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ABSTRACT 

 
Covid-19, as a pandemic disease around the world, has generated great threat to human society 
and caused enormous mortality with weak surveillance system. In this paper, we propose a 
mathematical model to describe the transmission of Covid-19. Moreover, basic reproduction 
number and the local and global dynamics of the dynamical model are obtained. Then we apply our 
model to characterize the transmission process of Covid-19 in Nigeria. It was found that, in order to 
avoid its outbreak in Nigeria, it may be better to adhere to government policy to curtail the spread 
through person-to-person transmission and make effort to improve personal hygiene as well as 
early detection and reporting. Our results may provide some new insights for elimination of Covid-
19. 
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1. INTRODUCTION 
 
A disease is infectious if the causative agent, 
whether a virus, bacterium, protozoa, or toxin, 
can be passed from one host to another through 
modes of transmission such as direct physical 
contact, airborne droplets, water or food, disease 
vectors, or mother to newborns. Infectious 
diseases have always been a major public health 
threat to human life and health. We face the 
challenge of the emergence of increasingly new 
infectious diseases, such as coronavirus disease 
(Covid-19). In late December, 2019, patients 
presenting with viral pneumonia due to an 
unidentified microbial agent were reported in 
Wuhan, China. A novel coronavirus was 
subsequently identified as the causative 
pathogen, provisionally named 2019 novel 
coronavirus (Covid-19) [1]. As of Jan 26, 2020, 
more than 2000 cases of Covid-19 infection have 
been confirmed, most of which involved people 
living in or visiting Wuhan, and human-to-human 
transmission has been established, such as 
through respiratory droplets [2], and there is also 
a suspicion of asymptomatic infection [3]. 
Although our phylogenetic analysis suggests that 
bats might be the original host of this virus, an 
animal sold at the seafood market in Wuhan 
might represent an intermediate host facilitating 
the emergence of the virus in humans [4].  
 

The Covid-19 is believed to be zoonotic in origin, 
from bats to intermediate host to humans [5]; and 
its initiation is geographically associated, but with 
uncertainty, with the Huanan Seafood Market in 
Wuhan [2]. The disease has also been exported 
to other countries, including Nigeria. The World 
Health Organization [1] has declared the Covid-
19 outbreak as a public health emergency of 
international concern, specifically to enhance the 
level of preparedness of countries that need 
additional support [2]. To prevent the global 
spread of the virus, many countries have 

imposed travel restrictions to and from China [3]. 
To describe and predict the dynamics of the 
disease, several preliminary mathematical 
models are formulated by various international 
study groups [4]. The model shows that the 
exposure time is a significant factor in spreading 
the disease. With a basic reproduction number 
equal to 2, and 14-day infectious period, an 
infected person staying more than 9 hours in the 
event could infect other people [5]. Assuming the 
exposure time is 18 hours, the model 
recommends that attendees of the social 
gathering should have a protection with more 
than 70 percent effectiveness [5].To the best of 
our knowledge, few studies developed 
mathematical models for Covid-19 transmission 
dynamics without providing in-depth information 
on its reproduction number as well as its stability 
has been published. The progress of an 
epidemic through the population is highly 
amenable to mathematical modeling. 
Mathematical modeling can provide an 
understanding of the underlying mechanisms of 
disease transmission and spread, help to 
pinpoint key factors in the disease transmission 
process, suggest effective control and preventive 
measures, and provide an estimate for the 
severity and potential scale of the epidemic [6]. 
Mathematical modeling has proven to be an 
essential tool for the development of control 
strategies and in distinguishing driving factors in 
disease dynamics. Put it simply, mathematical 
modeling should become part of the toolbox of 
public health research and decision making [6]. 
Our goal in this paper is to develop a new 
mathematical model for the transmission of 
Covid-19 disease. We also show how to estimate 
the basic reproduction number as well as stability 
analysis of the model equilibrium in the absence 
or presence of the disease. However, Fig. 1 
shows the number of cases reported by NCDC 
each day. This suggests upward trend in the 
number of cases. 

 

 
 

Fig. 1. The empirical infection cases of Covid-19 in Nigeria from April 2-May 1, 2020 [7] 
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2.  A DYNAMICAL MODEL OF COVID-19 
TRANSMISSION 

 
In this section, we present our dynamic Covid-19 
transmission model based on natural history of 
the disease. The human host population consists 
of four sub populations: namely susceptible 
(S(t)), asymptomatic (E(t)), symptomatic (I(t)), 

and recovered (R(t)). More so, coronavirus 
population (V(t)). We considered host due to the 
fact that Covid-19 is sufficiently divergent from 
SARS-CoV to be considered a new human-
infecting beta coronavirus. The detailed 
descriptions see Tables 1 and 2. The model 
diagram is given below. 

 

 
 

Fig. 2. The model flow diagram 
 
Our Covid-19 transmission model is given by the following nonlinear system of differential equations:  
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                                                                     (1) 

 
Where          0 , 0 , 0 , 0 , 0S E I R V  are given and the definitions of above model parameters are listed in 

Table 2.  
 

Table 1. Epidemiological classes definitions 
 

Class Definition 

S  Susceptible individuals 

E  Asymptomatic individuals who have been exposed to the virus but have not yet developed 
clinical symptoms of Covid-19 but infectious 

I  Symptomatic individuals (infected, infectious and diagnosed) 

R  Recovered individuals 

V  The coronavirus free particles 
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Table 2. Parameter definitions 
 

Parameter Definition 

  Recruitment rate of humans due to immigration 
  Transmission rate per day for humans 
q  Relative measure of infectiousness for the asymptomatic class E 

  Rate of normal progression to the infectious state per day 
  Natural recovery rate 
  Contribution of infected individual to the population of coronavirus 

  Covid-19-induced mortality per day 
  Growth rate of the coronavirus population 
  Death rate of humans 
  Death rate of coronavirus in the environment 

 
We assume that a susceptible individual may be 
infected through contacts with an asymptomatic 
individual, an infected individual or through the 
environment.  
 

2.1 Basic Properties of the Model 
 

Since the model (1) monitors human population, 
all its associated parameters and state variables 
are assumed to be non-negative for all t ≥ 0. 
Before analysing the model, it is instructive to 
show that the state variables of the model remain 
non-negative for all non-negative initial 
conditions. Thus, we claim the following result.  
 

Theorem 1: Let the initial data be 

         0 , 0 , 0 , 0 , 0S E I R V  be non-negative. 

Then, the solutions  , , , ,S E I R V  of model (1) 

are positive and bounded for all 0t  , whenever 

they exists. 
 

Proof: 
 

Suppose  0 0S  . The first equation of system 

(1) can be written as: 

      ,
d

S t t t
dt

    
 

 
Where 

     
0

exp 1 0

t

t S dS    
 

       
 


is the integrating factor. Hence, integrating this 
last relation with respect to t, we have 
 

       
0

0 ,

t

S t t S S dS   
 

 

So that the division of both side by  t yields 

 

       1

0

0 0.

t

S t S S dS t 
 

     
 


 

 
The same arguments can be used to prove that 

       , , , 0E t I t R t V t  for all 0t  . 

 
Furthermore, let N S E I R    . Then, 

 

 

   

, 0

N t S E I R

S S S E E I I R

N I

           

  

   

             

    

 

 

This implies that as  ,sup .t N t



   Also from (1), we have that as:  ,supt S t




  . 

 
This completes the proof.  
 
Combining Theorem 1 with the trivial existence and uniqueness of a local solution for the model (1), 
we have established the following theorem which ensures the mathematical and biological well-
posedness of system (1). 
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Theorem 2: The dynamics of model (1) is a dynamical system in the biological feasible compact set 
 

 
 

5: , , , , : 0 ; ,h vS E I R V S N N


    


    
       

  

                           (2) 

 

3. BASIC REPRODUCTION NUMBER  
 
It follows that the dynamics is completely determined by the reproduction number,

0R , given by: 

 

     
   

0

q
R

         

        

      


    
                                           (3) 

 
The reproduction number,

0R , is defined as the 

number of secondary infections that one 
infectious person would produce in a fully 
susceptible population through the entire 
duration of the infectious period. The result below 
follows from theorem 2 in [8]. Based on the 
available information (which may not be realistic), 
we estimated the basic reproduction number 

0 2.8R   for Covid-19 in Nigeria. This indicates 

that Covid-19 can get worst when people violate 
government policy to curtail the spread of Covid-
19 (especially through person-to-person 
transmission route). With the current prevention 
measures (such as proper personal hygiene, 
social distancing, staying at home as well as 
early detection and reporting) in Nigeria, basic 
reproduction number can be reduced thereby 
minimizing the spread of Covid-19 in the country. 
 

4. STABILITY ANALYSIS OF DFE AND 
EEP 

 
By stability we mean the condition of being stable 
or in equilibrium. That is, the tendency to recover 
from perturbations. Here, we analyze the stability 
of the model equilibrium in the absence and 
presence of Covid-19. 
 

Lemma 1: The DFE (
0 ) of the model (1) is 

locally asymptomatically stable (LAS) if 
0 1,R 

and unstable if 
0 1.R 

 
 
Epidemiologically, this implies that Covid-19 will 
be eliminated from the population whenever 

0 1,R   if the initial size of the sub-populations are 

in the basin of attraction of the DFE i.e. a small 
influx of Covid-19 infectious individuals into the 
community will not generate a large Covid-19 
outbreak and the disease dies out in time.  
 

4.1 Global Stability of the Disease-free 
Equilibrium (DFE) 

 
Lemma 2: If

0 1,R   the disease-free equilibrium 

of the model system (1) is globally asymptotically 
stable and unstable if 

0 1.R 
 

 
By the comparison theorem, the rate of change 
of the variables representing the infected 
components of model system (1) can be re-
written as: 
 

 
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 

 

 

 
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S
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N

V t V t V t

     
      

          
 

          

 (4) 

 

Where the matrices F  and V  are defined by 

the expressions. Since S 
  for all 0t   in 

 , it follows that 
 

 

 

 

 

 

 

 

E t E t

I t F V I t

V t V t

   
   
     

      

                       (5) 

 
Using the fact that the eigenvalues of the matrix 

 F V  all have negative real parts, it follows 

that the linearized differential inequality system 

(5), is stable whenever 
0 1R  . Consequently, 

using the equations (2), (3) and (5), 

   , , 0,0,0E I V   as t  . Thus by a 

comparison theorem according to [6], 

   , , 0,0,0E I V   as, and evaluating system 

(1) at 0E I V    gives S 
 , for 0 1R  . 

Hence, the disease-free equilibrium is globally 
asymptotically stable for 

0 1R  .  
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4.2 Existence of Endemic Equilibrium 
Point 

 
Next conditions for the existence of endemic 
equilibria for the model (1) is explored. Let 
 

 1 , , , , ,S E I R V                            (6) 

 
be the arbitrary endemic equilibrium of  model 
(1), in which at least one of the                            

infected components of the model is non-zero. 
Let 
 

 
1

,
I V qE

I V qE
N N

      
     

 

     (7) 

 
be the force of infection. Setting the                
right-hand sides of the equations in (1) to zero 
gives the following expressions (force of 
infection) 

 

  
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,
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I

R
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
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       
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        
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
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

















  




    




    




     

                                                          (8)

  

Substituting the above into (8), gives 
0 0 0a b   , where 

 

   

         

   
     
   

    

0

0

0

1

1

a

b q

q

R

       

                  

         
        

        

        

      

                

         
       

      

      
 

 

The coefficient 0a  is always positive, the coefficient 
0b  is positive (negative) if 

0R  is less than 

(greater than) unity. Furthermore, there is no positive endemic equilibrium if 0 0b  . If 0 0b  , then 

there is a unique endemic equilibrium (given by 0

0

b
a  ). This result is summarized below. 

 
Lemma 3. The model (1) has a unique positive endemic equilibrium whenever 

0 1R  , and no positive 

endemic equilibrium otherwise.  
 

4.3 Global Stability of the Endemic Equilibrium 
 
Lemma 4. The unique endemic equilibrium,

1 , of the model (1) is GAS in  whenever 
0 1.R 

 
 
Proof:  
 

Let  S E I V
F S S S In E E E In A I I I In B V V V In

S E I V

       

   

     
                

     

(9) 
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be the Lyaponuv function of the Goh-Voltera type 
 

    
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     

           

           
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Simplify to give 
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At the steady state, we observe 
 

 S I V qE S         
 

 
Substituting, we have 
 

     

         

       

2

2

S
F S I V qE S S I V qE S S I V qE

S

S E
S I V qE S S I V qE E S I V qE E

S E

I V
A E A I A E A I B I B V B V B I

I V

    

          

             


        

 
  

 
  

          

                

             
 

 
Now, equating coefficients to zero and solving, we get 
 

    
,A B

        

 

     
 

 
 
Substituting for A and B, we get 
 

     

   
 

  
 

  

2

S E
F S I V qE S S S I V qE E

S E

I V
E I V I

I V


      

                 
      

   

 
     

 
  

           

           
      

 
Note, at steady state, we have 
 

 
   

 , ,
S I V qE I I

E E V

    
     

     

  

   
     

 
 
Substituting, we get 
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 
   

1 3
I V qE I EI V qE ES S

F S S I V qE
S S E E I

 

   
    

 

    
                

 

Since the arithmetic mean exceeds the geometric mean, it means that 
 

 
 

1 0, 3 0, 0.
S I V qE ES S I E

S S I V qE
S S E I E


 

  
    

 

    
           

     
 

This implies that 0F  . One can see that the largest invariant subset, whenever 0F  , is 
1 . By 

LaSalle’s Invariance Principle [9], 
1  is globally asymptotically stable when 

0 1R  .  

 

5. CONCLUSION 
 

In this paper, we presented a coronavirus (Covid-
19) model using a deterministic system of 
differential equations and established that the 
model is locally and globally asymptotically 
stable when the associated reproduction number 
is less (or greater) than unity. Though the basic 
reproduction number of Covid-19 in Nigeria is 
about 2.8, the situation is still not optimistic due 
to limited environment protection and poor 
medical condition. While for the control of Covid-
19, it is instructive to increase personal hygiene, 
social distancing, staying at home as well as 
early detection and reporting. As mentioned in 
the review [7], the total number of Covid-19 
cases reported by NCDC is less than realistic 
infected cases. Therefore, we may also 
underestimate the empirical situation in Nigeria 
based on the reported data from April 02 to May 
01, 2020. Meanwhile, the data of Covid-19 in 
Nigeria in our paper is not enough and precise. 
To obtain the data with more useful information, 
we may need more economic investment and 
sophisticated statistical methods, which indicates 
that the revealing of Covid-19 transmission rule 
requires collaborative efforts from different 
disciplines. It should be noted that total lockdown 
is not an option. This is because Nigeria cannot 
afford lockdown. Thus, pandemic history can be 
of help in this regard. However, this paper 
focused on the theoretical assessment of Covid-
19 transmission dynamics due to the fact that we 
lack realistic data to further consider numerical 
simulation. Hence, numerical simulation analysis 
will be consider in our next paper. 
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