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ABSTRACT 
 

The cohesive energies of 3-dimensional (3-D) topological insulators bismuth antimony (BiSb) and 
bismuth selenide (Bi2Se3) were calculated. The Fritz Haber Institute Ab-initio molecular simulations 
(FHI-aims) code was employed for this calculation.  The output files of the FHI-aims code were 
used during the computation and the total energies at each number of iterations for single free 
atoms and bulk were then calculated. The results from this work revealed that bismuth atom 
becomes stable at 3

rd
 iteration meanwhile both selenium and antimony atoms gain stability at the 

5
th
 iteration. The results also showed that bismuth antimony acquire stability at the 3

rd
 iteration and 

bismuth selenide gain stability at 9
th
 iteration. This implies that among the free atoms studied in this 

work bismuth atom is more stable and for the bulk bismuth antimony is more stable. The cohesive 
energies of BiSb and Bi2Se3 were calculated using the optimized parameters. The results obtained 
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from the calculation of the cohesive energies in this work were 1.02eV and 1.76eV for BiSb and 
Bi2Se3 respectively. This results compared reasonably well with experimental results and have little 
percentage errors of 1.30% for bismuth antimony and 29.55% for bismuth selenide. The deviation 
observed in this work may be due to the DFT calculation of the solid rather than the atoms 
themselves. 

 

 
Keywords: Cohesive energies; topological insulators; FHI-aims; bismuth selenide (Bi2Se3); bismuth 

antimony (BiSb) and DFT. 
 

1. INTRODUCTION 
 
Topological is the newest electronic phase 
discovered recently. Hitherto, the electrical 
conductor, insulator, semiconductor, and the 
superconductor were the first electronic phase of 
matter to be known. “The most exciting thing 
about this new electronic phase is the behaviour. 
Materials in this new phase behave strangely. 
The topological insulator can insulate on the 
inside but conduct on the outside. This new 
electronic phase of matter are said to be 
materials with non-trivial symmetry protected 
topological order that behaves as an insulator in 
its interior but whose surface contains conducting 
states” [1]. The materials in this phase are 
unique in the sense that the conducting electrons 
arrange themselves into spin-up electrons 
travelling in one direction, and spin-down 
electrons travelling in the other. This imply that 
electrons can only move along the surface of the 
material. 
 
“The conducting surface possessed by 
topological insulator is however not unique to 
them only, ordinary band insulators also support 
conductivity on the surface states. The only 
distinctive thing about topological insulators is 
that their surface states are symmetry protected 
by particle number of conservation and time 
reversal symmetry” [2-4]. 
 
“The electronic band structure resembles an 
ordinary band insulator in the bulk of the non-
interacting topological insulator, with the Femi 
level falling between the conduction and valence 
bands. This implies that, on the surface of the 
topological insulator there are special states that 
fall within the bulk energy gap and allow surface 
metallic conduction. It has established that 
carriers in these surface states have their spin 
locked at a right-angle to their momentum (spin-
momentum locking)” [5]. “At a given energy the 
only other available electronic states have 
different spin, so the U-turn scattering is strongly 
suppressed and conduction on the surface is 
highly metallic. Non-interacting topological 

insulators are characterized by an index known 
as the Z2 topological invariants similar to the 
genus in topology” [6]. 
 
“The protected conducting states in the surface 
are required by time-reversal symmetry and the 
band structure of the material” [7]. “This shows 
that states cannot be removed by surface 
passivation if it does not break the time-reversal 
symmetry, which does not happen with potential 
or spin-orbit scattering but happens in case of 
true magnetic impurities such as spin- scattering” 
[8]. 
 
“Topological insulators have a rather unusual 
history because unlike almost every other exotic 
phase of matter, topological insulators were 
characterized theoretically before being 
discovered experimentally. This new electronic 
phase of matter was discovered in 2007 
experimentally. The first realized 3D topological 
state (symmetry-protected surface states) 
discovered experimentally in bismuth-antimony 
(BiSb)” [9]. “Shortly thereafter symmetry-
protected surface states were discovered in pure 
antimony (Sb), bismuth selenide (Bi2Se3), 
bismuth telluride (Bi2Te3) and antimony telluride 
(Sb2Te3)” [10]. 
 
“This research work was initiated due to the 
importance of BiSb and Bi2Se3 in the modern 
technology. Today, many semiconductors within 
the large family of Heusler materials are now 
believed to exhibit topological surface states” 
[11]. “In some of these materials Femi level 
actually falls in either the conduction or valence 
bands due to naturally occurring defects and 
must be pushed into the bulk gap by doping or 
gating” [12]. 
 
“This recent discovery did draw the attention of 
many Solid-State Physicists. A related 
topological property known as the quantum Hall 
effect had already been found in 2D ribbons in 
the early 1980s but the discovery of the first 
example of a 3D topological phase reignited that 
earlier interest. Given that the 3D topological 
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insulators are fairly standard bulk 
semiconductors and their topological 
characteristics can survive to high temperatures” 
[13]. Other notable research on topological 
insulators is in energy generation of electricity by 
converting thermal gradients occurring naturally 
or from waste heat sources into useful electrical 
energy [14] and “Raman Spectroscopy 
determination of Debye temperature and atomic 
cohesive energy” [15]. In this work however, the 
cohesive energies of bismuth selenide (Bi2Se3) 
and bismuth antimony (BiSb) were calculated by 
the researches using density functional theory. 
 
“Cohesive energy is amount of energy involved 
when a crystalline solid is formed from infinity 
separated atoms or the amount of energy 
required to separate atoms in a crystalline solid 
to infinite distance. In Physics however, cohesive 
energy means the difference between the 
average energy of the free atoms and that of the 
atoms of a solid especially a crystal. It is the 
quantity which determines the structure, because 
different possible structures would have different 
cohesive energies” [16]. The magnitude of 
cohesive energy also tells us about the stability 
and chemical reactivity of solids.  
 

2. THEORETICAL FRAMEWORK 
 
“Density Functional Theory (DFT) is a 
computational quantum mechanical modelling 
method used in Physics, Chemistry and material 
science to investigate the electronic structure 
(especially the ground state) of many-body 
systems, in particular atoms, molecules, and the 
condensed phase” [17-20]. “Applying this theory, 
the properties of a many-electron, which in this 
case is the spatially dependent electron density. 
DFT has been the dominant method for quantum 
mechanical simulation of periodic systems. In 
recent years it has also been adopted by 
quantum chemistry and is now very widely used 
for simulation of energy surfaces in molecules” 
[21]. 
 
“Traditional methods in electronic structure 
theory, particularly the Hatree-Fock theory and 
its descendants are based on the complicated 
many-electron wave function. The main objective 
of DFT is to replace the many-body electronic 
wave function with the electronic density as the 
basic quantity. Thereby making many-body wave 
function dependent on 3N variables, three 
special variables for each of the N electrons, the 
density is only a function of the three variables 

and is simpler to deal with both conceptually and 
practically” [22]. 
 

2.1 The Hohenberg-Kohn Theorem 
 

The Hohenberg –Kohn (H-K) theorem states that 
the electrons density of any system determines 
all ground-state properties of the system. In this 
case the total ground state energy of a many-
electron system is a function of the density             
[23-25]. 
 

The theory assumes a system of N-interacting 
electrons under an external potential     . This 
potential is usually the coulomb potential of the 
nuclei. If the system has a non-degenerate 
ground state, it is obvious that there is only one 
ground state charge density that corresponds to 
a given     . Hohenberg and Kohn 
demonstrated that there is only one external 
potential      that yields a given ground state 
charge density     .  
 

Hohenberg and Kohn demonstrated that for 
many-electron Hamiltonian          with 
ground state wave function,  . Whereas       
are the kinetic energy, electron-electron 
interaction and the external potential 
respectively. The charge density      is defined 
by: 
 

                       
 
                        (1) 

 
Differentiating the Hamiltonian            . 
The potential   and its derivatives    does not 

differ by a constant. That is to say       
constant with the ground state wave function ψ. 
Assuming that the ground state charge densities 
are the same (i.e.            . The following 
inequality will hold [26,27]. 
 
                                      (2) 
 
                                   (3) 
 
This implies that: 
 

                                                  (4) 

 
The reverse relation of equation (4) will now be 
 

                                                  (5) 

 
Adding equation (4) and equation (5) gives 
 
           Contradiction!                         (6) 
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The inequality in the above equation is strict 
because ψ and    are different, being eigen state 
of different Hamiltonian. Reversing the prime and 
unprime quantities, one obtains an inconsistent 
result. This showed that no two potentials can 
have the same density. The first Hohenberg-
Kohn theorem that has a straight forward 
consequence is that of the ground state energy 
E. The theory also uniquely determined by the 
ground state charge density. It is a function of 
density         [28] and can be written 
mathematically as: 
 
                              
                                     (7) 

 
        is a universal function of the charge 
density      but not of      also known as the H-
K functional [29]. For this functional variation 
principle holds and the ground state energy is 
minimized by the ground state charge density. In 
this way, the DFT exactly reduces the N-body 
problem to determine a 3-dimensional function 
     which minimizes a functional        . 
 

2.2 The Kohn-Sham (KS) Equations 
 
Kohn and Sham in 1965 reformulated the 
problem in a more familiar form and opened up 
the practical application of DFT. Here, the 
system of interacting electrons is mapped onto a 
fictitious system of non-interacting electrons 
having the same charge density     . K-S 
represented the ground state energy charge 
density by a system of non-interacting electrons 
over one-electron orbitals also known as K-S 
orbitals    as: 
 

              
 

                                      (8) 
 

Where   runs from 1 to 
 

 
. If we assume a double 

occupancy of all states and Kohn-Sham orbitals 
are solutions to the Schrodinger equation: 
 

          
  

  
                           (9) 

 
Where m is the electron mass. Obeying 
orthogonality constraints we write: 
 

   
                                    (10) 

 
The existence of a unique potential        having 

     as its ground state charge density is a 
consequence of the Hohenberg and Kohn 

theorem which holds irrespective of the form of 
the electron-electron interaction U. 
 

3. METHOD FOR CALCULATION OF 
COHESIVE ENERGIES 

 

“All materials system essentially consists of 
electrons and nuclear charge and it is due to 
electron and its interaction with other electrons 
which results in various mechanical, electronic 
and magnetic properties. In order to define 
electron and their interaction Schrodinger 
equation is the best tool [30]. If Schrodinger 
equation of many electron problems can be 
solved accurately and efficiently then almost any 
property of the materials can be determined 
accurately but unfortunately there is neither an 
accurately nor efficient method to solve these 
problems”. “There are various methods 
developed to solve Schrodinger equation. 
Relatively simple system as Hydrogen atom and 
H2

+
 could be solved analytically. To solve 

relatively complex system, methods like Nearly 
free electron method and Tight binding method 
have been developed. These methods are not 
accurate as we have to take a lot approximation 
to simplify the problem [31]. After this grand 
success many methods have been developed to 
compute various properties such as Quantum 
Chemistry (Hartree-Fock), Quantum Monte 
Carlo, Perturbation theory and Density 
Functional Theory (DFT). In this research work 
DFT the most successful of them all were used. 
By successful we mean it is best combination of 
accuracy and efficiency”. 
 
To illustrate the basic idea behind DFT, we first 
formulate the problem of one electron as a 
density functional problem. We know that the 
ground state energy can be written as a density 
functional instead of as wavefunction functional. 
This functional is:  

 

     
 

 
    

     

 
                     (11) 

 

In any number of dimensions, we must minimize 

it, subject to the constraint that    rn     . 
 

Using Lagrange multipliers, we construct the 
auxiliary functional: 
 

                                                 (12) 
 

where     rn   . Minimizing this yields: 

 

 
  

     
 

    

     
                               (13) 
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Using the derivation of a semi-local functional, 
we find the Schrodinger equation for the density 
as: 
 

   
  

 
 

     

   
                           (14) 

 

with boundary conditions that     and        
at the edges. We can identify the Lagrange 
multiplier by integrating both sides over all space 
at the solution. Since the integral of any 
Laplacian vanishes (with the given boundary 
conditions), we see that    . 
 

It is self-evident that the external potential in 
principle determines all the properties of the 
system; this is the normal approach to quantum 
mechanical problems, by solving the Schrödinger 
equation for the eigenstates of the system.  
 

The first principles of Hohenberg and Kohn (H-K) 
theorem demonstrates that the ground state 
properties of a many-electron system are 
uniquely determined by an electron density that 
depends on only three spatial co-ordinates which 
reduces our problem to 3 spatial co-ordinates 
from 3N spatial co-ordinates for N body problem 
because of the use of density functional. The N 
particle system of interacting particles with 3N 
degrees of freedom is reduced to a significantly 
more tractable problem, which deals with a 
function (density) of only three variables. The 
many-body effects incorporated in the exchange-
correlation potential are typically approximated 
within either the local density approximation or 
the generalized gradient approximation. The 
formulation applies to any system of interacting 
particles in an external potential          including 
any problem of electrons and fixed nuclei, where 
the Hamiltonian can be written as: 
 

    
  

   
   
    ext     

  

 
 

 

       
  

     
 

       
           (15) 

 
The first term in this equation corresponds to the 
kinetic energy of the interacting electrons, the 
second term is the external potential acting on 
the electrons due to the ions, the third term is the 
electron Coulomb interaction, and the last term is 
the interaction energy of the nuclei. Since the 
Hamiltonian is thus fully determined (except for a 
constant shift of the energy), it follows that all 
properties of the system can be found given only 
the ground state density     . This result allowed 
Hohenberg and Kohn to prove the existence of 
an energy functional of the density           , 
which assumes its minimum value for the correct 
ground state density.  

                                     (16) 

 

The minimization of energy functional          
with respect to the charge density with the 
constraint of fixed number of electrons gives the 
ground state energy and the ground state charge 
density from which all other physical properties 
can be extracted. However in spite of the 
universality of           no explicit expressions 
for this functional are known to date. In 1965, 
Kohn and Sham readdressed the problem of 
minimizing the Hohenberg-Kohn density 
functional (Eq. 16) directly with an improved 
strategy that maps the original interacting 
problem into an auxiliary non-interacting one 
[31].  This is achieved by expressing the charge 
density        as: 
  

                                                      (17) 
 

Where      are the single-particle wavefunctions 
for the non-interacting electron gas with ground 
state charge density     , and the sum is over all 
occupied singleparticle states. 
 
The            functional is now expressed as:   
 

                 
  

 
 
         

      
                 (18) 

 
where the first term corresponds to the kinetic 
energy of a non-interacting electron gas at the 
same density       the second term is the 
classical Coulomb interaction energy (the 
Hartree term), and the last term              
represents the quantum mechanical exchange-
correlation energy. This term accounts for the 
differences between the non-interacting fictitious 
system and the real interacting one, collecting 
the contributions from the non-classic 
electrostatic interaction and the differences in 
their corresponding kinetic energies. The 
success of the Kohn–Sham approach ultimately 
lies in the fact that           , which contains the 
many-body contributions, is a small fraction of 
the total energy, and although not known exactly, 
it can be approximated surprisingly well. The 
approximation is at present the strength and the 
limitation of DFT, providing efficient yet not exact 
reformulation of the quantum mechanical 
problem, respectively. If the energy functional 
defined in Eq. 16 and Eq. 18 is now varied with 
respect to the wave-functions      subject to the 
orthonormality constraint, the following set of 
Schrodinger equations is obtained 
 

 
   

   
  
                                    (19) 
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where the effective potential                is 

given as 
 

                        
     

      
    

          

     
 (20) 

 

Equations 19 and 20 are called the Kohn–Sham 
equations and have to be solved self-consistently 
because of the dependence of          on     . 

It should be emphasized here that the Kohn–
Sham procedure introduces a one-body 
Hamiltonian representing a single-particle 
electron in the mean field created by the nuclei 
and by all other electrons. However, it assigns no 
formal interpretation to the calculated orbitals 
and the eigenvalues. In principle, the solution of 
the Kohn–Sham equations would yield the exact 
ground state energy of the interacting electron 
gas problem. However, the exact exchange-
correlation functional              for an 
inhomogeneous interacting electron gas is not 
known for general     . To proceed further, 
approximations to this functional are required. 
The most common and extensively tested 
approximation is the local density approximation 
(LDA), in which             for the 
inhomogeneous system is constructed from a 
parameterized form of the exchange-correlation 
energy density of the homogeneous electron gas    

   
      [31], 

 

                                             (21) 
 

And 
 

          

     
 

             

     
                     (22) 

 

with           
         .These varies the 

treatment of exchange correlation (LDA and 
GGA) to Kohn-Sham DFT given by Perdew and 
Wang in 1991. 
 

“There are many computational codes of DFT 
among which are Abinit, Vasp, Castep, 
Quantum-Espresso,Dacapo, FHI-aims e.t.c. On 
the other hand, there are many GGA versions 
among which is the Perdew Burke Ernzerhof 
(pbe) functional [32] used in this study. The goal 
in DFT is to find the value of the functional F, and 
to do this we need to make approximations. 
Indeed, one of the reasons why there are so 
many different DFT methods is that there are 
multiple ways of approximating the functional” 
[33]. “For the purposes of this research work, 
FHI-aims code were been used. FHI-aims is an 
accurate all-electron full potential electronic 
structure code package for computational 
material science. It is simply means Fritz Haber 
Institute- ab initio molecular simulations. FHI-

aims is a computer program package for 
computational materials science based only on 
quantum-mechanical first principles. The main 
production method is density functional theory 
(DFT) of HK and KS to compute the total energy 
and derived quantities of molecular or solid 
condensed matter in its electronic ground state. 
In addition, FHI-aims allow describing a wave-
function based molecular total energy calculation 
based on Hartree-Fock and perturbation theory 
(MP2 and MP4)” [34]. 
 

To calculate the cohesive energies of bismuth 
selenide and bismuth antimonite, the ground 
state total energies of Bi, Se, and Sb for single 
free atom and bulk were calculated first. The 
energies were then converted to cohesive 
energies of Bi2Se3 and BiSb using the equation 
below: 
 

     
            

 
   

     

 
               (23) 

 

3.1 Procedure 
 

“The first task is to have a Linux based operating 
system (0S) (Ubuntu 16.04 version installed for 
this research work) on a computer. FHI-aims is 
not supported on windows. Since FHI-aims is 
distributed in source code form, the next task is 
to compile a powerful executable program. For 
this, the following mandatory prerequisites are 
needed” [35]:  
 

• A working FORTRAN compiler. A good 
example is Intel’s ifort compiler.  

• A compiled version of the lapack library, 
and a library providing optimized basic 
linear algebra subroutines (BLAS). 
Standard commercial libraries such as 
Intel’s mkl provide both lapack and BLAS 
support. Having an optimized BLAS library 
for a specific computer system is critical for 
the performance of FHI-aims.  

 

“FHI-aims requires two input files — control.in 
and geometry.in— located in the same directory 
from where the FHI-aims binary is invoked. An 
output file contains the basic information and 
result of the calculation such as the total energy, 
atomic forces, etc. The geometry.in file contains 
all information concerning the atomic structure of 
the system. This includes the nuclear 
coordinates, which are specified by the keyword 
atom, followed by Cartesian coordinates (in units 
of Å) and the descriptor of the species” [36]. “The 
control.in file contains all other physical and 
technical settings for accurate and efficient 
convergence of the computations. In particular, it 
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specifies the physical and technical settings for 
the equations to be solved. 
 
The full algorithmic framework embodied in the 
FHI-aims computer program package is 
described in” [37]. “The algorithms are based on 
numerically tabulated atom-centered orbitals 
(NAOs) to capture a wide range of molecular and 
materials properties from quantum-mechanical 
first principles and all-electron/full-potential 
treatment that is both computationally efficient 
and accurate is achieved for periodic and cluster 
geometries on equal footing, including relaxation 
and ab initio molecular dynamics” [38]. 
 
“The programme runs interactively. You make a 
menu choice and change physical parameters to 
the system of interest. First step towards 
studying periodic systems with FHI-aims is to 
construct the periodic geometries in the FHI-aims 
geometry input format (geometry.in), Next, 
followed by setting of basic parameters in 
control.in for periodic calculations and finally 
compute total energies of different topological 
insulators; BiSb and Bi2Se3 geometries” [38]. 
 
“Geometry.in files for the BiSb and Bi2Se3 
structures were constructed varying the lattice 
constants around the experimental lattice 
constants a of 4.14Å for Bi2Se3  and 4.38Å for 
BiSb  At each lattice constant, if the symmetry of 
the system allows the ions to move, a separate 
geometric optimization must be performed” [38].  
 

In setting up the geometry.in file of a periodic 
structure in FHI-aims, the lattice vectors of the 
two topological insulators as well as their atomic 
positions in the unit cell are specified.  
 
You then set the output to be displayed on the 
screen and also saved in a file with a file name of 
your choice. The code is then run which displays 
output on the screen and also saves the result of 
the run in a file [39]. The total and cohesive 
energies of BiSb and Bi2Se3 were determined in 
the Generalized Gradient Approximation (GGA) 
and Local Density Approximation (LDA) using the 
exchange-correlation energy functional 
respectively. The calculation was performed by 
using Brillouin-zone of 12×12×12 k the SCF 
convergence. The graphs were plotted and 
analyzed from the results obtained.   
 

4. RESULTS AND DISCUSSION  
 
The output files of the FHI-aims code were used 
to obtain the results for this work. The total 
energies and the number of iterations for single 
free atoms and bulk were obtained in this work. 
The graphs of total energies against the number 
of iterations were plotted in order to obtain the 
optimized parameters for HCP (Bi, Se, and Sb) 
lattices within the local density approximation 
(LDA). The cohesive energies of Bi2Se3 and BiSb 
were then calculated using the optimized 
parameters. The results obtained from this work 
are presented below: 

 
 

Fig. 1. Bismuth (Bi) binding curve for total energy against the number of iteration. The figure 
above shows that as the total energy of bismuth atom increases there is a stepwise increase in 

the number of iteration. The increase becomes gradual between the 2
nd

 number of iteration 
until a stable energy is reached at the 3

rd
 iteration where the stability remains fixed all through 

the rest of the iterations. This large negative total energy shows on the graph is due to the 
nature of Bi ionization energy to be too small and highly accurate in the LDA due largely to 
error cancellation in the attraction of the valence electron to the core of the atom of BI [40] 
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Fig. 2. Selenium (Se) binding curve for total energy against the number of iterations. The 
above graph showed that the total energy of selenium atom gain stability at the 5

th
 iteration 

 

 
 

Fig. 3. Antimony (Sb) binding curve for total energy against the number of iterations. This 
figure showed that the total energy of antimony atom becomes a bit stable at the 5

th
 iteration 

 

 
 

Fig. 4. Bismuth antimonite (BiSb) binding curve for total energy against the number of 
iterations. The binding curve for the total energy showed that bismuth antimonite (bulk) is 

stable at the 3
th

 iteration 
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Fig. 5. Bismuth selenide (Bi2Se3) binding curve for total energy against the number of 
iterations. The total energy of antimony telluride become stable at the 9

th
 iteration 

 
The binding energy curve for single free atoms of 
Bi, Se, and Sb shown in Figs. 1 to 3 showed that 
the total energy of bismuth atom become stable 
at the 3

rd
 iteration but selenium, and antimony 

atoms gain their stability at the 5
th
 iteration. This 

indicates that the total energy of bismuth atom 
converges faster than that of Se, and Sb atoms. 
The total energy of bismuth atom acquire stability 
beginning from 3

rd
 iteration. Meanwhile the total 

energy of selenium, and antimony atom begin 
their stability at the 5

th
 iteration. 

 
The cohesive energies of bismuth selenide 
(Bi2Se3) and bismuth antimonite (BiSb) were 
calculated using the following relations: 
 
                                        (24) 
 
The cohesive energy of bismuth antimony was 
calculated to be 1.02eV and that of bismuth 
selenide were computed as 1.76eV.  This result 
is in reasonable agreement with the cohesive 
energy obtained from T-dependent Raman shift 
method for bismuth selenide and bismuth 
antimony which is 1.09eV and 1.24eV 
respectively [15].  
 

The binding curve for Bi2Se3 and BiSb are shown 
in Figs. 4 and 5 above. The binding curve in 
figure 5 showed that the total energy of BiSb 
becomes stable at 3

rd
 iteration whereas that of 

Bi2Se3 become stable at the 9
th
 iteration see 

figure 5 above. This behaviour exhibited by 
bismuth antimonite indicate that the alloy’s total 
energy converges faster than that of bismuth 
selenide. 

5. CONCLUSION 
 
The cohesive energies of bismuth antimony and 
bismuth selenide were calculated within the local 
density approximation (LDA). The results of the 
total energy required for separating the 
condensed compound during the optimized 
process is found to converge faster with the 
         k-grid points in the Brillioun zone of 
the FHI-aims code. The result presented above 
have confirmed a faster and more accurate study 
of the solid considered when compared to 
literature report of other studies. The values 
obtained are in agreement with experimental 
value [15] within some reasonable percentage 
errors. The calculated cohesive energies for 
bismuth antimony and bismuth selenide are 
observe to differ by 1.30% and 29.55% 
respectively. The major measure source of this 
deviation may come from the present DFT 
calculation of the solid rather than the atom.  
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