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Developing an efficient model for analyzing right-skewed positive observations has a long history, and many authors have attempt
in this direction. This is because the common analytic modeling procedures such as linear regression are often inappropriate for
such data and leads to inadequate results. In this article, we proposed a new model for regression analysis of the right-skewed data
by assuming the weighted inverse Gaussian, as a great flexible distribution, for response observations. In the proposed model, the
complementary reciprocal of the location parameter of response variable is considered to be a linear function of the explanatory
variables. We developed a fully Bayesian framework to infer about the model parameters based on a general noninformative prior
structure and employed a Gibbs sampler to derive the posterior inferences by using the Markov chain Monte Carlo methods. A
comparative simulation study is worked out to assess and compare the proposed model with other usual competitor models, and it
is observed that efficiency is quite satisfactory. A real seismological data set is also analyzed to explain the applicability of the
proposed Bayesian model and to access its performance. The results indicate to the more accuracy of proposed regression
model in estimation of model parameters and prediction of future observations in comparison to its usual competitors in
literature. Particularly, the relative prediction efficiency of the proposed regression model to the inverse Gaussian and log-
normal regression models has been obtained to be 1.16 and 64, respectively, for the real-world example discussed in this paper.

1. Introduction

Modeling right-skewed positive observations has been con-
sidered repeatedly by many authors during the last decades;
hence, there is a vast literature on different probability distri-
butions utilized in order to take into account the uncertainty
behind this type of data. Many distributions have been can-
didated and studied for this purpose from the exponential,
gamma and Weibull to log-normal (LN), inverse Gaussian
(IG), etc. The IG distribution, as a member of exponential
distributions family, benefits from considerable flexibility
along with good theoretical and computational properties.
A look at the papers was considered that the IG distribution
indicates to the desirability of this distribution in statistical
literature (see, for example, [1-5]). The IG distribution has
been recommended for analyzing right-skewed positive data

as a serious competitor for some of the most well-known
distributions such as log-normal and gamma. It is employed
in various applications such as reliability (e.g., [2, 6]), social
sciences (e.g., [7, 8]), marketing (e.g., [9]), engineering (e.g.,
[10]), industrial management (e.g., [11]), cardiology [12],
and civil engineering (e.g., [13]). In addition, some exten-
sions to the IG distribution have been proposed in order to
provide more flexible and interpretable distributions. In this
direction, [14] proposed a three-parameter extension of the
IG distribution, named weighted inverse Gaussian (WIG)
distribution with a great ability for modeling positive right-
skewed data specially in the field of reliability and lifetime
analysis. As pointed out by [15], WIG is a versatile lifetime
distribution and a serious competitor for other lifetime dis-
tributions. The most important inferential aspects of WIG
distribution have been considered by Gupta and Kundu.
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TaBLE 1: The values of RMSE and RB of the Bayes estimators of the
regression coefficients for WIG model along with corresponding
values for IG and LN models.

Regression model

Sample size  Parameter Criterion WIG G IN
RB 0.2320  0.2980 1.9473
A RMSE 1.6103 1.8196 1.9476
» RB 1.1686 1.1922 29271
P RMSE 1.5167 15973 2.9273
RB 0.7869 1.0280 1.5233
A RMSE  0.8208 1.0330 1.5320
>0 RB 1.8000 2.2501 2.5713
P, RMSE 1.8402 2.3391 2.5781
RB 0.8016 1.1144 1.7650
A RMSE  0.8462 1.1761 1.7662
» RB 1.6332  1.8960 2.8198
P RMSE 16842 19694 2.8013
RB 0.6218 0.9609 1.8919
100 Py RMSE  0.7470 1.0904 1.8726
RB 1.5020 1.6789 2.8914
P RMSE 1.6014 1.8123 2.8917

They proposed an expectation maximization (EM) algo-
rithm to estimate the parameters of distribution.

On the other hand, some authors have been discussed
the regression analysis by assuming the IG as distribution
of response observations. For example, [16] considered a
simple regression model with a single explanatory variable
and zero intercept. [17] suggested a log-normal approxima-
tion in exponential regression. [6, 18] proposed a model
which offers physical interpretation in survival analysis. This
model further has been used by [6] in analysis of variance
and survey sampling, respectively. Up to our best knowl-
edge, although the IG distribution has been considered
vastly in regression analysis, there is no published research
considering the WIG distribution for modeling purposes.
In this paper, we developed a new model for regression anal-
ysis of positive right-skewed response observations under
the WIG distribution. A fully Bayesian framework has been
utilized to estimate the model parameters and predict the
future observations. The proposed methodology employs a
set of noninformative vague prior distributions from a
well-known family of flexible distributions and proceeds to
the posterior inferences by using a Gibbs sampler. The main
advantages of the proposed model are as follows: (i) due to
using the WIG as distribution of response variable, it has
great flexibility for taking into account the variability of pos-
itively skewed response observations. This leads to more
accurate estimations and predictions for the proposed model
in comparison to its competitors in the literature. (ii)
Despite serious difficulties related to the frequentist
approach for estimating the parameters of the WIG distribu-
tion (see [15] for more details), the proposed model provides
a straightforward Bayesian approach with a tractable poste-
rior distribution and interpretable posterior inferences about

Advances in Mathematical Physics

the parameters. (iii) Due to the Bayesian nature of the pro-
posed model, it is possible to incorporate personal prior
beliefs about uncertainty behind the parameters in order to
construct a more reliable model.

The paper organized as follows: Section 2 provides some
background about the WIG distribution containing its most
important distributional and inferential properties. In Sec-
tion 3, a WIG regression model is proposed. The essential
theory for the Bayesian analysis of the proposed model is
developed in Section 4. In Sections 5.1 and 5.2, we provide
empirical evidence for assessing the proposed methodology
via analyzing simulated and real-world data, respectively.
The paper is closed by Conclusion.

2. A Look at Weighted Inverse
Gaussian Distribution

A random variable, Y, is said to have a WIG distribution
with location parameter y, scale parameter A, and shape
parameter 8, Y~ WIG(u, A, 9), if its density function is
given by

FwicU 1 #:4,8) =w(y; 6, 1)f 1o (y | - A)s (1)

where w(y; 6, u) = (6 +y)/(8 +u) and

exp <— /\Ozly;‘l;) > (2)

show the density function of IG distribution. The shape of
WIG distribution is always unimodal, and the mean and var-
iance of distribution are given, respectively, by

fiolwA)=

2my3

3

E(Y):M+A(:+5), (3)
_© w U
Var(Y)_T+A(M+8) <3_y+6>' (4)

As it can be seen from Equation (4), despite the Gaussian
distribution, the mean and variance of WIG distribution are
correlated. The cumulative distribution function (CDF) of
WIG distribution can be written as

Funaly 18,0 =00 + (1= 25 ) exp () oc)),
)

where @(-) denoted the CDF of standard normal distribu-
tion and 1(y) = (A2(y — ) /(uy"™) and £(y) = -(A2(y -
)/uy'’?). The key point in derivation of these results is that
the CDF of IG (p, o) distribution can be expressed as a lin-
ear combination of standard normal CDF of the form F(x)
=®{a(x)} +exp {2/0*u}D{p(x)}, where a(x)=(x—pu)/(
oux'?) and P(x) = (x +u)/(oux"?) are solutions of Euler
differential equation 4x?y” +4xy’ —y=0 which are of the
form y(x)=c,x!? + c,x V2, for constants ¢, and c,. If we
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consider that a pair of linearity-independent solutions a(x)
and f(x) correspond to IG distribution, then a function of
the form G(x)=A®{a(x)} + BO{B(x)} with chosen con-
stants A and B is CDF of the WIG distribution. See [14]
for more details.

The WIG family becomes the IG family as § — oo and
the reciprocal inverse Gaussian (RIG) family as § — 0,
where the RIG, like the IG, is a special case of the generalized
inverse Gaussian (GIG) distribution (see, for example, [19]
for more details about GIG distribution).

The problem of estimating the WIG distribution param-
eters has been discussed in the literature. [14] showed that
the maximum likelihood (ML) estimators of the WIG distri-
bution parameters can be obtained as responses of a nonlin-
ear challenging three-dimensional optimization problem.
[15] formulated the problem in a missing data structure
and developed an EM algorithm for computing the ML esti-
mates. They used asymptotic optimality properties of the
ML estimators to construct asymptotic confidence intervals
for the unknown parameters. We refer the readers to [14,
15, 20, 21] and other above-mentioned references for more
details about the WIG distribution.

Before concluding this short review section, it is useful to
clarify two points. First, despite the IG distribution, the WIG
distribution does not belong to the exponential family of dis-
tributions. Of course in some special cases, for example, for
known ¢, it has a near relation to the exponential family of
distributions.

Second, the WIG distribution is a reparameterized ver-
sion of the mixed inverse Gaussian (MIG) distribution.
The MIG distribution defined as a two-component finite
mixture of IG and length-biased inverse Gaussian (LBIG)
distribution as

S A, 8)=(1-a)fig(r 1 A) + af g6 (v | 14, 6),

(6)

where a € [0, 1] is the mixing coefficient and

SOl A) = iw)fic(y 11 A) (7)
denotes the pdf of LBIG distribution. From this point of
view, the WIG density function obtained by adopting a
reparameterization of the form a=p/(u+6) in the MIG
density function is given in Equation (6).

3. The WIG Regression Model

The traditional theory of regression modeling is based on
normality assumption for the response observations. While
in many applications, these assumptions may not be valid
due to positive right-skewed structure of data. An elemen-
tary solution, in this situation, is to use the log-
transformed data that provide the possibility of using stan-
dard inferences based on the normal distribution and leads
to a log-normal regression model. But applying any transfor-
mation to data increases the complexity of the model build-
ing procedure and makes meanings of the parameters less

clear. In these situations, the WIG family of distributions,
due to its flexibility and desired distributional properties,
can be a suitable candidate for data analysis.

Consider a set of paired observations given by {(y,, x;),
i=1,---,n}, where for a given i, i=(xi1,-~,xip)' denotes
the vector of explanatory variables and y; indicates the cor-
responding random response variable. Assuming WIG (y,
A, 8) as distribution of the response observations, the WIG
regression model is given by

yilx; ~ WIG(p(x;), A, 8), =

where = (B,

ficients. The likelihood function associated with the model
(8) is given by

ﬁp)' denotes the vector of regression coef-

0+y;
O+ s

n Ax ()’i‘[h)z “r(6+y;
ocA” exp {—Ez 5 H(6+y. .
i=1 i

-1 it

LA ly)= ] ( Vo011,

©)

Letting Y =diag (y,,y,) and X=[x,--x] =
[xij]nxp’ it is easy to show that the following identities hold:

[\/]:

i}’l, ( ijﬁj) / (xijﬁj) = /3X/ YyX 3,

j=1

Il
—

i

n p
> b= VX (10

i=1 j=1

=X,

=
x

where 1, is a n-dimensional vector with all elements equal to
one. Therefore, the summation which appeared in the expo-
nential function in the right-hand side of Equation (9) can
be written as

n

)= 3((<8) (8) - 2557

n _ _2 n
Z@i L2 20" 1)

& yu ) %((Z%oy, (zle;;j 72]‘2(%./3],) +yil> =Q(P),
(11)
where Q(B)=(YXB-1,)' Y {(YXB-1,) denotes a qua-

dratic form in terms of parameter 5. Hence, the likelihood
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TABLE 2: A general comparison of strengths and limitations of different discussed models.

Regression model Strengths

Limitations

(i) The LN regression model is the most famous traditional
candidate for analyzing positive right-skewed response

LN (see, for

example, [32]) observations

model by using a simple log transformation

(i) Moments of the response variable depend overly on
exact log-normality assumption

(ii) Small sample sequential moments of the response
variable oscillate to excess as the sample size increases
(iii) The distribution of response variable has too thick

(ii) It can be fitted and interpreted easily based on a normal right-hand tail to be plausible

(iv) LN distribution is also almost symmetrical, and
there is no way to control the skewness or asymmetry of
the distribution

(i) The sampling theory of the response observations is

IG (see, for tractable

’ (ii) There has been a growing attention to the use of IG
example, [18,22, .7 . S
23, 35) distribution, and recent researches have revealed rigid

the log-normal in most applications

Fitting procedure under IG distribution is more
complicated than corresponding procedure for LN
model

evidence supporting the IG distribution in comparison with

(i) The sampling theory of the response observations is

WIG (see, for tractable

example, [18, 22,
23, 35))

the log-normal in most applications

(ii) There has been a growing attention to the use of IG
distribution, and recent researches have revealed rigid
evidence supporting the IG distribution in comparison with

Fitting procedure for WIG model is more complicated
than corresponding procedure in IG model

and log-likelihood functions of the model are given by

upx o1y et e {5} M‘?;Z)

A

e(BAS|y)ocnlogh—ZQ(P) + Z log A/
P

2

respectively. Equating the partial derivations of the log-
likelihood function with respect to the model parameters
to zero leads to the following system of equations:

yit (xz,ﬁ) B
r)(5+ () )
21B(xlB) " (5+,)
_op(ek) - 33520,

(5 + (x;;s)‘l)

0
Sit(B8A1Y) = - S QB =0,

M=

9
5UB.8ALy) = =0,

I

1]
—

M=

1

0
ﬁaﬁ,mm =

]
—_

(13)

where Q(f) is a quadratic form in terms of parameter f3
introduced previously. As it can be seen, we have two non-
linear equations in terms of parameters 3 and & and a linear
equation in terms of parameter A. Therefore, the ML estima-

tor of parameter A is obtained in the closed form to be A

=2n/Q(f), and there is no closed form expression for the
ML estimators of parameters 5 and 8. Hence, a usual itera-
tive optimization procedure like the Newton-Raphson could
be employed to calculate the ML estimates of the model
parameters. It should be pointed out that it is possible to
use the other frequentist point estimation approaches such
as the method of moments (MM) to estimate the model
parameters. See [15] for more details about difficulties
related to the estimation of parameters in WIG distribution
by using the frequentist approaches. In what follows, we
developed a Bayesian approach for this purpose.

Before going further, we tend to give some explanation
about the link function of the proposed model. As it can
be seen, here we have adopted an inverse form link function
to specify the relation of the explanatory variables and the
location parameter of the response observations. Although,
as it is mentioned previously, there is no background on
using WIG distribution in modeling context, the link func-
tion given in (8) has been previously used by some authors
for modeling purposes using the IG distribution. For exam-
ple, [6, 22, 23] used the inverse form link function for regres-
sion analysis and analysis of covariance (ANCOVA) under
the IG distribution, respectively. Of course, there are other
possible choices for link function of this regression model.

!

For example, [24] used a linear link function as u(x;) = x;

B, and [25] utilized an exponential form link function, u(x;

) =exp (x;'B), in modeling of censored observations by IG
distribution in order to guarantee the positivity of response
variable mean. On the other hand since IG, despite WIG,
is a member of exponential family with canonical parameter

p %, one can use a link function of the form u(x;)=

(xi'ﬁ)fll2 for modeling purposes based on the IG
distribution.
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TAaBLE 3: A subset of the Imperial Valley earthquake data in 1979.

Site  PGA Vg, Ry St PGA Vg, Ry

1 0.29 0.86 0.44 14 0.26 0.91 0.98
2 0.69 0.03 0.54 15 0.38 0.63 0.79
3 0.18 0.71 0.45 16 0.41 0.22 0.90
4 0.24 0.78 0.17 17 0.45 0.51 0.76
5 0.10 0.53 0.29 18 0.44 0.08 0.56
6 0.27 0.49 0.52 19 0.53 0.26 0.86
7 0.15 0.57 0.03 20 0.09 0.89 0.09
8 0.22 0.33 0.31 21 0.17 0.69 0.35
9 0.31 0.85 0.07 22 0.05 0.64 0.69
10 0.20 0.25 0.76 23 0.16 0.38 0.33
11 0.37 0.88 0.60 24 0.13 0.05 0.61
12 0.12 0.94 0.94 25 0.14 0.92 0.56
13 0.08 0.67 0.75

Regardless of differences between the IG and WIG distri-
butions, each of the above-mentioned link functions can be
considered, probably with some modifications, for modeling
process with the WIG distribution, provided that the esti-
mated value of vector of regression coefficients should not
result in a negative value for the mean of response observa-
tions. However, from the theoretical point of view, there are
two reasons supporting this choice for link function. First,
the canonical parameter in the inverse Gaussian family of
distribution appears in the form of a function of inverse
mean. The second reason is related to the mathematical
computations. This choice enables us to provide posterior
distribution in a well-formed mathematical expression in
terms of a quadratic form of regression coeflicients and gives
us closed form expressions for some of posterior full-
conditional distributions.

4. Bayesian Analysis of the Model

In order to provide a Bayesian framework for analysis of the
proposed model, it is necessary to set suitable prior distribu-
tions for the model parameters. These prior distributions
should be able to explain the prior beliefs of data analyst
about the model parameters.

4.1. Prior Setting. In regression analysis, the main interested
parameter that should be estimated is the vector of regres-
sion coefficient, B = (B, -+, B,). Theoretically, any multivar-

iate continuous distribution on R? could be employed as a
prior distribution for this parameter. For example, in a vague
or a noninformative Bayesian analysis, a flat multivariate
normal or a multivariate uniform distribution with large
variance is a usual choice for this purpose. But, in the pro-
posed model, considering such prior distributions for f
may lead to the nonpositive values for y, = 1/x;'f, i=1, -
,n, which is inconsistent with the positivity constrain for
the location parameter of WIG distribution. Taking these
considerations into account, we consider the following joint

prior distribution of the model parameters as

7;|A ~Gamma(2, 1),
A~ Gamma(cy, dy), (14)
6 ~ Gamma(ey, f,),

where 7; =y, + 6 and zero indices indicate the hyperpara-
meters of the model that should be determined based on
prior beliefs. As it can be seen, in this prior setting, all of
the prior knowledge about the model parameters is
expressed by using three gamma distributions. The family
of gamma distributions seems to be sufficiently flexible that
one can expect that a member of this family could describe
the prior opinion of the data analyst about each of the inter-
ested parameters. In addition, it is always a potential choice
to describe various positive populations from exponential to
normal shape (see, for example, [26]). Under the above prior
distributions setting, the prior distribution of parameter T;
— 8 appears as distribution of difference of two nonindepen-
dent gamma random variables. While deriving the distribu-
tion of sum of two gamma random variables is an
elementary work, this is not a trivial work for the case of dif-
ference of random variables especially when they are nonin-
dependent. Generally, there is a vast literature on the sum of
independent and nonindependent gamma random variables,
and many authors [27-29] discussed this problem under
various assumptions such as independent and identically
or nonidentically distributed random variables. However,
the difference of the nonindependent gamma random vari-
ables has been less considered in the literature. Holm and
Alouini [30] showed that the general formulas for the prob-
ability density function of the difference of two not necessar-
ily identically distributed gamma random variables can be
expressed in the form of the McKay Bessel function distribu-
tion of type II [31]. The random variable V follows the type
IT MacKay distribution with parameters a > -1/2, b >0, and
|c| < 1, denoted by McKayllI (a, b, and c), when the density
function of V is given by

1- 2\a+(1/2) 1a
( il) |V| e_VC/bKu M . v#0,
V2°b* T (a + (1/2)) b

(1 _ Cz)u+(1/2) T(a)
Ja2b  T(a+(172)

fv(v)=

v=0,
(15)

where K,(-) is the modified Bessel function of the second
kind and of order a. He provided the moments of this distri-
bution in terms of the Gauss hypergeometric function. In
addition, there are relatively simple expressions for the
moments generating function, cumulants, and the moments
of the McKay distributions. It should be noted that several
famous distributions such as normal; distributions of Pear-
son system, e.g., type III Pearson (see [32]); and distribution
of first product moment coefficient in a sample from normal
population are special cases of McKay distribution of type II.



The support of the McKay distribution is the line of real
numbers, and its density function has a skew-symmetric
shape. This implies that the prior distributions given in
Equation (14) are in consistent with our knowledge about
the parameters of the model. Specifically, the prior distribu-
tion of parameter B holds the necessary constrain y(x;) >0
,i=1,-

4.2. Posterior Inference. Considering the likelihood function
(9) and the prior distributions (14), the joint posterior distri-
bution of the model parameters in terms of (u,A,6) is
obtained to be

(1 81 y) 06 L A8 1) A 8) = L 4, 8 1) | Mr(Aye(d),

o TT(6 436+ ) Vi) % [T+ )

i=1

X exp (~A(8+ ) x A

3 exp (<fy3) o [[((6 30001 )

exp (—Ady)

M:

x A2 exp ( A8+ MI)> x A% exp (=Ad,) x 847! exp (~£09)-

(16)

i

Due to the equality ;' = x;' B, the posterior distribution
(16) can be written in terms of interested parameters (3, A,
) as

7¢ﬁm6U0mAm“%‘ap<—ACXQ-+i fﬁ+n5+%)>

n

x 8% exp (=£,0) ®+M)

i=

where Q(f3) is a quadratic form in terms of the vector of
regression coeflicients, 8, given in Equation (11). Clearly,
the complexity of joint posterior distribution (17) precludes
deriving analytical posterior inferences. In what follows, we
employed the Markov chain Monte Carlo (MCMC)
methods to sample form posterior distribution in order to
deriving numerical estimates for interested posterior
quantities.

4.3. Gibbs Sampler. To construct a Gibbs sampler, it is neces-
sary to determine the full conditional posterior distributions.
The kernel of full conditional distribution for a typical
parameter is easily obtained by vanishing all unrelated quan-
tities to this parameter from the joint posterior distributions.
According to (17), the full conditional posterior distribution
of parameter 3 in proportional form is given by

m(B16,A) o< exp (—A(%ﬁ) + an: ,~

1
)

which cannot be written down in a closed form density func-
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tion. Also, the full conditional distribution of parameter A is

(A1 B, 8, y) oc APt exp < ( + zx 0))
i=1

(19)

Therefore, the full conditional distribution for this parame-
ter, in closed form, is obtained to be

5 Q - 1
AI/J’,8~Gamma<En+co, (2'8) +,;,”,8 +n6+d0>.

For parameter 8, one can write

w(61 8.1,y oc [[(6+2)0% exp (-8(mh+1y)

_ H(al/n e 8+)’z ) exp (-0(nA+f,))

i=1

_ [ (81/neo +1) exp (=0(nA +£,))

n

+ TT (78" ™) exp (-8(nh+ £y))

i=1

= 660+rt*1 exp ( I’IA +f0 (H}’,) (H 61/n(eol)>
i=1

I'(ey+n)
-8(nA+f,)) o W

n F(eo— 1) " L
' <Hly>(,m+f0)<1> fo(®le
(21)

where f . (-|a, 8) denotes the density function of a gamma dis-
tribution with mean a3. As it can be seen, the full conditional
posterior distribution of parameter § is proportional to a linear
combination of two gamma density functions with equal
shape parameters with positive coefficients. It is easy to show
that the full conditional posterior distribution of ¢ is a two-
component gamma mixture distribution given by

exp ( fo(0ley+n,nA+fy)

L nA+f,),

(81 An) =nfg(8leg+nnd+fo)+(1-n)f(81e—1nA+fp),

(22)
where = ¢,/(¢; +¢,) with
o I'(ey+n)
" Teg+ )+ (ITEy) (e - D(nd+ f)"
= (H?:lyi)r(eO -1)
27 n+ n !
(I'(ep + ”))/((”’\ +fo) 1) + (Hi:lyi)r(eo -1)

(23)



Advances in Mathematical Physics

0-

f T T T T T T 1
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

(a)

0.7

|

] |

|

0.5 |

|

— |
0.3

0.1 i

[ T

(®)

F1GURE 1: The histogram and box plot of peak ground acceleration data.

TaBLE 4: The values of the Kolmogorov-Smirnov goodness of fit
test for WIG, IG, and LN distributions.

Distribution Test statistic P value
WIG 0.1427 0.6366
1G 0.2462 0.0805
LN 0.5422 0.0024

Knowing the full conditional distributions of the model
parameters, it is possible to sample from the joint posterior
distribution of the model parameter. Since there is no closed
form expression for the full conditional distribution of param-
eter f3, a nested Metropolis-Hastings algorithm should be used
for sampling from this parameter within the iterations of
Gibbs algorithm.

Also, considering y = (y,, -+, »,) as old observations, the
posterior predictive distribution for a new observation y,,,
which corresponds to vector of explanatory variablesy, , is
given by

P 1) = j”fm(ym 13, B A S)T(BA S| y)dBAAIS 3., >0,

(24)

where f;c(13, A, 8) and (B, A, 8| y) are the density func-
tion of WIG distribution and joint posterior distribution of
the model parameters given in Equations (1) and (17),
respectively. The MCMC estimate of the posterior predictive
distribution is obtained to be

=~ 1 S S S S
PO 19)= 5 0 fwic (D | B AD,89) >0,
s=1
(25)

where {8,119, 8(5)}521 denotes a MCMC sample from the
joint posterior distribution of parameters.

5. Data Illustration

In this section, we preformed a simulation study and ana-
lyzed a real data set to access the performance of the pro-
posed model and to explain its applicability. To provide a
situation for an impartial judgment, we considered the IG

and log-normal regression models as two famous competi-
tors for the proposed model in computations.

(i) Bayesian IG Regression Model. The IG regression
model has been studied repeatedly in the literature
and can be written as y, | x; ~IG(u(x;), A);i=1, -
,n, with the same link function as the proposed
WIG regression model, i.e., u(x;)”" = x;'B. For the
Bayesian analysis of this model, we used a vague
structure for the prior distributions by considering
BIA~N,(up, A'V,) and A~ Gamma(ay/2,by/2),
where hyperparameters were set to be a,=b,=0.1
sug=(0,-+,0)" € R, and V=kyI, with k, =107
Under these prior settings, it can be shown that the
posterior distributions of the parameters A and f8
are members of gamma and noncentral t-student
family of distributions, and their corresponding

Bayes estimators are given by 1= (ag +n)ay +nl(
by+ Yyt —n 1, XB)by+ YLyt —n1, XB and B
:n(k51[P+X’YX)_1X'1,,, respectively. We refer
the readers to [6, 22] for more details about the
modeling by IG distribution

(ii) Bayesian Log-Normal Regression Model. As it can be
found in any Bayesian textbook (see, for example,
[33]), to construct a Bayesian regression model for
a log-normally distributed response variable, Y, it
is suffice to construct a normal regression model
for the logarithm of the response observations as z
| X, B, 0% ~ N, (XS, 02I), where z = (z,, -+, z,)’ with
z;=logy;;i=1,---,n. Using a semiconjugate struc-
ture for the prior distributions of the
form B~ N, (B, 7yl,), 1/0* ~ Gamma(vy/2, v/203),
it is straightforward to contract a Gibbs sampler in
order to approximate the joint posterior distribution
and interested posterior quantities by employing the
following full conditional distributions:

-1 -1
ﬁ|02,2~Np(<151021p+X’X) X'y, <T51021p+X'X) ),

012|[j’,z~Gamma<V02+n, %(Voﬂé‘F(z_Xﬁ),(z_Xﬁ))'

(26)
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TaBLE 5: The Bayes estimates and 95% HPD credible intervals of regression coefficients for WIG model along with corresponding values for

IG and LN models.

Regression model

By B,

A 19 o

WIG 5.01 (1.30, 6.06) 1.50 (1.25, 3.40)
IG 5.12 (2.24, 8.00) 1.80 (-0.82,4.43)
LN 5.81 (2.52, 6.01) 1.78 (1.56, 4.01)

1.16 (0.57, 1.56) 0.88 (1.82, 0.51)
0.51 (0.25, 1.81) —

0.6184 (0.34, 1.11)

TaBLE 6: The estimated regression models along with the corresponding values of AIC, BIC, HQIC, and CV gp criteria for different

models.

Model Estimated model AIC BIC HIQC CVisep
WIG ﬁfl =5.01x; +1.50x, 193.94 196.38 194.62 0.0322
IG A =5.12x, +1.89x, 229.62 232.06 230.29 0.0372
LN log (@;) =5.81x, + 1.87x, 260.63 270.07 276.52 2.0781

It should be noted that the hyperparameters 7,, v,, and
o} have been set, in our studies, in such manner that pro-
duce a vague prior setting.

5.1. Simulation Study. We considered a WIG regression
model with two explanatory variables given by

1

P~ WIGH(x) A 0), ) = Lo
i1l 272

27)

with x; = (x;,x,,), A=2, and & =3. The values of explana-
tory variables simulated from independent standard normal
distributions and the values of regression coefficients are set
to be B=(B,,8,) =(0.1,0.2)". Then, the response observa-
tions are simulated from model (27) for different sample
sizes 25, 50, 75, and 100. Given simulated data, we used
the proposed Gibbs sampler to create a MCMC sample in
order to estimate the posterior interested parameters after
5000 burn-in period. The Geweke [34] diagnostic was used
to test convergence of the algorithm. The root mean square

~(r 2
error (RMSE = \/ 1/RZ§21(9( . 0) ) and absolute value of

the relative bias (RB = l/RZil((é(r)/G) —1)) of Bayes esti-
mators of the regression coefficients for the WIG model
along with corresponding values for IG and log-normal
model were calculated, where 6 is the real value of the

parameter, G(r) denotes the value of the parameter 6 in r
-th repetition, and 0 is the estimated posterior mean. In all
computations, the number of repetitions, R, is fixed to be
4000 in order to taking into account the uncertainty of the
simulated data. The results are presented in Table 1. In
Table 2, a general comparison of strengths and limitations
of different discussed models has been presented.

As it can be seen, the absolute value of relative biases and
the root mean square errors of the proposed WIG regression
model are less than the corresponding values for both IG
and log-normal regression models. This implies that the
Bayes estimator of regression coefficients for WIG model is

more efficient than the counterpart estimators in IG and
log-normal models.

5.2. Application to the Seismological Data. To investigate the
effect of soil shear wave velocity (Vg,,) in thirty meters at
top of the site and the Joyner-Boore distance (Rjp) as explan-
atory variables on the peak ground acceleration (PGA) as
response variable, 25 different sites are selected and inter-
ested variables are measured. The data, presented in
Table 3, are a subset of the Imperial Valley earthquake in
1979. The histogram and box plot of response observations,
given in Figure 1, show the right-skewed structure of data.
This indicates that the WIG and some of other right-
skewed distributions such as IG and log-normal could be
suitable candidate distributions for fitting to response
observations.

The result of the Kolmogorov-Smirnov goodness of fit
test for the WIG distribution along with corresponding
values for the IG distributions is given in Table 4. We also
provided the corresponding values for the log-normal distri-
bution as a traditional candidate distribution for modeling
positive right-skewed data. As it can be seen, the null
hypotheses of the WIG and IG distributions for response
distributions both are not rejected at 0.05 level of signifi-
cance. The Bayesian estimates of the model parameters
along with their corresponding 95% HPD credible intervals
for different models are presented in Table 5. It should be
pointed out that the estimates also are obtained as the poste-
rior mean of the MCMC samples after a 5000 burn-in
period. The value of hyperparameters in (14) is set to be ¢,
=dy=e,=f,=0.01 in order to provide noninformative
vague prior distributions with large variances for parameters
of the model. The Geweke diagnostic test [34] was used to
assess the convergence of the sampler.

As it can be seen, from the 95% HPD credible intervals,
for the WIG and LN models, both of the regression coeffi-
cients 3, and 3, are different from zero at a significance level
of 0.05, and this is the same for other parameters of these
models. But, for the model IG, the coefficient 3, is not signif-
icantly different from zero at the same level. It should be
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noticed that the estimated values of the regression coeffi-
cients for LN model are not comparable to corresponding
values in the WIG and IG models due to the differences
between the functional forms of the link functions of these
models. In such situations, one can use some information-
based criteria to assess the fit and complexity of models or
provide a criterion for evaluating and comparing the predic-
tive power of them. In this direction, the Akaike information
criterion (AIC; —2€(0) + 2k), Bayesian information criterion
(BIC; —£(0) + klogn), and Hannan-Quinn information crite-
rion (HQIC; —2kl(6 + 2klog(logn))) are employed, where in
definition of these criteria, £(-), 0, n, and k denote the log-
likelihood function of the model, vector of estimated param-
eters, sample size, and the number of model parameters,
respectively. The lesser values of these criteria, presented in
Table 6, indicate better parsimonious fits. We also used the
cross-validation mean square error of prediction criterion,

1¢ N
CVsep = ZZ i —)’4)2) (28)
i-1

to calculate the predictive performance of different models.
Where in Equation (28), y_, denotes the predicated value
of y; based on the data {(y; x)),j(#i)=1,---,n}, ie, all
observations expect i-th observation.

The values of AIC, BIC, and HQIC show that the data
provide more support for the WIG regression model than
other models considering the parsimonious principle. Also,
the values of CVqp indicate to the higher prediction accu-
racy, in average, for the WIG model.

6. Conclusions

Modeling right-skewed positive data has been at the core of
interest in lifetime analysis and many other fields. This paper
developed a regression model by considering the weighted
inverse Gaussian distribution for response observations as
a versatile candidate for analysis of the right-skewed positive
data. A Bayesian framework employed to analyze the model.
The proposed method uses a set of noninformative flexible
priors from the gamma family of distributions and provides
a tractable joint posterior distribution for parameters. It is
computationally straightforward and proceeds by construct-
ing a Gibbs sampler to derive the posterior inferences. The
comparative experimental studies, simulation, and real-
world example showed that the proposed weighted inverse
Gaussian regression model has the ability to dominate
inverse Gaussian and log-normal as two most famous com-
petitor models in the literature. Particularly, considering that
the relative prediction efliciency (REP) of two given predic-
tors z; and z, in terms of cross-validation mean square error
of prediction criterion is defined as REP(Z,,%,) = CVsp(
Z,)/CV spp(Z; ), it can be seen that the relative prediction
efficiency of the proposed WIG regression model to the IG
and LN regression models is given by 1.16 and 64, respec-
tively, for the real-world example discussed in this paper.

Data Availability

The data used to support the findings of this study have been
presented in the paper.
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