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By considering a metric space with partially ordered sets, we employ the coupled fixed point type to scrutinize the uniqueness
theory for the Langevin equation that included two generalized orders. We analyze our problem with four-point and strip
conditions. The description of the rigid plate bounded by a Newtonian fluid is provided as an application of our results. The
exact solution of this problem and approximate solutions are compared.

1. Introduction

The fractional calculus concept is not absolutely intuitive,
where it has no clear geometrical interpretation. Several dis-
tinct forms have appeared, to the point that the necessity for
order has developed in the field [1, 2]. The variety of poten-
tial implementations is even more difficult. One has to think
closely about what the inserting of fractional derivatives in
the model can provide. Fractional derivatives are generally
inserted for modeling processes of mass transport, optics,
diffusion, etc. [3, 4]. With the inserting of these derivatives,
fractional-order models have described its advantages when
modeling supercapacitor capacitances [5] and controllers for
temperature [6], DC motors [7], or RC, LC, and RLC electric
circuits [8]. Through the present paper, we deem the gener-
alized Langevin differential equation of two generalized dif-
ferent orders:

cDβ cDα + λð Þx tð Þ = f t, x tð Þð Þ, 0 ≤ t ≤ 1, ð1Þ

where λ ∈ℝ, cDβ, and cDα are the Caputo generalized
derivatives with 0 < α ≤ 1 and 1 < β ≤ 2, and the continu-

ously differentiable function f : ½0, 1� ×ℝ⟶ℝ is given.
This equation is supplemented with the strip and four-
point conditions:

x 0ð Þ = 0,
cDαx 0ð Þ = 0,

x ξð Þ + x 1ð Þ = η + 1
Γ γð Þ

ðη
0
η − sð Þγ−1x sð Þds,

ð2Þ

where γ > 0 and 0 < η, ξ < 1. The third boundary condi-
tion, which appears as a linear combination of nonlocal
point and Riemann-Liouville fractional integral condition
on an arbitrary segment ð0, ηÞ ⊂ ½0, 1�, can be explained as
a gathering of the values of the obscure function at local
point 1, and nonlocal point ξ ∈ ð0, 1Þ) is proportionate to
the strip contribution of the unbeknown function. The inves-
tigation of the fractional Langevin equation (1) together with
four-point and strip conditions (2) makes our problem new
especially when applying coupled immutable point type in
the case of an existing mixed monotone mapping.
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The main goal of our research is to investigate the solu-
tion uniqueness for our case ((1) and (2)) by virtue of apply-
ing coupled immutable point type in a metric space with
partially ordered set in the case of an existing mixed mono-
tone mapping. It is worth pointing out, as far as we know,
that no contribution till now studied the uniqueness of solu-
tion for the generalized Langevin differential equation (1) by
using coupled immutable point type in a metric space with
partially ordered set in the case of an existing mixed mono-
tone mapping except Fazli and Nieto [9]. In a metric space
with partially ordered set, the coupled immutable point type
in the case of an existing mixed monotone mapping was
established at first by Bhaskar and Lakshmikantham [10]
and extended by many authors, for instance, [11–13]. The
prominence of this process rises from the reality that it is a
deductive process that accords convergent sequences to the
unique solution of our case ((1) and (2)).

The Brownian motion exceedingly draws through the
Langevin equation when the random fluctuation force is
submitted to be white noise. If the random oscillation force
is not white noise, the object motion is depicted by the gen-
eralized Langevin equation [14]. Overall, the ordinary differ-
ential equations cannot precisely characterize experimental
data and area measurement; as an alternative approach,
fractional-order differential equation models are extremely
used today [15–17].

The generalized Langevin equation is a substantial differ-
ential equation in applied mathematics, physics, and other
areas of science and engineering. It has been developed
and presented by Mainradi and Pironi [18]. With multipoint
and multistrip boundary conditions, [19–21] investigated
some properties and results to the solution of fractional
Langevin equation. The uniqueness of solution and other
properties for boundary value problems of the generalized
Langevin equation have drawn a plentiful attention from
diversified contributors within the previous decades, check
for epitome [22–24] and the spacious roster of references
presented therein. Analytical expressions of the correlation
functions have been obtained using the two fluctuation-
dissipation theorems and fractional calculus approaches.

It is worth mentioning that the Langevin equation is
extremely applied to characterize the development of physi-
cal phenomena in fluctuating environments. However, for
the systems in complex media, the ordinary order to the
Langevin equation does not give the true depiction of the
dynamics. One of the most important possible generaliza-
tions to the Langevin equation is by replacing the derivative
of positive integer order by a derivative of fractional order
which gives rise to a fractional Langevin equation (see [25]
and the references therein).

The Hyers-Ulam-Rassias along with Hyers-Ulam (HU)
stability results for fractional Langevin equation has been
studied in [26]. An explicit solution to nonhomogeneous
fractional delayed Langevin equations has been given in
[27]. The stochastic nonlinear fractional Langevin equation
with a multiplicative noise has been studied by [28]. The
hybrid Sturm-Liouville-Langevin equations with new ver-
sions of Caputo fractional derivatives have been investi-
gated in [29].

2. Preliminaries

The authors in [10] inserted the next basic connotations of
coupled immutable point type andmixedmonotonemapping.

Let ≤ be a partial order relation on a nonempty set S
which is reflexive, antisymmetric, and transitive. We refer
the pair ðS, ≤Þ to a partially ordered set. Let s be an element
in S, and then s is an upper bound (lower bound) for a sub-
set U ∈ S if u ≤ s (s ≤ u) for each u ∈U . If there are lower and
upper bounds for S, then ðS, ≤Þ is called bounded partially
ordered set. Let r and s be two elements in ðS, ≤Þ, and then
r and s are said to be comparable if either s ≤ r or r ≤ s (or
both, in case of r = s).

Let us recall the next definitions related to coupled
immutable point type and mixed monotone mapping:

Definition 1. Consider that ðS, ≤Þ is partially ordered and
mapping P : S × S⟶ S. It is called that the mapping P

has mixed monotone property if P ðp, qÞ is nonincreasing
with respect to q and nondecreasing with respect to p for
each p and q in S, and this means that

q1 ≤ q2 such that q1, q2 ∈ S⇒P p, q2ð Þ ≤P p, q1ð Þ, ð3Þ

p1 ≤ p2 such that p1, p2 ∈ S⇒P p1, qð Þ ≤P p2, qð Þ: ð4Þ

Definition 2. Let ðr, sÞ ∈ S × S, and then ðr, sÞ is called
coupled fixed point of P : S × S⟶ S if the two relations
P ðr, sÞ = r and P ðs, rÞ = s are satisfied.

The next coupled immutable point types represent the
fundamental outcomes of the contribution [10].

Theorem 3. Consider the partially ordered ðS, ≤Þ. Postulate
that ðS, dÞ is a complete metric space. Assume that P : S ×
S⟶ S is a continuous mapping that has mixed monotone
property on S. Let ρ ∈ ½0, 1Þ such that

d P r, sð Þ,P p, qð Þð Þ ≤ ρ

2
d r, pð Þ + d s, qð Þ½ �,∀p ≤ r, s ≤ q: ð5Þ

If r0, s0 ∈ X satisfy the inequalities,

r0 ≤P r0, s0ð Þ,
P s0, r0ð Þ ≤ s0:

ð6Þ

Assume either

(i) P is a continuous mapping or

(ii) The set S satisfies at least one of the following
properties:
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(a) If the sequence rn ⟶ r is a nondecreasing, then
rn ≤ r for all n

(b) If the sequence sn ⟶ s is a nonincreasing, then
s ≤ sn for all n

Then, there are r, s ∈ S that satisfy the equalities

r =P r, sð Þ,
s =P s, rð Þ:

ð7Þ

Let us introduce the next partial order on the space S × S

r, sð Þ, p, qð Þ ∈ S × S, r, sð Þ ≤ p, qð Þ⇔ r ≤ p, q ≤ s: ð8Þ

Theorem 4 (addendum to the presumptions of Theorem 3).
Assume that for each ðr, sÞ, ðp, qÞ ∈ S × S, there is a pair
ðs, rÞ ∈ S × S that is comparable to ðr, sÞ and ðp, qÞ, and then,
P has a unique coupled immutable pair ðr∗, s∗Þ.

Theorem 5 (addendum to the presumptions of Theorem 3).
Assume that each pair of elements of S has a lower or an
upper bound in S. Then, r∗ = y∗. Furthermore,

lim
n⟶∞

P n r0, y0ð Þ = r∗, ð9Þ

where

P n r0, s0ð Þ =P P n−1 r0, s0ð Þ,P n−1 s0, r0ð ÞÀ Á
: ð10Þ

Next, let us render sundry famous definitions and iden-
tities for fractional calculus. For additional specifics, check
[30, 31].

Definition 6. A generalized integral for Riemann-Liouville
has the integral form

I ιh tð Þ =
ðt
0

t − ωð Þι−1
Γ ιð Þ h ωð Þdω, ι > 0, ð11Þ

where Γð·Þ is Gamma function and h ∈ Cð½0,∞ÞÞ, provided
that the integral exists.

Definition 7. Suppose m ∈ℕ and ι are positively real with
m − 1 < ι ≤m, the Caputo derivative of h ∈ Cmð½0,∞ÞÞ has
the integral form

cDιh tð Þ = 1
Γ m − ιð Þ

ðt
0
t − ωð Þm−ι−1h mð Þ ωð Þdω, ð12Þ

provided that the integral exists. We remark that cDιc = 0
where c is constant.

Lemma 8. Let m ∈ℕ and m − 1 < ι ≤m. If h ∈ Cmð½0,∞ÞÞ,
then we have

I ιIκh tð Þ = I ι+κh tð Þ,
I ιcDιh tð Þ = h tð Þ + c0 + c1t+⋯+cm−1t

m−1,
cDιIκh tð Þ = Iκ−ιh tð Þ, κ ≥ ι:

ð13Þ

Lemma 9. Let n be positive integer and n − 1 < ι ≤ n. Then,
we have

I ιtκ = Γ κ + 1ð Þ
Γ κ + ι + 1ð Þ t

κ+ι, κ > −1,

cDιtκ = Γ κ + 1ð Þ
Γ κ − ι + 1ð Þ t

κ−ι,−1 < κ ≠ 0, 1,⋯, n − 1,

cDιtκ = 0, κ = 0, 1,⋯, n − 1:

ð14Þ

Lemma 10. The generalized Langevin equation (1) with the
conditions in (2) has a unique representation of the solution
xðtÞ if and only if the function xðtÞ is a solution of the integral
equation

x tð Þ =
ðt
0

t − sð Þα+β−1
Γ α + βð Þ f x sð Þ, sð Þds − λ

ðt
0

t − sð Þα−1
Γ αð Þ x sð Þds

+ tα+1

1 + ξα+1
η +

ðη
0

η − sð Þγ−1
Γ γð Þ x sð Þds + λ

ð1
0

1 − sð Þα−1
Γ αð Þ x sð Þds

(

+ λ
ðξ
0

ξ − sð Þα−1
Γ αð Þ x sð Þds −

ð1
0

1 − sð Þα+β−1
Γ α + βð Þ f x sð Þ, sð Þds

−
ðξ
0

ξ − sð Þα+β−1
Γ α + βð Þ f x sð Þ, sð Þds

)
:

ð15Þ

Proof. In view of Lemmas 8 and 9, we can find

cDαx tð Þ =
ðt
0

t − sð Þβ−1
Γ βð Þ h sð Þds + c0 + c1t − λx tð Þ, ð16Þ

x tð Þ =
ðt
0

t − sð Þα+β−1
Γ α + βð Þ h sð Þds + tα

Γ α + 1ð Þ c0 +
tα+1

Γ α + 2ð Þ c1

− λ
ðt
0

t − sð Þα−1
Γ αð Þ x sð Þds + c2:

ð17Þ

Inserting the condition xð0Þ = 0 in (17) gives c2 = 0, and
also inserting the boundary condition cDxð0Þ = 0 in (16)
gives c0 = 0. Using the third boundary condition in (2) gives

c1 =
Γα + 2
1 + ξα+1

η +
ðη
0

η − sð Þγ−1
Γ γð Þ u sð Þds + λ

ð1
0

1 − sð Þα−1
Γ αð Þ u sð Þds

(

+ λ
ðξ
0

ξ − sð Þα−1
Γ αð Þ u sð Þds −

ð1
0

1 − sð Þα+β−1
Γ α + βð Þ f x sð Þ, sð Þds

−
ðξ
0

ξ − sð Þα+β−1
Γ α + βð Þ f x sð Þ, sð Þds

)
:

ð18Þ
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Substituting these values of c0, c1, and c2 in the equation
(17), we acquire the desirable results. Conversely, by aiding
of the third identity of Lemma 8 and the second identity of
Lemma 9, one can see that the solution xðtÞ satisfies the frac-
tional differential equation (16). Also, it is easy to see that
the unique solution xðtÞ satisfies all boundary conditions
in (17).

3. Main Results

Presume that ðS, ≤Þ is partially ordered where S = Cð½0, 1�,
ℝÞ; it is evident that ðS, dÞ is a complete metric space of
all continuous functions endowed with the distance

d r, sð Þ = sup
t∈ 0,1½ �

x tð Þ − y tð Þj j, r, s ∈ S: ð19Þ

Distinctly, if the sequence frmgm∈ℕ is a nondecreasing in
S and converges to r ∈ S and the sequence fsmgm∈ℕ is a
nonincreasing in S and converges to s ∈ S, it follows that
rm ≤ r and s ≤ sm, for all m ∈ℕ.

Define the space ðS × S, dÞ, and then, it is a complete
metric space endowed with the distance

d r, sð Þ, p, qð Þð Þ = d r, pð Þ + d s, qð Þ, r, sð Þ, p, qð Þ ∈ S × S: ð20Þ

Furthermore, the set ðS × S,≤Þ is partially ordered if we
acquaint the next ordered relation in S

r, sð Þ ≤ p, qð Þ⇔ r tð Þ ≤ p tð Þ, q tð Þ ≤ s tð Þ, t ∈ 0, 1½ �: ð21Þ

For any r, s ∈ S, the functions min fr, sg and max fr, sg
are also in S and are lower bound and upper bound of r
and s, respectively. Therefore, for every ðr, sÞ, ðp, qÞ ∈ S × S,
there exists a ðmax fr, pg, min fs, qgÞ ∈ S × S that is compa-
rable to ðr, sÞ and ðp, qÞ.

Previously starting and showing the fundamental out-
comes, we insert the next presumptions: Assume that

(H 1) The function f : ½0, 1� ×ℝ⟶ℝ is a jointly
continuous

(H 2) The function f satisfies

0 < f t, xð Þ − f t, yð Þ ≤ Ł x − yð Þ,∀t ∈ 0, 1½ �, x, y ∈ℝ, x ≥ y,
ð22Þ

where Ł > 0 is the Lipschitz constant
For the sake of computational convenience, we set

Q1 =
2Ł

Γ α + β + 1ð Þ +
2

1 + ξα+1
ηγ

Γ γ + 1ð Þ +
λ 1 + ξα
À Á
Γ α + 1ð Þ

� �
, ð23Þ

Q2 =
2λ

Γ α + 1ð Þ +
2Ł 1 + ξα+β

� �
1 + ξα+1

� �
Γ α + β + 1ð Þ

, ð24Þ

Q1 =
2Ł

Γ α + β + 1ð Þ −
2λ

Γ α + 1ð Þ + 2ηγ

1 + ξα+1
� �

Γ γ + 1ð Þ
, ð25Þ

Q2 =
2

1 + ξα+1
� � Ł 1 + ξα+β

� �
Γ α + β + 1ð Þ −

λ 1 + ξα
À Á
Γ α + 1ð Þ

8<
:

9=
;: ð26Þ

Our mainly investigation is based on the sign of the
value of λ ∈ℝ, so we introduce the results in two ways when
λ ≥ 0 and when λ < 0 as in the following two subsections.

3.1. In the Case of λ ≥ 0. Consider the following two opera-
tors:

F1xð Þ tð Þ =
ðt
0

t − sð Þα+β−1
Γ α + βð Þ f x sð Þ, sð Þds

+ tα+1

1 + ξα+1
η +

ðη
0

η − sð Þγ−1
Γ γð Þ x sð Þds

(

+ λ
ð1
0

1 − sð Þα−1
Γ αð Þ x sð Þds

+ λ
ðξ
0

ξ − sð Þα−1
Γ αð Þ x sð Þds

)
,

ð27Þ

F2xð Þ tð Þ = λ
ðt
0

t − sð Þα−1
Γ αð Þ x sð Þds

+ tα+1

1 + ξα+1

ð1
0

1 − sð Þα+β−1
Γ α + βð Þ f x sð Þ, sð Þds

(

+
ðξ
0

ξ − sð Þα+β−1
Γ α + βð Þ f x sð Þ, sð Þds

)
:

ð28Þ

Definition 11. An element ðx0, y0Þ ∈ X × X is called a coupled
lower and upper solution of the boundary value problems
(1) and (2) if

x0 tð Þ ≤ F1x0ð Þ tð Þ − F2y0ð Þ tð Þ, t ∈ 0, 1½ �,
y0 tð Þ ≥ F1y0ð Þ tð Þ − F2x0ð Þ tð Þ, t ∈ 0, 1½ �:

ð29Þ

Theorem 12. Through the accompanying presumptions (H 1)
and (H 2), if the problems (1) and (2) have a coupled upper
and lower solutions and Q < 1 where Q =max fQ,1,Q2g
and Q1 and Q2 are defined as in (23) and (24), respectively,
then it has a unique solution in S.

Proof. Consider the operator

F x, yð Þ tð Þ = F1xð Þ tð Þ − F2yð Þ tð Þ, x, y ∈ S, t ∈ 0, 1½ �, ð30Þ
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where F1 and F2 are defined as in (27) and (28), respectively.
The continuity of the operator F comes according to the
assumption (H 1), so F ∈ S and it is well defined. Now, let
x1, x2 ∈ S such that x1 ≤ x2, and then for each t ∈ ½0, 1� and
aiding of the assumption (H 2), we have

F1x1ð Þ tð Þ − F1x2ð Þ tð Þ

=
ðt
0

t − sð Þα+β−1
Γ α + βð Þ f x1 sð Þ, sð Þ − f x2 sð Þ, sð Þ½ �ds

+ tα+1

1 + ξα+1

ðη
0

η − sð Þγ−1
Γ γð Þ x1 sð Þ − x2 sð Þ½ �ds

(

+ λ
ð1
0

1 − sð Þα−1
Γ αð Þ x1 sð Þ − x2 sð Þ½ �ds

+ λ
ðξ
0

ξ − sð Þα−1
Γ αð Þ x1 sð Þ − x2 sð Þ½ �ds

)

≤ Ł
ðt
0

t − sð Þα+β−1
Γ α + βð Þ x1 sð Þ − x2 sð Þ½ �ds ≤ 0:

ð31Þ

Thus, with fix y ∈ S, we find that

F x1, yð Þ − F x2, yð Þ = F1x1 − F1x2 ≤ 0, ð32Þ

which leads to Fðx1, yÞ ≤ Fðx2, yÞ, and thus, Fðx, yÞ is
monotonously nondecreasing in x.

Again, let y1, y2 ∈ S such that y2 ≤ y1, and then for each
t ∈ ½0, 1� and aiding of the assumption (H 2), we have

F2y2ð Þ tð Þ − F2y1ð Þ tð Þ

= λ
ðt
0

t − sð Þα−1
Γ αð Þ y2 sð Þ − y1 sð Þ½ �ds

+ tα+1

1 + ξα+1

ð1
0

1 − sð Þα+β−1
Γ α + βð Þ f y2 sð Þ, sð Þ − f y1 sð Þ, sð Þ½ �ds

(

+
ðξ
0

ξ − sð Þα+β−1
Γ α + βð Þ f y2 sð Þ, sð Þ − f y1 sð Þ, sð Þ½ �ds

)

≤
Łtα+1

1 + ξα+1

ð1
0

1 − sð Þα+β−1
Γ α + βð Þ y2 sð Þ − y1 sð Þ½ �ds

(

+
ðξ
0

ξ − sð Þα+β−1
Γ α + βð Þ y2 sð Þ − y1 sð Þ½ �ds

)
≤ 0:

ð33Þ

Thus, with fix x ∈ S, we find that

F x, y1ð Þ − F x, y2ð Þ = F2y2 − F2y1 ≤ 0, ð34Þ

which leads to Fðx, y1Þ ≤ Fðx, y2Þ, and thus, Fðx, yÞ is
monotonously nonincreasing in y. Therefore, Fðx, yÞ has
the mixed monotone property.

For each x, u ∈ S with u ≤ x and t ∈ ½0, 1�, we have
F1xð Þ tð Þ − F1uð Þ tð Þj j

≤
ðt
0

t − sð Þα+β−1
Γ α + βð Þ f x sð Þ, sð Þ − f u sð Þ, sð Þj jds

+ tα+1

1 + ξα+1

ðη
0

η − sð Þγ−1
Γ γð Þ x sð Þ − u sð Þj jds

(

+ λ
ð1
0

1 − sð Þα−1
Γ αð Þ x sð Þ − u sð Þj jds + λ

ðξ
0

ξ − sð Þα−1
Γ αð Þ x sð Þ − u sð Þj jds

)

≤ Łd x, uð Þ
ðt
0

t − sð Þα+β−1
Γ α + βð Þ ds

+ d x, uð Þ
1 + ξα+1

ðη
0

η − sð Þγ−1
Γ γð Þ ds + λ

ð1
0

1 − sð Þα−1
Γ αð Þ ds + λ

ðξ
0

ξ − sð Þα−1
Γ αð Þ ds

( )

= Ł
Γ α + β + 1ð Þ + 1

1 + ξα+1
ηγ

Γ γ + 1ð Þ + λ 1 + ξα
À Á
Γ α + 1ð Þ

� �� �
d x, uð Þ

= 12Q1d x, uð Þ:
ð35Þ

For each y, v ∈ S with y ≤ v and t ∈ ½0, 1�, we have

F2yð Þ tð Þ − F2vð Þ tð Þj j ≤ λ
ðt
0

t − sð Þα−1
Γ αð Þ y sð Þ − v sð Þj jds

+ tα+1

1 + ξα+1

ð1
0

1 − sð Þα+β−1
Γ α + βð Þ f y sð Þ, sð Þ − f v sð Þ, sð Þj jds

(

+
ðξ
0

ξ − sð Þα+β−1
Γ α + βð Þ f y sð Þ, sð Þ − f v sð Þ, sð Þj jdsg

≤
λ

Γ α + 1ð Þ +
Ł 1 + ξα+β
� �

1 + ξα+1
� �

Γ α + β + 1ð Þ

0
@

1
Ad y, vð Þ

= 12Q2d y, vð Þ:
ð36Þ

Therefore, for ðx, yÞ, ðu, vÞ ∈ S × S, we have

d F x, yð Þ, F u, vð Þð Þ
= F x, yð Þ − F u, vð Þj j
= F1xð Þ tð Þ − F1uð Þ tð Þ + F2vð Þ tð Þ − F2yð Þ tð Þj j
≤ d F1x, F1uð Þ + d F2y, F2vð Þ
≤ 12Q1d x, uð Þ + 12Q2d y, vð Þ
≤ 12Qd x, yð Þ, u, vð Þð Þ:

ð37Þ

Now, we have the partially ordered ðS × S,≤Þ and the
continuous operator Fðx, yÞ which has mixed monotone
property. Thus, we emphasize that there exists a coupled
lower and upper solution ðx0ðtÞ, y0ðtÞÞ for the problems
(1) and (2) such that x0ðtÞ ≤ Fðx0, y0Þ and Fðy0, x0Þ ≤ y0
ðtÞ. So, for every ðx, yÞ, ðu, vÞ ∈ S × S, there exists a
ðx0ðtÞ, y0ðtÞÞ that is comparable to ðx, yÞ and ðu, vÞ. These
mean that all the assumptions of Theorems 3 and 4 are satis-
fied. Therefore, F has a unique coupled fixed point in S × S;

5Advances in Mathematical Physics



that is, the boundary value problems (1) and (2) have the
unique solution ðx∗, y∗Þ ∈ ½0, 1� × ½0, 1�. This coupled solution,
according to Theorem 5, can be obtained as

lim
n⟶∞

Fn x0 tð Þ, y0 tð Þð Þ = x∗ = y∗: ð38Þ

This ends the proof.

3.2. In the Case of λ < 0. Consider the following two opera-
tors:

F1xð Þ tð Þ =
ðt
0

t − sð Þα+β−1
Γ α + βð Þ f x sð Þ, sð Þds − λ

ðt
0

t − sð Þα−1
Γ αð Þ x sð Þds

+ tα+1

1 + ξα+1
η +

ðη
0

η − sð Þγ−1
Γ γð Þ x sð Þds

( )
,

F2xð Þ tð Þ = tα+1

1 + ξα+1

ð1
0

1 − sð Þα+β−1
Γ α + βð Þ f x sð Þ, sð Þds

(

+
ðξ
0

ξ − sð Þα+β−1
Γ α + βð Þ f x sð Þ, sð Þds − λ

ð1
0

1 − sð Þα−1
Γ αð Þ x sð Þds

− λ
ðξ
0

ξ − sð Þα−1
Γ αð Þ x sð Þds

)
:

ð39Þ

Definition 13. The pair ðx0, y0Þ ∈ S × S is called a coupled
lower and upper solution of the boundary value problems
(1) and (2) if

x0 tð Þ ≤ F1x0ð Þ tð Þ − F2y0ð Þ tð Þ, t ∈ 0, 1½ �,
y0 tð Þ ≥ F1y0ð Þ tð Þ − F2x0ð Þ tð Þ, t ∈ 0, 1½ �:

ð40Þ

Theorem 14. Through the accompanying presumptions ðH 1Þ
and ðH 2Þ, if the problems (1) and (2) have coupled lower and
upper solutions and Q < 1 where Q =max fQ1,Q2g and Q1
and Q2 are defined as in (25) and (26), respectively, then it
has a unique solution in S.

Proof. Consider the operator

F x, yð Þ tð Þ = F1xð Þ tð Þ − F2yð Þ tð Þ, x, y ∈ S, t ∈ 0, 1½ �, ð41Þ

where F1 and F2 are defined as in (23) and (24), respec-
tively. The remnant of proof is identical to the proof of the
former theorem.

4. Motion of an Immersed Plate

Consider now the rigid plate of mass m immersed in a New-
tonian fluid of infinite extent and connected by a massless

0.2 0.4 0.6 0.8 1.0

t

0.05

0.10

0.15

0.20

0.25

0.30
x 

(t)

Exact solution
Lower approximate solution
Upper approximate solution

Figure 1: Exact solution with approximate solution F1.
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spring of stiffness K to a fixed point. We assume that the
small motions of the spring do not disturb the fluid and
that the area of the plate, A, is sufficiently large as to pro-
duce in the fluid adjacent to the plate the velocity field
and stresses developed in the preceding section. For the
previous problem, Bagley and Torvik [32] have found
the differential equation describing the displacement xðtÞ
of the plate to be

m
d2x
dt2

+ 2A ffiffiffiffiffiffi
νρ

p
D3/2x tð Þ + Kx tð Þ = 0, ð42Þ

where D3/2 =D1/2x′ðtÞ is the R-L fractional derivative of
order 3/2, ρ is the fluid density, and ν is the viscosity.
The equation above was then known as the Bagley and
Torvik equation. Thus, the fractional derivative is estab-
lished to become visible in the differential equation which
depicts the motion of a simple, physical system depending
on familiar mechanical and fluid components. Further-
more, its existence may be anticipated in any system dis-
tinguished by localized motion in a viscous fluid. Such is
the case for oscillations of a polymeric material. Bagley
and Torvik in their work [32] believe this accounts for
the success of a fractional derivative in modeling these
materials.

By replacing R-L fractional derivative by the Caputo
fractional derivative with noting that D3/2D1/2xðtÞ =D2xðtÞ,
we deduce that equation (42) is equivalent to equation (1)
with the boundary conditions in (2) and α = 1/2, β = 3/2,
λ = 2A ffiffiffiffiffiffi

μρ
p /m, and f ðt, xðtÞÞ = −KxðtÞ/m. Thus, equation

(42) can be rewritten as

d2x
dt2

+ λcD3/2x tð Þ + K
m
x tð Þ = 0: ð43Þ

Since xðtÞ ∈ S = Cð½0, 1Þ,ℝÞ, then the f ðt, xðtÞÞ is con-
tinuous and satisfies the Lipschitz condition with Ł = K/m.

Let the rigid plate of mass m = 40 kg and area A = 0:2m2

immersed in the Newtonian fluid, e.g., water with the values
of viscosity and density ν = 0:6527mPa:s and ρ = 992:2 kg/
m3 at 40°C and connected by a massless spring of stiffness
K = 10N/m to a fixed point which implies that λ = 2A ffiffiffiffiffiffi

νρ
p

/m ~ 0:254482.
By carrying out Mathematica 11 software, it is easy to

compute Q1 ~ 0:98855 and Q2 ~ 0:818395 where Q1 and
Q2 are defined as in (23) and (24), respectively. According
to Theorem 12, since λ > 0, we have to choose Q =Q1 ~
0:98855 = <1 which implies that there is a unique solution
of our problem (43).

Now, we are seeking to compute the exact solution. For
this, apply the Laplace transform to the problem (43) to get

Exact solution
Lower approximate solution
Upper approximate solution
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Figure 2: Exact solution with approximate solution F2.
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L x tð Þ, sf g = 1 + λs−1/2

s2 + λs3/2 + Ł
x′ 0ð Þ

= −
1ffiffi
s

p 0:189606 ffiffi
s

p
− 0:673692

s − 0:884781 ffiffi
s

p + 0:440632

�

−
0:189606 ffiffi

s
p

− 0:289922
s + 1:13926 ffiffi

s
p + 0:567367

�
x′ 0ð Þ

= −
1ffiffi
s

p a+ffiffi
s

p
− b+

+ a−ffiffi
s

p
− b−

−
c−ffiffi
s

p
− d+

−
c+ffiffi
s

p
− d−

� �
x′ 0ð Þ,

ð44Þ

where

a± = 0:0948028 ± 0:595895i ≜ a1 ± a2i,
b± = 0:4423910 ± 0:494896i ≜ b1 ± b2i,
c± = 0:0948028 ± 0:403712i ≜ c1 ± c2i,
d± = −0:569632 ± 0:492835i ≜ d1 ± d2i:

ð45Þ

It is known that

L Eα,β ±atαð ÞÈ É
= sα−β

sα ∓ a
and E1/2,1 zð Þ = ez

2 erfc −zð Þ, ð46Þ

which implies that

x tð Þ = − a+E1/2,1 b+
ffiffi
t

p� �
+ a−E1/2,1 b−

ffiffi
t

p� �
− c−E1/2,1 d+

ffiffi
t

p� �h
− c+E1/2,1 d−

ffiffi
t

p� �i
x′ 0ð Þ

= − a+e
b2+t erfc −b+

ffiffi
t

p� �
+ a−e

b2−t erfc −b−
ffiffi
t

p� �h
− c−e

d2+t erfc −d+
ffiffi
t

p� �
− c+e

d2−t erfc −d−
ffiffi
t

p� �i
x′ 0ð Þ

≜ −g tð Þx′ 0ð Þ,
ð47Þ

where erfc ðzÞ = 1 − erf ðzÞ is the complementary error
function defined as

erf zð Þ = 2ffiffiffi
π

p
ðz
0
e−t

2
dt: ð48Þ

It is easy to see that

a+e
b2+t + a−e

b2−t

= e b21−b
2
2ð Þt a1 e2ib1b2t + e−2ib1b2t

� �
+ ia2 e2ib1b2t − e−2ib1b2t

� �h i
= 2e b21−b

2
2ð Þt a1 cos 2b1b2tð Þ + a2 sin 2b1b2tð Þ½ �,

a+e
b2+t erf −b+

ffiffi
t

p� �
+ a−e

b2−t erf −b−
ffiffi
t

p� �
= 2ffiffiffi

π
p e b21−b

2
2ð Þt a+e

2ib1b2t
ð−b+ ffiffi

t
p

0
e−s

2
ds + a−e

−2ib1b2t
ð−b− ffiffi

t
p

0
e−s

2
ds

� �

= −
2

ffiffi
t

pffiffiffi
π

p e b21−b
2
2ð Þt a+b+e

2ib1b2t
ð1
0
e−b

2
+ts

2
ds + a−b−e

−2ib1b2t
ð1
0
e−b

2
−ts

2
ds

� �

= −
2

ffiffi
t

pffiffiffi
π

p e b21−b
2
2ð Þt
ð1
0
e− b21−b

2
2ð Þts2 a+b+e

2ib1b2t 1−s2ð Þ + a−b−e
−2ib1b2t 1−s2ð Þ� �

ds

= −
4

ffiffi
t

pffiffiffi
π

p e b21−b
2
2ð Þt
ð1
0
e− b21−b

2
2ð Þts2 a1b1 − a2b2ð Þ cos 2b1b2t 1 − s2

À ÁÀ ÁÀ
+ a1b2 + a2b1ð Þ sin 2b1b2t 1 − s2

À ÁÀ ÁÁ
ds,

ð49Þ

which lead to xðtÞ ∈ℝ for all t ∈ ½0, 1�. Also, it is not dif-
ficult to show

x 0ð Þ = − a+ + a− − c− − c+½ �x′ 0ð Þ = − 2a1 − 2c1½ �x′ 0ð Þ = 0
ð50Þ

and cD12xð0Þ = 0 from the continuity of xðtÞ and the def-
inition of the Caputo derivative. The last condition in (2)
gives

x tð Þ = η

Iγg ηð Þ − g 1ð Þ − g ξð Þ g tð Þ: ð51Þ

In order to determine the values of minimum and
maximum solutions ðx0, y0Þ, we solve both inequalities in
Definition 11 with taking into account the definitions of
the two operators F1 and F2 as in (27) and (28), respec-
tively, and we find that x0 < f ðtÞ and y0 > f ðtÞ for all t ∈
½0, 1� where

f tð Þ = 0:269714t
ffiffi
t

p

1 + 0:287152
ffiffi
t

p
− 0:491321t

ffiffi
t

p
+ 0:125t2

: ð52Þ

In view of the behavior of the function f ðtÞ on the
interval ½0, 1�, numerically, we get that it is increasing on
ð0, 1Þ which yields that 0 = f ð0Þ < f ðtÞ < f ð1Þ ~ 0:292903.
Conclusion, we can take the minimum and maximum
solutions ðx0, y0Þ = ð0, 1Þ. Under the assumptions of Theo-
rem 12 and all of which have been fulfilled, there exists a
unique solution for the problem (43) in the interval ½0, 1�.
With the help of Theorem 5, we can determine the unique
solution to this problem as

x∗ = lim
n⟶∞

Fn x0, y0ð Þ = lim
n⟶∞

Fn y0, x0ð Þ, ð53Þ

where

Fn x0, y0ð Þ = F Fn−1 x0, y0ð Þ, Fn−1 y0, x0ð ÞÀ Á
, n ∈ℕ,
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F0 x0, y0ð Þ = F x0, y0ð Þ = −0:0861455
ffiffi
t

p
+ 0:306328t

ffiffi
t

p
,

F0 y0, x0ð Þ = F y0, x0ð Þ = 0:380497t
ffiffi
t

p
− 0:0375t2,

F1 x0, y0ð Þ = 0:269714t
ffiffi
t

p
− 0:141072t2

+ 0:0215364t2
ffiffi
t

p
+ 0:159557t3

− 0:0428677t3
ffiffi
t

p
,

F1 y0, x0ð Þ = 0:0247368t + 0:269714t
ffiffi
t

p
− 0:0984762t2

+ 0:177894t3 − 0:0614099t3
ffiffi
t

p
+ 0:0046875t4,

F2 x0, y0ð Þ = 0:262611t
ffiffi
t

p
− 0:0774489t2

+ 0:0312966t2
ffiffi
t

p
+ 0:132516t3

− 0:14891t3
ffiffi
t

p
+ 0:0432208t4

+ 0:0765936t4
ffiffi
t

p
− 0:0432694t5

+ 0:00593055t5
ffiffi
t

p
,

F2 y0, x0ð Þ = 0:269714t
ffiffi
t

p
− 0:0774489t2

+ 0:0496437t2
ffiffi
t

p
+ 0:12324t3

− 0:133113t3
ffiffi
t

p
+ 0:0272475t4

+ 0:0851651t4
ffiffi
t

p
− 0:0501457t5

+ 0:00940721t5
ffiffi
t

p
− 0:000585938t6:

ð54Þ

In Figures 1 and 2, we graph the exact solution with
blue color, lower approximate solution with yellow color,
and upper approximate solution with green color. We note
that the lower and upper solutions take the same behavior
slightly different and intersect the exact solution at t = 0:95
and t = 0:75 in Figure 1 and t = 0:9 and t = 0:8 in Figure 2,
respectively. Therefore, we expect that they intersect at the
same point in the higher order.

5. Conclusion

Here, some transactions are presented with the uniqueness
of solution for four-point and strip generalized Langevin
equation that included two generalized orders in distinct
intervals. We solve the problem with the properties of the
fractional calculus and coupled immutable point type. It
turned out that there are two cases to apply our theorems.
We took each case into consideration and gave an illustrative
example for each one. The fractional differential equation,
due to Bagley and Torvik which describes the motion of
the rigid plate immersed in a Newtonian fluid of infinite
extent and connected by a massless spring of stiffness to a
fixed point, is taken as an application of our results. It is
shown in Figures 1 and 2 that there is a small difference
between the exact and approximate solutions.
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