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Abstract

this work, we investigate a Cournot-Bertrand duopoly model with product differentiation between
two different firms, where one company uses price as a decision variable and the other uses
quantity. The stability of the Nash equilibrium point is investigated, and the role of the parameters
on the model stability is studied. It is shown that the system experiences three different types of
bifurcations when the parameters go through the different boundary curves of the stability region.
Furthermore, the model’s bifurcation is controlled using a hybrid control strategy.
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1 Introduction

Cournot and Bertrand were the pioneers of oligopoly research. The products in the Cournot model
[1] are homogenous, and companies compete on the quantity of outputs. Firms compete on pricing
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in the Bertrand model [2]. There have been a few papers written in recent years about Cournot-
Bertrand competition [3, 4, 5, 6]. This type of competition is characterized by the fact that the
market can be subdivided into two groups of firms: the first of which optimally adjusts prices, and
the other of which optimally adjusts their output to ensure maximum profit. There are examples of
Cournot-Bertrand mixed models in the real world economy. For instance, in a market characterized
by duopoly, one company competes in a dominating position and selects output as its decision
variable, whilst the other company, which is in a disadvantageous position, selects price as its
decision variable in an effort to increase its share of the market. In general, the upstream companies
in the supply chain prefer output competition, while the downstream firms prefer price wars.

We consider a differentiated product market with an inverse demand function. It is assumed that
the market promotes differentiated products to give consumers certain preferences and their main
interests take advantage of differentiated products. The first enterprise produces quantity q1 at
price p1 and the second enterprise produces quantity q2 at price p2. Here, the competitive profile
is p = (p1, p2), where each firm wants to maximize profits based on the following:

Maxpiπi(pi, p−i) = qipi − Ci(qi), (1.1)

where p−i refers to the price of some other enterprise distinct from enterprise i,and Ci(qi) is the
cost function. Using the consumer preferences introduced in [7], the following utility function is
given:

U(q1, q2) = a(q1 + q2)−
1

2
(q21 + q22 + 2bq1q2), (1.2)

where q1, q2, a are positive and 0 < b < 1. The parameter b is an index of product differentiation.
When b = 1, firms produce homogeneous goods. When b = 0, products are unrelated and each firm is
a monopolist. In this illustration, we consider the duopoly case with differentiation, 0 < b < 1. This
utility function gives rise to a linear demand structure. Inverse demands are given by pi =

∂U
∂qi

,= 1, 2
which are {

p1 = a− q1 − bq2,

p2 = a− q2 − bq1.
(1.3)

p1, q2 is expressed as a function of q1, p2 and the competitive model of q1, p2 is studied as follows:{
p1 = a(1− b)− (1− b2)q1 + bp2,

q2 = a− p2 − bq1.
(1.4)

We consider a nonlinear cost function:

Ci(qi) = ciqi + diqiqj , i, j = 1, 2, i ̸= j.

Here ci represent marginal costs of quantity qi which are positive and ci ∈ (0, a), and di > 0, i = 1, 2
is a control parameter of cost.

Net benefit is expressed as follows:

{
π1(q1, p2) = p1q1 − C1 = [a(1− b)− (1− b2)q1 + bp2]q1 − c1q1 − d1q1(a− p2 − bq1)

π2(q1, p2) = p2q2 − C2 = p2(a− p2 − bq1)− c2(a− p2 − bq1)− d2q1(a− p2 − bq1)
(1.5)

We assume that the firms maximize the relative profit, which is denoted by{
Π1(q1, p2) = π1(q1, p2)− π2(q1, p2),

Π2(q1, p2) = π2(q1, p2)− π1(q1, p2).
(1.6)
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Substituting (1.5) into (1.6), after some modifications, we get{
Π1(q1, p2) = Gq1 −Hp2 + Eq21 + p22 + Fq1p2,

Π2(q1, p2) = −Gq1 +Hp2 − Eq21 − p22 − Fq1p2,
(1.7)

where

E = (b2 − 1) + b(d1 − d2), F = 2b+ d1 − d2,

G = a(1− b)− (c1 + bc2)− a(d1 − d2), H = a+ c2

According to the relative profit maximization conditions ∂Π1
∂q1

= 0, ∂Π2
∂p2

, substituting equation (1.7)
into them,we can get {

∂Π1
∂q1

= G+ 2Eq1 + Fp2 = 0,
∂Π2
∂p2

= H − 2p2 − Fq1 = 0.
(1.8)

We assume that both firms are acting in a rational way in order to build and study the dynamics
of this game. Rational behavior means that firms use short-sighted adjustment mechanisms that
require them to know if their relative profits are going up or down. Using this mechanism, we build
a dynamic system to explain the game process as follows:{

q1(t+ 1) = q1(t) + α1q1(t)
∂Π1
∂q1

= q1(t) + α1q1(t)(G+ 2Eq1(t) + Fp2(t)),

p2(t+ 1) = p2(t) + α2p2(t)
∂Π2
∂p2

= p2(t) + α2p2(t)(H − 2p2(t)− Fq1(t)),
(1.9)

where

E = (b2 − 1) + b(d1 − d2), F = 2b+ d1 − d2,

G = a(1− b)− (c1 + bc2)− a(d1 − d2), H = a+ c2,

and αi > 0, i = 1, 2 are speed adjustment parameters.

The majority of our findings relate the stability and instability of the model’s fixed points, particularly
the paths that lead to the various forms of bifurcations. We direct the attention of the readers to
[8, 9, 10, 11, 12, 13, 14, 15] for a more in-depth consideration of stability, bifurcation, and chaos
control.

2 Existence and Stability of Equilibrium Points

Using the Jury condition, this section will explore the existence of fixed points as well as their
stability.

We consider the set

Γ = {(a, b, c1, c2, d1, d2, α1, α2) ∈ R8 : all parameters are positive and 0 < b < 1, 0 < c1 < a, 0 < c2 < a}

The equilibrium points (q̄1, p̄2) of the system (1.9) are the solutions of the following system:

{
q̄1 = q̄1 + α1q̄1(G+ 2Eq̄1 + F p̄2),

p̄2 = p̄2 + α2p̄2(H − 2p̄2 − F q̄1),
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where

E = (b2 − 1) + b(d1 − d2), F = 2b+ d1 − d2,

G = a(1− b)− (c1 + bc2)− a(d1 − d2), H = a+ c2

Through some simple algebraic computations, one can verify that the system (1.9) has four equilibrium
points:

E0(0, 0), E1(−
G

2E
, 0), E2(0,

H

2
), E3(q̄1, p̄2).

where

q̄1 =
(a− c2)(d2 − d1) + 2(a− c1)

4 + (d1 − d2)2
,

p̄2 =
2c2 + c1d1 − c1d2 + b(2c1 − c2d1 + c2d2) + a(2− d1 + d21 + b(−2 + d1 − d2) + d2 − 2d1d2 + d22)

4 + (d1 − d2)2
.

The equilibrium point E1(− G
2E

, 0) exists if and only if G
E

< 0.

By doing basic calculations, one may verify that in set Γ, p̄2 > 0 and

q̄1 =
(a− c2)(d2 − d1) + 2(a− c1)

4 + (d1 − d2)2
> 0

if and only if

d1 − d2 <
2(a− c1)

a− c2
.
In [16], the authors studied the model (1.9) . They examined existence and stability of the fixed
points. In their work, they pointed out some conditions for the existence of Nash equilibrium
point. With the help of mathematica software, we found that for the existence of Nash equilibrium
point we require the parameters domain Γ and d1 − d2 < 2(a−c1)

a−c2
. In [16], the authors used extra

conditions for the existence of Nash equilibrium point. Moreover, we discussed rate of convergence,
and we used some control techniques to control bifurcation and chaos in the model (1.9). In [16],
the authors did not discussed rate of convergence and chaos control.

The point E3(q̄1, p̄2) is the unique equilibrium point of system (1.9) iff d1 − d2 < 2(a−c1)
a−c2

.

The Jacobian matrix of the model (1.9) at the point (q̄1, p̄2) is defined as follows:

J =

[
1 + α1(G+ F p̄2 + 4Eq̄1) α1F q̄1

−α2F p̄2 1 + α2(h− 4p̄2 − F q̄1)

]
. (2.1)

The trace T and determinant D of the matrix J are

T = 2 + α1(G+ Fp2 + 4Eq1) + α2(H − 4p2 − Fq1),

D = 1 + α2(H − 4p2 − Fq1) + α1(G+ 4E(1 + α2H − 4α2p2)q1 + α2G(H − 4p2 − Fq1)

+ F (p2 + α2Hp2 − 4α2p
2
2 − 4α2Eq21))

In accordance with the Jury condition, the equilibrium point (q̄1, p̄2) is considered to be stable if
and only if the following conditions are met:
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
T +D + 1 > 0,

−T +D + 1 > 0,

D − 1 < 0.

(2.2)

3 Rate of Convergence

In this section, we are going to determine the rate of convergence of a solution that is going to
converge to the Nash equilibrium point of the model (1.9).

The following result gives the rate of convergence of solutions of a system of difference equations

Xn+1 = (A+B(n))Xn, (3.1)

where Xn is an m-dimensional vector, A ∈ Cm×m is a constant matrix and B : Z+ → Cm×m is a
matrix function satisfying

lim
n→∞

∥Bn∥ = 0. (3.2)

Here ∥.∥ refers to any matrix norm that is connected to the vector norm

∥ < x, y > ∥ =
√

x2 + y2.

Proposition 3.1. [17] Assume that the condition (3.2) holds. If Xn is a solution of (3.1), then
either Xn = 0 for all large values of n or

ρ = lim
n→∞

(∥Xn∥)
1
n

exists and is equal to the modulus of one of the eigenvalues of matrix A.

Proposition 3.2. [17] Assume that the condition (3.2) holds. If Xn is a solution of (3.1), then
either Xn = 0 for all large values of n or

ρ = lim
n→∞

∥Xn+1∥
∥Xn∥

exists and is equal to the modulus of one of the eigenvalues of matrix A.

Let(q1(t), p2(t)) be any solution of the model (1.9) such that limt→∞ q1(t) = q̄1(t) and limn→∞ p2(t) =
p̄2(t). To find the error terms, one has from the model (1.9)

q1(t+ 1)− q̄1 = q1 + α1q1(t)

(
G+ 2Eq1(t) + Fp2(t)

)
− q̄1 − α1q̄1

(
G+ 2Eq̄1 + F p̄2

)
=

(
1 + α1(G+ 2E(q1(t) + q̄1) + F p̄2)

)
(q1(t)− q̄1) + α1Fq1(t)(p2(t)− p̄2),

and

p2(t+ 1)− p̄2 = p2(t) + α2p2(t)

(
−Fq1(t)− 2p2(t) +H

)
− p̄2 − α2p̄2

(
−F q̄1 − 2p̄2 +H)

)
= −α2Fp2(t)(q1(t)− q̄1) +

(
1 + α2(−F q̄1 − 2(p2(t) + p̄2) +H

)
(p2(t)− p̄2).
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Let, e1t = q1(t)− q̄1 and e2t = p2(t)− p̄2 then one has

e1t+1 = ate
1
t + bte

2
t ,

and

e2t+1 = cte
1
t + dte

2
t ,

where

at = 1 + α1(G+ 2E(q1(t) + q̄1) + F p̄2),

bt = α1Fq1(t),

ct = −α2Fp2(t),

dt = 1 + α2(−F q̄1 − 2(p2(t) + p̄2) +H.

Moreover,

lim
t→∞

at = 1 + α1(G+ 4Eq̄1 + F p̄2),

lim
t→∞

bt = α1F q̄1,

lim
t→∞

ct = −α2F p̄2,

lim
t→∞

dt = 1 + α2(−F q̄1 − 4p̄2) +H.

Now the limiting system of error terms can be written as[
e1t+1

e2t+1

]
=

[
1 + α1(G+ 4Eq̄1 + F p̄2) α1F q̄1

−α2Fp2 1 + α2(−F q̄1 − 4p̄2) +H

] [
e1n
e2n

]
which is similar to the linearized system of (1.9) about the Nash equilibrium point (q̄1, p̄2).

Using the proposition (3.1), one has the following result.

Theorem 3.1. Assume that {(q1(t), p2(t))} be a positive solution of the model (1.9) such that
limt→∞ q1(t) = q̄1(t) and limt→∞ p2(t) = p̄2(t), where (q̄1, p̄2) is the Nash equilibrium point of

the model (1.9). Then, the error vector et =

(
e1t
e2t

)
of every solution of (1.9) satisfies both of the

following asymptotic relations

lim
t→∞

(∥et∥)1/t = |λ1,2J(q̄1, p̄2)|,

lim
t→∞

∥et+1∥
∥et∥

= |λ1,2J(q̄1, p̄2)|,

where λ1,2J(q̄1, p̄2) are the characteristic roots of Jacobian matrix J(q̄1, p̄2).

4 Hybrid Control Method

The study of methods for controlling chaos in discrete systems has surged in popularity in recent
years. In dynamical systems, it is preferable to maximize the system in terms of certain success
criterion while suppressing chaos.
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The state feedback control approach (OGY method) [18, 19], the pole-placement technique [20], and
the hybrid control method [21] are all viable options for achieving chaos control in discrete models.
Only the hybrid control strategy will be discussed in this section. This method was originally
developed to regulate the period-doubling bifurcation, but it also has the capability of managing
the Neimark-Sacker bifurcation.

We take into consideration the controlled system associated with (1.9) as shown below.

{
q1(t+ 1) = β(q1(t) + α1q1(t)(G+ 2Eq1(t) + Fp2(t))) + (1− β)q1(t),

p2(t+ 1) = β(p2(t) + α2p2(t)(H − 2p2(t)− Fq1(t))) + (1− β)p2(t),
(4.1)

where 0 < β < 1. Both the controlled system (4.1), and the original system (1.9), share the same
fixed points. The Jacobian matrix of (4.1) evaluated at E3(q̄1, p̄2) is

J(E3) =

[
1 + α1β(G+ F p̄2 + 4Eq̄1) α1βF q̄1

α2βF p̄2 1 + α2β(H − 4p2 − F q̄1)

]
.

The trace T and determinant D of the matrix J are

T = 2 + α1β(G+ F p̄2 + 4Eq̄1) + α2β(H − 4p̄2 − F q̄1),

D = 1 + α2β(H − 4p̄2 − F q̄1) + α1β(G+ 4E(1 + α2β(H − 4p̄2))q̄1 + α2βG(H − 4p̄2 − F q̄1)

+ F (p̄2 + α2βHp̄2 − 4α2βp̄2
2 − 4α2βEq̄1

2)).

In accordance with the Jury condition, the Nash equilibrium point (q̄1, p̄2) is considered to be stable
if and only if the following requirements are met:

T +D + 1 > 0,

−T +D + 1 > 0,

D − 1 < 0.

(4.2)

5 Numerical Simulations

In this part, we provide numerical examples to validate our earlier theoretical results about the
model’s many qualitative features.

5.1 Stability analysis and bifurcation of the system (1.9) at E3 by
using a as bifurcation parameter:

For model (1.9), we set the parameters and beginning conditions as follows:

b = 1, c1 = 2, c2 = 2, d1 = 1, d2 = 3, α1 = 0.1, α2 = 0.15, q1(0) = 0.1, p2(0) = 0.1.

The bifurcation diagrams (1a, 1b) of Fig. 1 depict that system experiences transcritical bifurcation
for a = 2 and period doubling bifurcation for a ≈ 11.3333. The Nash equilibrium point is stable
for 2 < a < 11.3333. All three inequalities of (2.2) are satisfied iff 2 < a < 11.3333. The phase
portrait depicted in fig. (1e) is showing that Nash equilibrium point is stable for a = 11.3. The
phase portrait depicted in fig. (1f) is showing that Nash equilibrium point is unstable due to period
doubling bifurcation for a = 11.4.
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For model (4.1), we set the parameters and beginning conditions as follows:

β = 0.95, b = 1, c1 = 2, c2 = 2, d1 = 1, d2 = 3, α1 = 0.1, α2 = 0.15, q1(0) = 0.1, p2(0) = 0.1.

The bifurcation diagrams (1c, 1d) of fig. 1 depict that system experiences transcritical bifurcation
for a = 2 and period doubling bifurcation for a ≈ 12.0351. It confirms that period doubling
bifurcation is delayed in controlled model (4.1).

Fig. 1. Bifurcation diagrams of (1.9) and (4.1) for β = 0.95, b = 1, c1 = 2, c2 = 2, d1 =
1, d2 = 3, α1 = 0.1, α2 = 0.15, q1(0) = 0.1, p2(0) = 0.1, a ∈ (0, 17), and phase portraits of

model (1.9) for a = 11.3 and a = 11.4.

122



Ahmed et al.; ARJOM, 18(10): 115-125, 2022; Article no.ARJOM.91109

5.2 Stability analysis and bifurcation of the system (1.9) at E3 by
using b as bifurcation parameter:

For model (1.9), we set the parameters and beginning conditions as follows:

a = 8, c1 = 2, c2 = 2, d1 = 1, d2 = 0.5, α1 = 0.1, α2 = 0.1, q1(0) = 0.1, p2(0) = 0.1.

The bifurcation diagrams (2a, 2b) of fig. 2 depict that system experiences Neimark-Sacker bifurcation
for b ≈ 1.036. The Nash equilibrium point is stable for 0 < b < 1.036. All three inequalities of
(2.2) are satisfied iff 0 < b < 1.036. The phase portrait depicted in fig. (2e) is showing that Nash
equilibrium point is stable for b = 1.03. The phase portrait depicted in fig. (2f) is showing that
Nash equilibrium point is unstable due to Neimark-Sacker bifurcation for b = 1.04.

For model (4.1), we set the parameters and beginning conditions as follows:

β = 0.25, a = 8, c1 = 2, c2 = 2, d1 = 1, d2 = 0.5, α1 = 0.1, α2 = 0.1, q1(0) = 0.1, p2(0) = 0.1.

Fig. 2. Bifurcation diagrams of (1.9) and (4.1) for β = 0.25, a = 8, c1 = 2, c2 = 2, d1 =
1, d2 = 0.5, α1 = 0.1, α2 = 0.1, q1(0) = 0.1, p2(0) = 0.1, a ∈ (0.1, 1.15),and phase portraits of

model (1.9) for b = 1.03 and b = 1.04.
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The bifurcation diagrams (2c, 2d) of fig. (2) depict that system experiences Neimark-Sacker
bifurcation for b ≈ 1.13789. It confirms that Neimark-Sacker bifurcation is delayed in controlled
model (4.1).

The similar investigation for other parameters c1, c2, d1, d2, α1, α2 can be done by taking one of the
parameters as bifurcation parameter and fixing all other parameters. All parameters are affecting
the stability of Nash equilibrium point of model (1.9).

6 Conclusion

We studied a dynamic version of the Cournot-Bertrand competition in this paper. In particular,
we looked at how a duopoly game changes when one company competes on price and the other on
quantity. Conditions for the existence and local stability of the Nash equilibrium are established.
The impacts of parameters on Nash equilibrium point stability are investigated. Using numerical
investigations, we have examined the study of bifurcation, which leads to qualitative changes in
the behavior of games and leads to loss of stability of Nash equilibrium. When the parameters of
the system exceed the boundary curve of the stable zone, three distinct types of bifurcations are
discovered: period-doubling, Neimark-Sacker, and transcritical bifurcations. This indicates that
the dynamic behavior of the outputprice game becomes more complicated. In addition, a hybrid
control mechanism is used in order to bring bifurcation and chaos under control. It has been shown
via numerical examples that the bifurcation in the modified controlled model occurs later than in
original model as a result of the hybrid control strategy.
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