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We obtain a new nonsingular exact model for compact stellar objects by using the Einstein field equations. The model is consistent
with stellar star with anisotropic quark matter in the absence of electric field. Our treatment considers spacetime geometry which
is static and spherically symmetric. Ansatz of a rational form of one of the gravitational potentials is made to generate physically
admissible results. The balance of gravitational, hydrostatic, and anisotropic forces within the stellar star is tested by analysing the
Tolman-Oppenheimer-Volkoff (TOV) equation. Several stellar objects with masses and radii comparable with observations found
in the past are generated. Our model obeys different stability tests and energy conditions. The profiles for the potentials, matter
variables, stability, and energy conditions are well behaved.

1. Introduction

The studies on the structure and behaviour of compact rela-
tivistic stellar spheres have been possible through investiga-
tion of solutions for field equations. Neutral and charged
spheres have been investigated under specified spacetime
geometries. Charged stellar models under static and spheri-
cally symmetric spacetime include the performance by
[1–10]. Uncharged stellar models include recent works per-
formed by [11–15]. The studies by Ruderman [16] and
Canuto [17] indicate that radial and transverse pressures
within the stellar bodies may not be equal. The quantity
defining this difference is called the pressure anisotropy. Dif-
ferent phenomena explain the indicators of this imbalance of
pressures within the stellar object. Some of these phenomena
include existence of condensate states such as pion and kaon
condensations as indicated by Kippenhahn and Weigert [18]
which exist when the stellar core has solid matter as
observed by Sawyer [19]. This can also happen when the
stellar matter passes through several phase transitions as
indicated by Sokolov [20]. Bowers and Liang [21] asserted
that no compact stellar sphere is composed wholly of perfect
fluid. Ultrahigh density and gravitational pull in these
objects result to enormous pressure anisotropy. Several stud-
ies have recognized the significance of pressure anisotropy in

stellar models including recent performance by [6, 7, 12,
22–25]. Imposition of equation of state for stellar matter in
modelling relativistic stellar objects is very significant. Vari-
ous studies have adopted different equations defining the
state of stellar fluid to obtain well-behaved stellar models.
We observe that [23, 26–30] obtained well-behaved charged
stellar models by applying linear equation of state. The treat-
ment by [11, 31–35] applied quadratic equation of state to
generate stellar models with astrophysical significance. The
works by [13, 36–39] generated physically significant stellar
models with viable results in astrophysics and astronomy
using Chaplygin equation of state. The recent relativistic
models by [4, 40–42] were generated by imposing polytropic
equation of state. On the other hand, [43, 44] applied van
der Waals equation of state to obtain astrophysically signif-
icant stellar models. The use of linear equation of state in
modelling self-gravitating stellar objects is evident in various
studies. Models consistent with strange stars composed of
quark matter have been found with this equation of state.
The simplified form of linear equation of state has the form
pr = 1/3ðρ − 4BÞ as indicated by Witten [45], where ρ and B
represent energy density and bag constant, respectively. We
are interested to investigate the geometry and physical char-
acteristics of strange stars with quark matter by introducing
linear form of equation of state along with a new form of one
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of the gravitational potentials missing in the previous studies
to obtain a well-behaved anisotropic strange star model.
Additionally, we undertake several physical tests which are
missing in most of the models generated in the past. This
article is organised in seven sections. The basic stellar equa-
tions are presented in Section 2 followed by the transforma-
tions in Section 3. The model and its physical properties are
introduced in Sections 4 and 5, respectively. Discussion of
findings is presented in Section 6, and the closing remarks
are provided in Section 7.

2. Basic Stellar Equations

We generate a new exact solution describing the interior of
the strange star in general relativity. The geometry of space-
time is considered to be static and spherically symmetric.
The line element of the star interior is considered to have
the form

ds2 = −e2ν rð Þdt2 + e2λ rð Þdr2 + r2 dθ2 + sin2θdϕ2
À Á

, ð1Þ

with νðrÞ and λðrÞ being the gravitational functions. The
exterior of the strange star is considered to conform to
Schwarzschild exterior spacetime given by the line element

ds2 = − 1 − 2M
r

� �
dt2 + 1 − 2M

r

� �−1
dr2

+ r2 dθ2 + sin2θdϕ2
À Á

,
ð2Þ

where M is the mass of the star. The energy momentum
tensor for the stellar star in the absence of electric field
is given by

T ij = diag −ρ, pr , pt , ptð Þ, ð3Þ

where ρ, pr , and pt are the energy density, radial pressure,
and tangential pressure, respectively. These matter vari-
ables are determined relative to a comoving unit timelike
fluid four-velocity ua. The value 8πG/c4 representing the
coupling constant and the speed of light c is considered
to be united.

The Einstein field equations which govern neutral stellar
stars can be represented as

1
r2

1 − e−2λ
� �

+ 2λ′
r

e−2λ = ρ, ð4aÞ

−
1
r2

1 − e−2λ
� �

+ 2ν′
r

e−2λ = pr , ð4bÞ

e−2λ ν′′ + ν′2 − ν′λ′ + ν′
r

−
λ′
r

 !
= pt: ð4cÞ

The primes (′) in the field equations represent the deriv-
atives of the gravitational functions with respect to the radial

distance r. The function representing the mass of the neutral
stellar star is given by

M rð Þ = 1
2

ðr
0
ω2ρ ωð Þdω: ð5Þ

The stellar star is considered to compose quark matter
which admit the linear equation of state of the form

pr =
1
3 ρ − 4Bð Þ, ð6Þ

where B is the bag constant.

3. Transformations

To ease the integrability of the field equations in systems
(4a), (4b), and (4c), we embrace Durgapal and Bannerji’s
[46] transformations given by

x = Cr2,
Z xð Þ = e−2λ rð Þ,

A2y2 xð Þ = e2ν rð Þ,

ð7Þ

where A and C are arbitrary real constants. When we subject
system (2) to these transformations, we obtain

1 − Z
x

− 2 _Z = ρ

C
, ð8aÞ

4Z _y
y
+ Z − 1

x
= pr

C
, ð8bÞ

4xZ€y
y
+ 4Z + 2x _Z
� � _y

y
+ _Z = pt

C
, ð8cÞ

and the line element becomes

ds2 = −A2y2dt2 + 1
4xCZ dx2 + x

C
dθ2 + sin2θdϕ2
À Á

: ð9Þ

Applying the transformations in Equation (7) to Equa-
tion (5), the mass function becomes

M xð Þ = 1
4C3/2

ðx
0

ffiffiffiffi
ω

p
ρ ωð Þdω: ð10Þ

Incorporating the equation of state (6) in systems (4a),
(4b), and (4c), the field equations becomes

ρ = 1 − Z
x

− 2 _Z
� �

C, ð11aÞ

pr =
1
3 ρ − 4Bð Þ, ð11bÞ

pt = pr + Δ, ð11cÞ
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Δ = C 2x _y
y
+ 5
3

� �
_Z + C 4x €y

y
+ 4 _y

y
+ 1
3x

� �
Z + 4

3B −
C
3x ,

ð11dÞ

_y
y
= 1
3Z

1 − Z
x

−
_Z
2 −

B
C

 !
: ð11eÞ

We notice that (20) can also be written as

y xð Þ =He
Ð
g xð Þdx, ð12Þ

where

g xð Þ = 1
3Z

1 − Z
x

−
_Z
2 −

B
C

 !
, ð13Þ

and H is the constant of integration. The anisotropic factor
Δ is defined by Δ = pt − pr , and the force exerted due to
anisotropy is given by 2Δ/r. The study by [47] indicated that
when Δ > 0, the anisotropic force acts outward and it is
repulsive in nature and when Δ < 0, the force acts inward
with attractive behaviour. When pt = pr , it implies that Δ =
0 and there is no anisotropic force and the model becomes
isotropic.

4. The Model

The matter variables involved in our model include ρ, prpt ,
Z, y, and Δ. Since the systems (11a), (11b), (11c), (11d),
and (11e) have lesser number of equations as compared to
unknown variables, we specify one of the variables in the
system to simplify the integration process. We followed the
method recently applied by Mathias and Sunzu [30] with a
different choice of metric function. The choice is carefully
made to yield physically admissible model. We specify the
gravitational potential ZðxÞ in a rational form given by

Z xð Þ = 1 + ψx

1 + γxð Þ2 , ð14Þ

where ψ and γ are real constants such that ψ ≠ γ and γ ≠ 0.
This function is continuous and regular throughout the inte-
rior of the stellar star. This choice takes reciprocal form of
the potential in [48, 49] to obtain a well-behaved strange star
model. The choice of potential made by [49] had a rational
form of ZðxÞ with quadratic expression in the numerator
and linear expression in the denominator. The choice in
the current paper has linear expression in the numerator
and quadratic expression in the denominator. Our choice
of potential is a new form, and it guarantees a new strange
star model that obeys various physical tests on stability, state
of hydrostatic equilibrium, and energy conditions. The
choice made in this study enlightens more the investigations
of strange stars.

When we apply Equation (14) into Equation (12), we
obtain the metric function y in the form

y xð Þ =H 1 + ψxð Þ−n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + γxð Þ3

p
exp Y xð Þ½ �, ð15Þ

where H is a constant of integration and the function YðxÞ is
given by

Y xð Þ = γψx 2Cγψ − B −2γ + 4ψ + γψxð Þð Þ
6Cψ3 , ð16Þ

where n is given by

n = 2B γ − ψð Þ2 + Cψ 2γ2 − 4γψ + 3ψ2À Á
6Cψ3 : ð17Þ

The exact model obtained by solving systems (4a), (4b),
and (4c) can be written in the form

e2λ = 1 + γxð Þ2 1 + ψxð Þ−1, ð18aÞ

e2ν = A2H2 1 + ψxð Þ−2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + γxð Þ23

q
exp 2Y xð Þ½ �, ð18bÞ

pr =
1
3 ρ − 4Bð Þ, ð18cÞ

pt = pr + Δ, ð18dÞ

Δ = 1
9 1 + xγð Þ4 1 + xψð Þ 12B − 24Cγ + 48Bxγð

− 53Cxγ2 + 72Bx2γ2 − 12Cx2γ3 + 48Bx3γ3

− 3Cx3γ4 + 12Bx4γ4 + 18Cψ − 36Cnψ
+ 12Bxψ − 60Cnxγψ + 48Bx2γψ
− 67Cx2γ2ψ − 24Cnx2γ2ψ + 72Bx3γ2ψ
− 12Cx3γ3ψ + 48Bx4γ3ψ − 3Cx4γ4ψ
+ 12Bx5γ4ψ + 18Cxψ2 − 18Cnxψ2

+ 36Cn2xψ2 + 24Cx2γψ2 − 24Cnx2γψ2

+ 72Cn2x2γψ2 − 14Cx3γ2ψ2 − 6Cnx3γ2ψ2

+ 36Cn2x3γ2ψ2 − 6C 1 + xγð Þ 1 + xψð Þ
Á −6 + −7 + 12nð Þx2γψ + x −4γ − 9ψðÀ
+ 12nψÞÞ _Y xð Þ + 36Cx 1 + xγð Þ2
Á 1 + ψð Þ2 _Y xð Þ2 + 36Cx 1 + xγð Þ2
Á 1 + xψð Þ2€Y xð ÞÁ:

ð18eÞ

5. Physical Properties

We notice that the solution functions presented in systems
(18a), (18b), (18c), (18d), and (18e) which are obtained by
solving the system of field equations in systems (11a),
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(11b), (11c), (11d), and (11e) are in elementary form. The
mass function in Equation (10) then becomes

M xð Þ = x
ffiffiffi
x

p
−3ψ + γ 6 + x γ 3 + xγð Þ + ψð Þð Þð Þ

6
ffiffiffiffi
C

p
1 + xγð Þ3

, ð19Þ

and the line element has the form

ds2 = −H2 1 + ψxð Þ−2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + γxð Þ23

q
exp 2Y xð Þ½ �dt2

+ 1 + γxð Þ2
1 + ψx

dr2 + r2 dθ2 + sin2θdϕ2
À Á

:
ð20Þ

5.1. Compactness and Redshift. The compactness factor μ for
the stellar stars proposed by [50] is given by

μ = 2M
R

, ð21Þ

where M is the total mass of the stellar star and R is the stel-
lar radius. The critical value of compactification factor for
isotropic fluid spheres μcrit ≤ 8/9, however for anisotropic
spheres μcrit, may exceed this limit [51]. By applying Equa-
tion (19) to Equation (21), we obtain

μ xð Þ = x −3ψ + γ 6 + x γ 3 + xγð Þ + ψð Þð Þð Þ
3 1 + xγð Þ3 : ð22Þ

The gravitational redshift zs of a stellar star is given by

zs =
1ffiffiffiffiffiffiffiffiffiffi1 − μ

p − 1, ð23Þ

where μ is the quantity defining compactness of the stellar
star. In the present model, zs is found by substituting (22)
into (23), and the resulting function has the form

zs xð Þ = 1 − x −3ψ + γ 6 + x γ 3 + xγð Þ + ψð Þð Þð Þ
3 1 + xγð Þ3

" #−1/2
− 1:

ð24Þ

5.2. The TOV Equation. The Tolman-Oppenheimer-Volkoff
(TOV) equation is an important tool to examine the balance
of forces acting within the stellar object. When the forces are
well balanced, then the stellar object is said to be in the state
of hydrostatic equilibrium. The balance of forces implies that
the energy within the stellar star is conserved. The TOV
equation is given by

pr′ + ρ + prð Þν′ − 2Δ
r

= 0: ð25Þ

The balancing condition for a neutral anisotropic stellar
star is that all forces (gravitational force Fg, hydrostatic force

Fh, and anisotropic force Fa) act within the stellar fluid sum
to zero. That is,

Fg + Fh + Fa = 0, ð26Þ

where

Fg = − ρ + prð Þν′, ð27aÞ

Fh = −p′r , ð27bÞ

Fa =
2Δ
r
: ð27cÞ

The expressions for the forces in (27a), (27b), and (27c)
are in the form

Fg xð Þ = −
4 ffiffiffi

x
p

9
ffiffiffiffi
C

p
1 + xγð Þ4 1 + xψð Þ

À
−2B + 6Cγ

− 6Bxγ + 6Cxγ2 − 6βx2γ2 + 2Cx2γ3

− 2Bx3γ3 − 3Cψ − Cxγψ
ÁÀ
−B + 6Cγ

− 3Bxγ + 3Cxγ2 − 3Bx2γ2 + Cx2γ3

− Bx3γ3 − 3Cψ + xγψ
Á
,

Fh xð Þ = 3
ffiffiffiffi
C

p
1 + xγð Þ4

� �−1À
2γC2 ffiffiffi

x
p À

15γ + 4xγ2

+ x2γ3 − 10ψ + 2xγψ
ÁÁ
,

Fa xð Þ = 2
ffiffiffiffi
C

p

9 ffiffiffi
x

p 1 + xγð Þ4 1 + xψð Þ 12B − 24Cγð

+ 48Bxγ − 53Cxγ2 + 72Bx2γ2 − 12Cx2γ3

+ 48Bx3γ3 − 3Cx3γ4 + 12Bx4γ4 + 18Cψ
− 36Cnψ + 12Bxψ − 60Cnxγψ + 48Bx2γψ
− 67Cx2γ2ψ − 24Cnx2γ2ψ + 72Bx3γ2ψ
− 12Cx3γ3ψ + 48Bx4γ3ψ − 3Cx4γ4ψ
+ 12Bx5γ4ψ + 18Cxψ2 − 18Cnxψ2

+ 36Cn2xψ2 + 24Cx2γψ2 − 24Cnx2γψ2

+ 72Cn2x2γψ2 − 14Cx3γ2ψ2 − 6Cnx3γ2ψ2

+ 36Cn2x3γ2ψ2 − 6C 1 + xγð Þ 1 + xψð Þ
Á −6 + −7 + 12nð Þx2γψ + x −4γ − 9ψðÀ
+ 12nψÞÞ _Y xð Þ + 36Cx 1 + xγð Þ2
Á 1 + ψð Þ2 _Y xð Þ2 + 36Cx 1 + xγð Þ2
Á 1 + xψð Þ2€Y xð ÞÁ:

ð28Þ

5.3. Stability Conditions. The stability of a stellar model can
be tested under different stability criteria. The nature of
radial and tangential variations of equation of state parame-
ter prompts information on model stability. The equation of
state parameter in radial and transverse orientations is given

4 Advances in Mathematical Physics



by wr = pr/ρ and wt = pt/ρ, respectively. In the present
model,

wr xð Þ = 3C 3xγ2 + x2γ3 − 3ψ + γ 6 + xψð ÞÀ ÁÀ Á−1
Á −4B 1 + xγð Þ3 + C 3xγ2 + x2γ3 − 3ψ + γ 6 + xψð ÞÀ ÁÀ Á

wt xð Þ = À9C2 1 + xγð Þ 1 + xψð ÞÀ3xγ2 + x2γ3

− 3ψ + γ 6 + xψð ÞÁÁ−1À4B2x 1 + xγð Þ6
− 2BC 1 + xγð Þ3À6 + 4x3γ3 + 3x 8γ − ψð Þ
+ x2γ 12γ + 7ψ

ÁÁ
+ C2À24x4γ5 + 4x5γ6

À
− 12x2γ3 −9 + xψð Þ + 9ψ −1 + xψð Þ
+ 2x3γ4 36 + xψð Þ + xγ2 54 − 75xψ − 5x2ψ2À Á
+ 6γ 3 − 5xψ + 4x2ψ2À ÁÁÁ

:

ð29Þ

The stability of the stellar model can also be examined
based on the value of adiabatic index Γ given by

Γ = ρ + pr
pr

� � dpr
dρ

: ð30Þ

The stability condition for Newtonian spheres can be
examined based on the value of adiabatic index satisfying
the inequality Γ > 4/3. However, the work by [52] indicates
that the stability of stellar sphere with anisotropic fluid sat-
isfies the inequality

Γ > 4
3 + 4 pt0 − pr0ð Þ

3 pr0 ′
�� �� + 8πρ0pr0

3 pr0 ′
�� �� r

" #
max

, ð31Þ

where pr0, pt0, and ρ0 represent initial radial pressure, tan-
gential pressure, and energy density, respectively. The works
by [53–55] show that the stability of anisotropic stellar
spheres satisfies the inequality Γ > Γc, where Γc is the critical
adiabatic index defined by

Γc =
4
3 + 19

21 μ, ð32Þ

where μ is the compactification factor.
In the present model, the expression for Γ is given by

Γ xð Þ = 1
3 1 + −4B 1 + xγð Þ3 + C 3xγ2 + x2γ3

ÀÀÀÀ
− 3ψ + γ 6 + xψð ÞÞÞ−1 3C 3xγ2 + x2γ3

ÀÀ
− 3ψ + γ 6 + xψð ÞÞÞÞ:

ð33Þ

The proposition by [56] provides another stability crite-
rion for stellar spheres termed as cracking of a star. For sta-
ble stellar configurations,

v2r − v2t
�� �� < 1: ð34Þ

This condition is essential to prevent stellar star from
overturning. The variables v2r and v2t are given by v2r = dpr/
dρ and v2t = dpt/dρ, respectively. In the current model,

v2r − v2t =
1
3 + 9γ 1 + xγð Þ C + Cxψð Þ2 4xγ2

ÀÀÀÀ
+ x2γ3 − 10ψ + γ 15 + 2xψð ÞÁÞÞ−1
Á 2 2B2 1 + xγð Þ6 1 + 3xγ + 2x2γψ

À ÁÀÀ
− BC 1 + xγð Þ3 −9ψ + xγ2 24 − 5xψð ÞÀ
+ 4x3γ4 2 + xψð Þ + 8x2γ3 3 + xψð Þ
+ 2γ 9 + xψ + 5x2ψ2À ÁÁ

+ C2 2x5γ7
À

+ 9ψ2 + 2x4γ6 5 − 2xψð Þ
+ 5x3γ4ψ −16 + 3xψð Þ
− x3γ5 −12 + 36xψ + x2ψ2À Á
− 3γψ 2 − 11xψ + 2x2ψ2À Á

ψ

+ xγ3 27 + 3x + 103x2ψ2 + 5x3ψ3À Á
− γ2 9 + 75xψ + 9x2ψ2 + 41x3ψ3À ÁÁÁÁÁ

:

ð35Þ

5.4. Energy Conditions. The physically admissible models for
stellar objects with anisotropic matter distribution should
satisfy different energy conditions. The works by [57–59]
indicate different kinds of energy conditions including null
energy condition (NEC), weak energy condition (WEC),
dominant energy condition (DEC), and strong energy con-
ditions (SEC). These conditions satisfy the following
inequalities:

NEC≕ ρ + pr ≥ 0 and ρ + pt ≥ 0,
WEC≕ ρ ≥ 0, ρ + pr ≥ 0 and ρ + pt ≥ 0,
DEC≕ ρ ≥ 0, ρ − pr ≥ 0 and ρ − pt ≥ 0,
SEC≕ ρ + pr ≥ 0, ρ + pt ≥ 0 and ρ + pr + 2pt ≥ 0:

ð36Þ

We examine the viability of current stellar model graph-
ically by testing these conditions.

5.5. Boundary Conditions. We match the interior solution to
exterior Schwarzschild solution at the boundary of the stellar
star. The conditions for continuity of metric coefficients
from the line elements (1) and (2) at the boundary ðr = RÞ
are given by

e2ν Rð Þ = 1 − 2M
R

, ð37Þ
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e2λ Rð Þ = 1 − 2M
R

� �−1
: ð38Þ

The radial pressure pr vanishes at r = R. This implies that

pr r = Rð Þ = 0: ð39Þ

Substituting the expressions for e2νðRÞ, e2λðRÞ, M, and pr
ðr = RÞ from Equations (18a), (18b), and (19), respectively,
into Equations (37), (38), and (39), we obtain

0 = 1 − 3 1 + CR2γ
À Á3� �−1

CR 3CR2γ2 + C2R4γ3
ÀÀ

− 3ψ + γ 6 + CR2À ÁÁÞ − A2H2 1 + CR2ψ
À Á−2n

Á
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 + CR2γ
À Á2� �

3

r
exp 2Y Rð Þ½ �,

ð40aÞ

0 = 3 1 + CR2γ
À Á3� �−1

1 + CR2ψ
À Á� �� �

Á R 3C5R9γ5 + CR 6γ − 3ψð ÞÀ
+ 3C2R3γ 7γ − 3ψð Þ − 3CR2 2γ − ψð Þ
− 6C2R4γ 2γ − ψð Þ + 9C3R5γ2 3γ − ψð Þ
+ 3C4R7γ3 5γ − ψð Þ − C5R9γ3

Á 5γ + CR2γ2 + ψ
À Á

− C3R5γ 6γ2
À

− 3γ −1 + ψð Þ + ψÞ − C4R7γ2 7γ + 2ψð ÞÞ,

ð40bÞ

0 = 3 1 + CR2γ
À Á3� �−1

−4B + 6Cγ − 12BCR2γ
À

+ 3C2R2γ2 − 12BC2R4γ2 + C3R4γ3

− 4BC3R6γ3 − 3Cψ + C2R2γψ
Á
,

ð40cÞ

where

Y Rð Þ = γψCR2 2Cγψ − B −2γ + 4ψ + γψCR2À ÁÀ Á
6Cψ3 : ð41Þ

We observe that systems (40a), (40b), and (40c) have
seven parameters (i.e., C, R, γ, ψ, A, H, and B) in the three
equations. The system has sufficient free parameters for
matching conditions.

6. Discussion

In this section, we describe the structure and behaviour of
the model generated in Section 4, relative to acceptable
behaviour of stellar models in general relativity. Mathemati-
cal computations have been performed with Mathematica
software while plots have been generated by using Python
programming language. All the plots are generated against
the radial distance r, and the values for the parameters used
are ψ = 3:4, γ = 3:1, B = ±2:73 × 10−3, C = 8:0 × 10−3, and H
= 0:26.

We observe that the profiles for the gravitational poten-
tials presented in Figure 1 show finite, regular, and continu-
ous behaviour throughout the stellar interior. The plots
coincide at the surface of the stellar star. We also observe
that these potentials are positive increasing functions at each
interior point of the stellar star. Figures 2 and 3 show that
the energy density ρ, radial pressure pr , and tangential pres-
sure pt are monotonically decreasing functions as radius
increases with negative gradient, i.e., ρ′ < 0, p′r < 0, and p′t
< 0. Figure 3 also indicates that the radial and tangential
pressures have the same maximum value at the centre. Sim-
ilar decreasing profiles are evident in recent studies by [5, 14,
60, 61]. The anisotropic factor in Figure 4 has zero value at
the centre and then increases to the maximum value away
from the centre and then slightly decreases as it approaches
the stellar surface. This feature can also be observed in the
works by [28, 29, 34]. We notice that Δ > 0 at each point
within the stellar interior. This implies that the force due
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to anisotropy acts outward and it is repulsive in nature based
on the observation by [47]. In Figure 5, we clearly observe
that the mass function increases monotonically with radial
distance to the surface. This is a necessary condition for
well-behaved stellar models. In Figure 6, the compactifica-
tion factor (μ) of the stellar star is in acceptable range for
anisotropic spheres. This profile also shows that the com-
pactness factor increases with the increase in radial distance.
The upper bound for the surface redshift indicated in
Figure 7 for the current model is found to be zs ≤ 0:263. This
value conforms to [50] limit, zs ≤ 2 for realistic compact
stars. The variations of forces in TOV equation are indicated
in Figure 8. We observe that the gravitational Fg, hydrostatic
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Fh, and anisotropic Fa forces within the star are balanced
such that Fg + Fh + Fa = 0. The gravitational force counter-
vails the sum of hydrostatic and anisotropic forces. This con-
dition confirms that our model satisfies the equilibrium test.
Figure 9 clearly indicates that v2r = 1/3, which is less than
unity showing that the sound speed within the stellar star
is less than the speed of light. This condition is necessary
for stable stellar configurations. Figure 10 shows that the
equation of state parameter for the current model is well
behaved. We notice that wr decreases monotonically with
radial distance. This feature is also evident in the perfor-
mance by [3, 62]. This is a necessary stability condition as
per [63] observation. We also observe that wt show slightly
increasing behaviour to a local maximum and then slightly
decreases shortly as it approaches the stellar surface but
remaining positive. Figure 11 clearly shows that the adia-
batic index Γ > Γc. This indicates that our model is stable
[64]. In Figure 12, we can easily note that jv2r − v2t j ≤ 1. This
agrees the Herrera [56] cracking condition for stability of the
model. This model also admits several energy conditions. In
Figure 13, we note that the inequalities ρ ≥ 0, ρ + pr ≥ 0, ρ
+ pt ≥ 0, ρ − pr ≥ 0, ρ − pt ≥ 0, and ρ + pr + 2pt ≥ 0 are all sat-
isfied. This indicates that our model satisfies the null, weak,
dominant, and strong energy conditions.

We applied the mass function (19) to obtain stellar
masses compatible with the observations. We have obtained
the radii and masses compatible with the compact stellar
stars such as SAXJ1808.4 with r = 7:68 km and M = 0:903
Ms, 4U1538-52 with r = 8:866 km and M = 0:87Ms,
LMCX-4 with r = 8:301 km and M = 1:04Ms, and HerX-1
with r = 8:1 km and M = 0:85Ms as indicated in [65–67],
respectively. Values of the parameters for these stellar
masses and radii are indicated in Table 1.

7. Conclusion

In the current paper, we generated a new nonsingular exact
solution of the Einstein field equations consistent with rela-
tivistic static sphere with anisotropic matter distribution.
New form of one of the gravitational potentials along with
a linear equation of state has been applied to obtain a strange
star model consistent with stellar spheres with quark matter.
All the gravitational potentials and matter variables are well
behaved and are free from central singularities. The state of
hydrostatic equilibrium for our model has been tested by
analysing Tolman-Oppenheimer-Volkoff (TOV) equation.
The profiles for gravitational potentials, matter variables,
the speed of sound, compactness, redshift, hydrostatic equi-

librium, stability, and energy conditions are acceptable on
physical grounds. Stellar masses and radii comparable with
the previous experimental observation have been generated
with our model. These are compatible with relativistic com-
pact stellar objects like SAXJ1808.4, 4U1538-52, LMCX-4,
and HerX-1 observed by [65–67], respectively.
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