i.e., g< 1).

The expression in Equation (10) can be simplified by
considering axial symmetry, for which ∂Γ/∂f= 0. Further-
more, for scattering at an average angle 1/Γ (Equation (6)) in
the lab frame, δr is always positive, while the sign of δθ(∂Γ/
∂θ) depends upon the sign of δθ. A photon can scatter away
from the propagation axis (θ= 0) with an average angle
δθ= θel, or it can scatter toward the axis with an average angle
δθ=−θel. Both cases have equal probabilities. If we denote the
gain in these two cases by g+ and g−, the average gain in a
single scattering at location (r, θ) is

g r
g g

,
2
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The average energy gain depends both on the Lorentz factor
gradient and the radial location via the parameter a.
Hence, a rn Tes= G ¢ .

The expectation value of the photon energy gain in the
plasma is evaluated by integrating the average gain over the
entire region of scattering

g
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Here, V is the volume of total region within angular boundaries
0...θout and radial extend r0� r� rph, where rph is the
photospheric radius at which the photons escape to infinity.
This radius depends upon the specific jet geometry.

The average probability of the photon to have a scattering
without escape within the jet is the probability P(r, θ) averaged
over the available volume V of scattering where the velocity
shear is present, i.e.,
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The statistical averages for the estimation of ḡ and P̄ are
meant for a large number of photons for which all the portions
of the jet are accessible. A photon can escape the scattering
region through the photospheric radius or from the angular jet
boundary at θ= θb (in this case, it is θout). In the former case,
the escape probability of the photon is

r rexp exp1 ph( ) ( )t- = - , where τ1 is the optical depth along
the radial direction. In the latter case, the probability of escape
through the angular boundary (θb) is calculated by estimating

the optical depth along direction θs (see Figure 1)
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Here, ds is a length element along θs, and the integration
boundary is s r0 b s(∣ ∣)q q q= - . The photon entertains the
minimum of these two optical depths τ1 and τ2 to escape the
scattering region, i.e., min ,1 2( )t t t= . Thus, the probability
that the photon would escape is P r r, exp ,e ( ) [ ( )]q t q= - ,
while the probability for it to have next scattering inside the
beam is P(r, θ)= 1− Pe. Using it in Equation (12) enables us
to estimate P̄.

3. Computation of Produced Spectrum

To calculate the spectrum of the escaped photons, consider
that N0 photons are homogeneously injected at r= r0.

2 After
scattering k times, N N Pk
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scattering region. After kth scattering, the photon’s average
energy is gk
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Thus, for a given set of dynamic parameters, the high energy
part of escaped photons’ spectrum is characterized by a power
law with photon index β. For a defined Lorentz factor profile
and angular boundaries (θi, θout), radial boundaries r0(r, θ, f)
and rph(r, θ, f), the photon index of the observed spectra can be
evaluated directly from the equations above. The treatment is
valid as long as the plasma is relativistic.
As a test case, we apply the model to the prompt phase of

GRBs where, within the framework of the “collapsar” model
(Levinson & Eichler 1993; Woosley 1993; MacFadyen &
Woosley 1999); a jet is launched from the center of a
collapsing star. Once erupted, the jet propagates along direction
θ= 0 above the stellar surface. As shown by Zhang et al.
(2003), a relativistic GRB jet harbors an angular structure
where the dependency of their Lorentz factor (Γ) on polar angle
θ can be approximated by Lundman et al. (2013) and Pe’er &
Ryde (2017)
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This profile is plotted in Figure 2. Here, minG and Γ0 are
constants with 0 minG > G , and p is the jet profile index that
shows the sharpness of the velocity gradient between shear
layers of the jet. The inner region of the jet (θ< θj) approaches
a maximum Lorentz factor Γ0 while the region outside

p
e j 0

1q q~ G asymptotically reaches minG . Considering x i= θ in
Equation (10) and for the jet Lorentz factor profile given by
Equation (16), the sign for log

q
¶ G
¶

is negative but the whole term

2 This is a valid approximation, as r0 = rph.
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is positive for negative δθ, which implies scattering
toward the inner region of the jet or toward the jet axis. It
means that the photon gains energy when it is scattered inward
(g> 1) while it loses energy when it scatters away (g< 1). The
scattering takes place with the condition min 2 0G < G < G in
Equation (9). For such a jet, the comoving electron number
density is n L m c v r4e p

3 2 2p¢ = G , where L is the angle
independent3 jet luminosity and v is the bulk jet speed in units
of c. One therefore concludes that a= vr/2rph and the
photospheric radius for an on-axis observer
r observer s angle 0ph o( )q¢ = is given by rph= σL/8πc3mpΓ

3

(see Lundman et al. 2013 for further details). The optical depth
for photon propagation along the radial direction is a strong
function of the propagation angle, θ. In the inner jet region
(θ< θj), the optical depth along the photon’s path is
significantly smaller than the outer region (as τ1∝ 1/Γ3).
Thus, the photons easily escape the jet once they reach the
inner region. Hence, the angular limit θb= θj is an effective
boundary for photon escape for the case of a GRB jet. As the
photons escape to the inner region of the jet before leaving the
system, the on-axis observer is likely to observe a brighter
spectra compared to the off axis observers.

Assuming a constant Lorentz factor Γ along the photon’s
path, it can be taken outside the integration in Equation (13).
This assumption means that while calculating the mean free
path at a certain location along a small angle 1/Γ, one can
approximate that the Lorentz factor of the outflow encountered
by the photon is ≈Γ. It enables an analytical estimate of τ2 and
is justified because the photon escapes to the inner region
(θ< θj) only when it is very close to the boundary (θ∼ θj)
where the Lorentz factor does not vary much along the
photon’s path (Figure 2). Noting that v1 cos 1s

2q- » G , the

optical depth can be written as
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We use Equations (16)–(18) and follow the procedure
described above to calculate the observed photon index β

(Equation (15)) produced by a GRB jet. The integration over
the jetted region θj− θe and r0− rph is performed as there is no
significant photon energy gain in the regions θ< θj and θ> θe.

4. Results and Discussion

We consider Γ0= 100, θj= 0.01 rad, d= 20, and
ε0= 10−6× rest mass energy of electron. The observer is
situated at the jet axis; 1.2minG = and L= 1052 ergs. The
simulated spectra for p= 2.5, 4.0, and 6.0 are plotted with a
black solid curve in the first three panels of Figure 3. The best
fit to the high energy tail is shown by blue dotted lines. We
emphasize that the simulation code is based upon the Monte
Carlo technique, where we track every photon that scatters
within the jet until it escapes. Then the final count of the
photons within a given observer angle is distributed along with
the escaped energies. (see Pe’er 2008, Lundman et al. 2013,
and Vyas et al. 2021a for the code structure and respective
details). In the last panel of Figure 3, we compare the photon
indices associated with the power-law spectra at high energy
obtained by simulations (dots) with ones calculated analytically
(dashed curve) using Equation (15). The simulated photon
indices are in agreement with the calculated slopes. For the
reasons given above, photons’ energy loss due to expansion
dominates over energy gain by velocity shear for small values
of profile index (p< 2) and there is no high energy power laws
below this threshold. From the simulations, we map the density
distribution of photons’ angular location (θescape) at the moment
of escape with the escape energy in Figure 4. The parameters
are kept the same with top left panel of Figure 3. The horizontal
red line separates photons that form a high energy tail to the
photons that form the low energy portion of the spectrum. In
accordance with our expectations, most of the photons that take
part in producing the high energy spectrum escape from the
inner region of the jet. The photons that escape at larger angles,
take part in the low energy portion of the spectrum. The low
energy part of these spectra was theoretically modeled by
Lundman et al. (2013) while we have modeled the high energy
power law in this Letter. An additional feature predicted by this
figure is that the inner funnel of the jet is virtually empty due to
very low optical depths. Hence the visual appearance of the jet
should have more photons from the immediate outer angular
regions at large distances.
In the upper two panels of Figure 5, we include the simulated

spectra for Γ0= 300 with p= 2.5 and 6.0, keeping other
parameters same as Figure 3. In the bottom panel of this figure,
we plot the analytic curves of β as a function of p for Γ0= 100
(solid blue curve) and 300 (dashed black curve). The simulated
spectral slopes are shown by blue stars and black filled circles
respectively. The theoretical values are able to predict the

Figure 2. Lorentz factor (Γ) profile of the jet characterized by Equation (16)
with parameters p = 2.0, θj = 0.01 rad, Γ0 = 100, and 1.2minG = . p

e j 0
1q q= G .

The inner jet region is for θ < θj while outer region extends beyond θe. The
region bounded within θj − θe harbors an effective velocity shear leading to
photon energy gain.

3 The assumption that L is angle independent is justified in the case of GRBs
due to narrow jets. The prominent portion of the observed spectrum in the GRB
prompt phase consists of photons that make their last scattering within an angle
below 5/Γ0. As shown in Zhang et al. (2003), at the largest radii of their
simulations, Γ0 ∼ 140 by θ ∼ 0.02 rad, while the luminosity is seen to be
constant up to 0.05 rad (or 7/Γ0) (see the top panels of their Figures 8 and 9).
Hence for theoretical considerations, L(θ) = constant is a reasonable assump-
tion (also see the relevant discussions in Lundman et al. 2013).
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differences in the values of β with p as well as with Γ0

confirming the model.
Due to the complexity of the integrals in Equations (11) and

(12), exact analytic expression of the photon indices in the
general case is not possible to obtain. However, one can obtain
an analytic expression for the asymptotic behavior of β as
p→∞ as follows. Assuming τ2= 1 or P(r, θ)∼ τ2 analytic
integration gives g p2¯ µ and P 1p

0
1¯ ( )µ G - , which lead to

β→−1.5. This is indeed seen in Figure 3 for both the
semianalytic results as well as in the simulated slopes.
Quantitatively, tackling the case of a GRB jet with a

structured Γ profile as a function of polar angle θ, the
Comptonized photons can extend up to several orders of
magnitude. The produced power-law spectrum at high energies
is capable of explaining the high energy tails generally
observed in the GRB prompt phase. We analyzed that the
photon indices of these spectra largely depend upon p, which
determines the sharpness of the decay of Γ with θ. The photon
index β ranges from −∞ to −1.5. This is indeed seen in
Figures 3 and 5 for both the semianalytic and the simulated
results of β. It is worth mentioning that β in the GRB prompt

Figure 3. Spectra obtained by numerical simulations for Γ = 100, p = 2.5 − 6 (solid black) along with fits (dotted blue) for high energy slopes β. The low energy part
of these simulated spectra was modeled by Lundman et al. (2013) and we explain the high energy power-law spectrum. The last panel shows the variation of
analytically calculated β as a function of p (blue dashed). The simulated photon indices are overplotted by black solid points and are found to be in good agreement
with the theoretical curve. The slopes are fitted with power-law indices in the high energy range and the respective error bars in simulated points for β are the
associated standard deviation. Here θj = 0.01 rad, 1.2minG = , and L = 1052 erg s−1, the monoenergetic seed photons are injected with energy ε0 = 10−6 (in the units
of the rest mass energy of the electron) in the Monte Carlo Simulation code with identical parameters at radial coordinate r0 = rph/d. Depth d = 20 ensures that the
photons are injected deep inside the flow. The spectra are seen by an on-axis observer at θo = 0 rad (i.e.,the populations of photons escaped within an angular bin
θ = 0–0.02 rad). The total number of photons injected is 4 million, 2 million, and 2.6 million for p = 2.5, 4.0, and 6.0, respectively.

Figure 4. Density distribution of individual photons over the angular location
at the time of escape for p = 2.5, θj = 0.01 rad, and Γ0 = 100. The distribution
marks that most photons that form a high energy tail (above ε1/ε0 ∼ 2.5 × 103)
escape from the inner region of the jet below θj. The photons escaped from
larger angles (θ > θj) mostly contribute to the low energy potion of the emitted
spectrum.
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phase observations are found to be between −4 and −1.5
(Preece et al. 2000; Kaneko et al. 2006; Pe’er 2015) and this
range is in agreement with our results. Inversely, using the
observed values of β, we can directly constrain the jet structure
of these bursts.

Although the physical picture of the photon energy gain
described here has similarities with the second-order Fermi
acceleration of massive particles, important differences must be
highlighted. In analytical calculations of the Fermi acceleration
process, the expectation value of the gain and the scattering
probability are averaged over scattering angles. In the currently
discussed mechanism, the energy gain not only depends upon
the scattering angle but also on the scattering location. Hence,
one needs to average the gain and the scattering probability
over the entire scattering region to obtain their expected values.

Furthermore, the escape of photons from the inner jet boundary
adds an extra constraint on the escape probability as the jet
Lorentz factor profile leads to local anisotropy in the flow.

5. Conclusions

We conclude that the commonly observed high energy
power-law spectra from various astrophysical sources can have
a natural origin due to repeated scattering of photons in
relativistic flows with velocity shear. Thus, we provide a novel
and viable alternative to the generally considered processes
such as synchrotron and inverse thermal Comptonization.
These mechanisms need the presence of highly relativistic
electrons while in current work the bulk kinetic energy of the
jet is transferred to the photons leading to a high energy tail
excluding the presence of high energy particles as a prior
requirement.
Our analytic approach involves the averaging of photon

energy gain over volume of the accelerating region between
θj− θe. The theoretical estimates explain the generation of
power-law spectra and also capture microscopic quantitative
features of the spectra at high energies, such as (i) the variation
of spectral slopes with the dynamic parameters is identical
between numerical as well as analytical calculations and the
similarity is very accurate, (ii) vanishing of power-law spectra
(the cut off in the β− p plot, last panel of Figure 3) for small
and nonzero values of p as it appears due to the radial
expansion of the jet, and (iii) asymptotic saturation of spectral
slopes β reach as p→∞ .
As we restrict the framework up to relativistic jets in this

work, in future we will extend it to mildly relativistic systems
as well as nonrelativistic plasma with velocity shear.
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