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Evaluating efficiency according to the different states of returns to scale (RTS) is crucial to resource allocation and scientific decision
for decision-making units (DMUs), but this kind of evaluation will become very difficult when the DMUs are in an uncertain
random environment. In this paper, we attempt to explore the uncertain random data envelopment analysis approach so as to
solve the problem that the inputs and outputs of DMUs are uncertain random variables. Chance theory is applied to handling
the uncertain random variables, and hence, two evaluating models, one for increasing returns to scale (IRS) and the other for
decreasing returns to scale (DRS), are proposed, respectively. Along with converting the two uncertain random models into
corresponding equivalent forms, we also provide a numerical example to illustrate the evaluation results of these models.

1. Introduction

Data envelopment analysis (DEA) initiated by Charnes et al.
[1], known as the CCR (Charnes, Cooper, and Rhodes)
model, is one of the effective tools to evaluate efficiencies of
DMUs with multiple inputs and multiple outputs. However,
Banker [2] demonstrated that the CCR model only regarded
that DMUs with constant returns to scale (CRS) were effi-
cient. CRS is one of the states of returns to scale (RTS). Based
on the RTS theory, RTS can be divided into three states as
CRS, IRS (increasing returns to scale), and DRS (decreasing
returns to scale) in accordance with the difference of output
increment caused by input increment [3]. Subsequently,
Banker et al. [4] proposed the BCC (Banker, Charnes, and
Cooper) model to identify the efficient DMUs in the three
states of RTS. The results revealed that the different states
of RTS would affect the results of efficiency evaluation
indeed. Afterwards, Fare and Grosskopf [5] refined the
approach on measuring efficiencies of DMUs which exhibits
DRS, and Seiford and Thrall [6] further estimated DMU’s
efficiency under IRS.

Along with the states of RTS affecting the results of effi-
ciency evaluation, the inputs and outputs of DMUs that are

not always observed accurately may affect the efficiency
results as well. For example, early studies in DEA considered
that such inputs and outputs as capital and labor are regarded
as precise data. With more factors like carbon emission and
social benefit taken into account in inputs and outputs now-
adays, the traditional models are not suitable for dealing with
these imprecise data. Then, some scholars regard these vari-
ables as random variables and treat them with probability
theory. Therefore, many stochastic DEA models have been
put forward including Li [7], Khodabakhshi et al. [8], and
Cooper et al. [9].

However, some other scholars claim that these variables
should be considered as uncertain variables because the
uncertainty theory demonstrated that if the distribution
function of a variable is not close enough to its real frequency,
then it is better to treat it as an uncertain variable rather than
a random variable [10]. Therefore, some uncertain DEA
models are proposed via the application of uncertainty the-
ory (Wen et al. [11], Lio and Liu [12], Jiang et al. [13], and
Alireza and Lio [14]).

When the external environment becomes more complex,
the imprecise inputs and outputs of DMUs may be not only a
single random variable or uncertain variable but also both of
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them. In this case, some scholars attempt to take the uncer-
tain random variables into account and propose uncertain
random DEA models to estimate DMU’s overall efficiency
(Jiang et al. [15]) and technical efficiency (Jiang et al. [16]).
However, a specific uncertain random model of examining
the influence of RTS on efficiency evaluation does not exist
currently. Motivated by this, this paper proposes two uncer-
tain random models by applying chance theory [17] to deal-
ing with uncertain random variables. One model is for
estimating the DMUs’ efficiency under IRS, and the other
one is for DRS.

The remainder of this article is organized as follows. The
second section will present a number of basic knowledge of
uncertainty theory and chance theory. The third section will
introduce the new uncertain random DEA model for IRS,
and the equivalent form will be verified. The fourth section
will introduce the new uncertain random DEA model for
DRS, and the equivalent form will be verified as well. A
numerical example to test two new uncertain random DEA
models will be provided in the fifth section. The final section
will make concluding remarks.

2. Preliminaries

In this part, we will briefly introduce the primary concepts
and theorems of uncertainty theory and chance theory for
the preparation to structure the new uncertain random
DEA models in the next two sections.

2.1. Uncertainty Theory. As a powerful mathematical tool for
dealing with uncertain variables and analyzing the belief
degree, uncertainty theory was founded by Liu [10] in 2007.
The uncertain measure M was defined as a set function on
a σ-algebra L over a nonempty set Γ by the following
axioms:

Axiom 1 (normality axiom).MfΓg = 1 for the universal set Γ.

Axiom 2 (duality axiom). MfΛg +MfΛcg = 1 for any event
Λ.

Axiom 3 (subadditivity axiom). For every countable sequence
of events Λ1,Λ2,⋯, we have

M ∪
∞

i=1
Λi

n o
≤ 〠

∞

i=1
M Λif g: ð1Þ

Then, Liu [18] proposed a product axiom in 2009.

Axiom 4 (product axiom). Let ðΓk,Lk,MkÞ be uncertainty
spaces for k = 1, 2,⋯. The product uncertain measure M is
an uncertain measure satisfying

M
Y∞
k=1

Λk

( )
= ∧

k=1

∞
Mk Λkf g, ð2Þ

where Λk are arbitrarily chosen events from Lk for k = 1, 2,
⋯, respectively.

Definition 5 (Liu [10]). An uncertain variable is a function ξ
from an uncertainty space ðΓ,L ,MÞ to the set of real num-
bers such that fξ ∈ Bg is an event for any Borel set B of real
numbers.

Definition 6 (Liu [19]). An uncertain variable ξ is called linear
if it has a linear uncertainty distribution

Φ xð Þ =
0, if x ≤ a,
x − a
b − a

, if a < x ≤ b,

1, if x > b,

8>><
>>: ð3Þ

denoted byLða, bÞ where a and b are real numbers with
a < b.

Definition 7 (Liu [19]). Let ξ be an uncertain variable with
regular uncertainty distributionΦðxÞ . Then, the inverse func-
tion Φ−1ðαÞ is called the inverse uncertainty distribution of ξ.

Theorem 8 (Liu [19]). Let ξ1, ξ2,⋯, ξn be independent uncer-
tain variables with regular uncertainty distributions Φ1,Φ2,
⋯,Φn, respectively. If f ðx1, x2,⋯,xnÞ is continuous, strictly
increasing with respect to x1, x2,⋯, xm and strictly decreasing
with respect to xm+1, xm+2,⋯, xn, then

ξ = f ξ1, ξ2,⋯,ξnð Þ ð4Þ

has an inverse uncertainty distribution

Ψ−1 αð Þ = f Φ−1
1 αð Þ,⋯,Φ−1

m αð Þ,Φ−1
m+1 1 − αð Þ,⋯,Φ−1

n 1 − αð Þ� �
:

ð5Þ

Theorem 9 (Liu and Ha [20]). Assume ξ1, ξ2,⋯, ξn are inde-
pendent uncertain variables with regular uncertainty distribu-
tions Φ1,Φ2,⋯,Φn, respectively. If f ðξ1, ξ2,⋯,ξnÞ is strictly
increasing with respect to ξ1, ξ2,⋯, ξm and strictly decreasing
with respect to ξm+1, ξm+2,⋯, ξn, then

ξ = f ξ1, ξ2,⋯,ξnð Þ ð6Þ

has an expected value

E ξ½ � =
ð1
0
f Φ−1

1 αð Þ,⋯,Φ−1
m αð Þ,Φ−1

m+1 1 − αð Þ,⋯,Φ−1
n 1 − αð Þ� �

dα:

ð7Þ

Uncertainty theory was subsequently studied by many
researchers over the past decades, and many scholars have
used uncertainty theory to model dynamic systems with
uncertainty.

2.2. Chance Theory. Chance theory was put forward by Liu
[17] in 2013 for modeling a complex system with the coexis-
tence of uncertainty and randomness. Some elementary
features and properties on uncertain random variables are
defined as follows.

2 Advances in Mathematical Physics



Definition 10 (Liu [21]). An uncertain random variable is a
function ξ from a chance space ðΓ,L ,MÞ × ðΩ,A , PrÞ to
the set of real numbers such that fξ ∈ Bg is an event in L ×
A for any Borel set B of real numbers.

Definition 11 (Liu [21]). Let ξ be an uncertain random
variable. Then, its chance distribution is defined by

Φ xð Þ = Ch ξ ≤ xf g ð8Þ

for any x ∈R:

Theorem 12 (Liu [17]). Let η1, η2,⋯, ηm be independent ran-
dom variables with probability distributions Ψ1,Ψ2,⋯,Ψm ,
and let τ1, τ2,⋯, τn be independent uncertain variables with
regular uncertainty distributions Y1, Y2,⋯, Yn , respectively.
Assume f ðη1, η2,⋯,ηm, τ1, τ2,⋯,τnÞ is continuous, strictly
increasing with respect to τ1, τ2,⋯, τk and strictly decreasing
with respect to τk+1, τk+2,⋯, τn . Then, the uncertain random
variable

ξ = f η1, η2,⋯,ηm, τ1, τ2,⋯,τnð Þ ð9Þ

has a chance distribution

Φ xð Þ =
ð
Rm

F x ; y1, y2,⋯,ymð ÞdΨ1 y1ð ÞdΨ2 y2ð Þ⋯ dΨm ymð Þ,

ð10Þ

where Fðx ; y1, y2,⋯,ymÞ is the root α of the equation

f y1, y2,⋯,ym, Y−1
1 αð Þ,⋯,Y−1

k αð Þ, Y−1
k+1 1 − αð Þ,⋯,Y−1

n 1 − αð Þ� �
= x:

ð11Þ

Theorem 13 (Liu [17]). Let η1, η2,⋯, ηm be independent ran-
dom variables with probability distributions Ψ1,Ψ2,⋯,Ψm ,
and let τ1, τ2,⋯, τn be independent uncertain variables with
regular uncertainty distributions Y1, Y2,⋯, Yn , respectively.
If f is a measurable function, then

ξ = f η1, η2,⋯,ηm, τ1, τ2,⋯,τnð Þ ð12Þ

has an expected value

E ξ½ � =
ð
Rm

G y1, y2,⋯,ymð ÞdΨ1 y1ð ÞdΨ2 y2ð Þ⋯ dΨm ymð Þ,

ð13Þ

where

G y1, y2,⋯,ymð Þ = E f y1, y2,⋯,ym, τ1, τ2,⋯,τnð Þ½ � ð14Þ

is the expected value of the uncertain variable f ðy1, y2,⋯,ym,
τ1, τ2,⋯,τnÞ for any real numbers y1, y2,⋯, ym and is deter-
mined by Y1, Y2,⋯, Yn.

Theorem 14 (Liu [17]). Let η1, η2,⋯, ηm be independent
random variables with probability distributions Ψ1,Ψ2,⋯,
Ψm , and let τ1, τ2,⋯, τn be independent uncertain variables
with regular uncertainty distributions Y1, Y2,⋯, Yn , respec-
tively. If f ðη1,⋯,ηm, τ1,⋯,τnÞ is a continuous and strictly
increasing function (or strictly decreasing function) with
respect to τ1,⋯, τn , then the expected function

E f η1,⋯,ηm, τ1,⋯,τnð Þ½ � ð15Þ

is equal to

ð
Rm

ð1
0
f y1,⋯,ym, Y−1

1 αð Þ,⋯,Y−1
n αð Þ� �

dαdΨ1 y1ð Þ⋯ dΨm ymð Þ:

ð16Þ

Based on the knowledge above, the two new uncertain
random DEA models will be created in the following section.

3. Uncertain Random DEA Model for IRS

When the inputs and outputs of DMUs cannot be observed
precisely, some of them were regarded as random variables
and treated by probability theory, while some others were
regarded as uncertain variables and treated by uncertainty
theory. But in a more complex environment, the coexistence
of random variables and uncertain variables in DMUs may
occur. Therefore, a new approach to deal with uncertain ran-
dom variables in estimating efficiency is necessary.

Suppose the number of DMUs is r. For each k with 1 ≤
k ≤ r, the kth DMU consumes a random input vector xk
and an uncertain input vector ~xk to produce a random output
vector yk and an uncertain output vector ~yk. For each DMU k,
we artificially set the expected ratio of weighted outputs to
weighted inputs which is always less than or equal to unity,
i.e.,

E
vT~yk + vTyk
~uT~xk + uTxk

� �
≤ 1, k = 1, 2,⋯, r, ð17Þ

where ~u, u, ~v, and v are nonnegative weight vectors. Sub-
ject to constraint (17), only a DMU which has CRS can find
out a set of favorable weights (~u∗, u∗, ~v∗, v∗) such that the
expected ratio of this DMU reaches up to 1, by which a
DMU can be regarded as efficiency. The reason is that the
increment of inputs of the DMU which exhibits CRS is equal
to that of outputs.

According to the RTS theory, if the proportionate
increases in outputs are larger than the proportionate
increases in inputs, then the state of increasing returns to
scale (IRS) arises [3]. In order to clarify the influence of IRS
on efficiency values, we artificially set a factor, denoted as w
, to adjust the proportion difference among input increment
and output increment caused by IRS, and then, the constraint
(17) is modified to
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E
vT~yk + vTyk −w

~uT~xk + uTxk

� �
≤ 1,  k = 1, 2,⋯, r, ð18Þ

where w is less than or equal to 0, i.e., w≤0: The new con-
straint (18) allows a DMU which exhibits IRS to also find out
a set of favorable weights (~u∗, u∗, ~v∗, v∗) such that the
expected ratio of this DMU reaches up to 1. In this way, the
DMUs under IRS can be considered efficient as well. In order
to verify if the target DMU, distinguished by subscript “o,” is
efficient under IRS, we may solve the following uncertain
random DEA model:

max
~u,u,~v,v,w

ϑIRS = E
vT~yo + vTyo −w
uT~xo + uTxo

� �

subject to :

E
vT~yk + vTyk −w
uT~xk + uTxk

� �
≤ 1,  k = 1, 2,⋯, r,

u, u, v, v ≥ 0,
w ≤ 0,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð19Þ

where ~xk, ~yk, xk, and yk are uncertain input vectors,
uncertain output vectors, random input vectors, and random
output vectors of DMU k, k = 1, 2,⋯, r, respectively; u, v, ~u,
and ~v are nonnegative weight vectors; and w ≤ 0.

Definition 15 (IRS efficiency).DMU o is regarded IRS efficient
if the optimal value ϑ∗IRS of ((19)) reaches up to 1.

Theorem 16. Let uncertain variables ~xk1,⋯, ~xkj, ~yk1,⋯, ~ykn
be independent with uncertainty distributions ~Yk1,⋯, ~Ykj,
~Πk1,⋯, ~Πkn , and let random variables xk1,⋯, xki, yk1,⋯,
ykm be independent with probability distributions Φk1,⋯,
Φki, Ψk1,⋯,Ψkm, k = 1, 2,⋯, r , respectively. Then, the new
uncertain random DEA model for IRS ((19)) can be indicated
as follows:

max
~u,u,~v,v,w

ϑIRS =
ð
R+

m+i

ð1
0

∑m
p=1vpzop +∑n

t=1~vt ~Π
−1
ot αð Þ −w

∑i
q=1uqhoq +∑j

s=1~us~Y
−1
os 1 − αð Þ

dαdΦo hoð ÞdΨo zoð Þ

subject to :ð
R+

m+i

ð1
0

∑m
p=1vpzkp +∑n

t=1~vt ~Π
−1
kt αð Þ −w

∑i
q=1uqhkq +∑j

s=1~us~Y
−1
ks 1 − αð Þ

dαdΦk hkð ÞdΨk zkð Þ ≤ 1,

k = 1, 2,⋯, r,
~u = ~u1, ~u2,⋯,~uj

� �
≥ 0,

u = u1, u2,⋯,uið Þ ≥ 0,
~v = ~v1, ~v2,⋯,~vnð Þ ≥ 0,
v = v1, v2,⋯,vmð Þ ≥ 0,
w ≤ 0,

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð20Þ

where

dΦo hoð Þ = dΦo1 ho1ð Þ, dΦo2 ho2ð Þ⋯ dΦoi hoið Þ,
dΨo zoð Þ = dΨo1 zo1ð Þ, dΨo2 zo2ð Þ⋯ dΨom zomð Þ,
dΦk hkð Þ = dΦk1 hk1ð Þ, dΦk2 hk2ð Þ⋯ dΦki hkið Þ,
dΨk zkð Þ = dΨk1 zk1ð Þ, dΨk2 zk2ð Þ⋯ dΨkm hkmð Þ:

ð21Þ

The uncertainty distributions of ~xo1,⋯, ~xoj, ~yo1,⋯, ~yon
are ~Yo1,⋯, ~Yoj and ~Πo1,⋯, ~Πon, and the probability distri-
butions of xo1,⋯, xoi, yo1,⋯, yom are Φo1,⋯,Φoi, Ψo1,⋯,
Ψom, respectively.

Proof. Since the function ðvTyk + ~vT~yk −wÞ/ðuTxk + ~uT~xkÞ is
a measurable function for each k with 1 ≤ k ≤ r, it follows
from Theorem 13 and we can obtain

ξ = vTyk + ~vT~yk −w

uTxk + ~uT~xk
ð22Þ

has an expected value

E ξ½ � =
ð
R+

m+i

G hk1,⋯, hki, zk1,⋯, zkmð ÞdΦk hkð ÞdΨk zkð Þ

ð23Þ

for k = 1, 2,⋯, r, where

G hk1,⋯, hki, zk1,⋯, zkmð Þ = E
vTzk + ~vT~yk −w

uThk + ~uT~xk

" #
,

dΦk hkð Þ = dΦk1 hk1ð ÞdΦk2 hk2ð Þ⋯ dΦki hkið Þ,
dΨk zkð Þ = dΨk1 zk1ð ÞdΨk2 zk2ð Þ⋯ dΨkm zkmð Þ,

ð24Þ

k = 1, 2,⋯, r.
For each k with 1 ≤ k ≤ r, since the function ðvTzk + ~vT

~yk −wÞ/ðuThk + ~uT~xkÞ is strictly increasing with respect to
~yk and strictly decreasing with respect to ~xk, by using Theo-
rem 8, we can get the inverse uncertainty distribution is

R−1
k αð Þ = ∑m

p=1vpzkp +∑n
t=1~vt ~Π

−1
kt αð Þ −w

∑i
q=1uqhkq +∑ j

s=1~us~Y
−1
ks 1 − αð Þ

: ð25Þ

Moreover, from Theorem 14, we can obtain

E
vTzk + ~vT~yk −w

uThk + ~uT~xk

" #
=
ð1
0

∑m
p=1vpzkp +∑n

t=1~vt ~Π
−1
kt αð Þ −w

∑i
q=1uqhkq +∑j

s=1~us~Y
−1
ks 1 − αð Þ

dα,

ð26Þ
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k = 1, 2,⋯, r. Then, the equivalent form of equation (23) is

E ξ½ � =
ð
R+

m+i

ð1
0

∑m
p=1vpzkp +∑n

t=1~vt ~Π
−1
kt αð Þ −w

∑i
q=1uqhkq +∑j

s=1~us~Y
−1
ks 1 − αð Þ

dαΦk hkð ÞdΨk zkð Þ,

ð27Þ

where

dΦk hkð Þ = dΦk1 hk1ð ÞdΦk2 hk2ð Þ⋯ dΦki hkið Þ,
dΨk zkð Þ = dΨk1 zk1ð ÞdΨk2 zk2ð Þ⋯ dΨkm zkmð Þ,

ð28Þ

k = 1, 2,⋯, r. The proof is completed.

4. Uncertain Random DEA Model for DRS

In this part, we propose the uncertain random DEA model
for DRS. According to RTS theory, if the proportionate
increases in outputs are smaller than the proportionate
increases in inputs, then the state of decreasing returns to
scale (DRS) prevails [3]. Then, the constraint (17) is modified
to

E
vT~yk + vTyk −w

~uT~xk + uTxk

� �
≤ 1,  k = 1, 2,⋯, r, ð29Þ

where w is greater than or equal to 0, i.e., w ≥ 0: The new
constraint (29) allows a DMU which exhibits DRS to also
find out a set of favorable weights (~u∗, u∗, ~v∗, v∗) such that
the expected ratio of this DMU reaches up to 1. In this way,
the DMUs under DRS can be considered efficient as well.
We still distinguish target DMU by subscript “o,” then verify
if it is efficient under DRS, and may solve the following
uncertain random DEA model:

max
~u,u,~v,v,w

ϑDRS = E
vT~yo + vTyo −w
uT~xo + uTxo

� �

subject to :

E
vT~yk + vTyk −w
uT ~xk + uTxk

� �
≤ 1, k = 1, 2,⋯, r,

u, u, v, v ≥ 0,
w ≥ 0,

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð30Þ

where ~xk, ~yk, xk, and yk are uncertain input vectors,
uncertain output vectors, random input vectors, and random
output vectors of DMUk, k = 1, 2,⋯, r, respectively; u, v, ~u,
and ~v are nonnegative weight vectors; and w ≥ 0:

Definition 17 (DRS efficiency). DMU o is regarded DRS
efficient if the optimal value ϑ∗DRS of ((30)) reaches up to 1.

Theorem 18. Let uncertain variables ~xk1,⋯, ~xkj, ~yk1,⋯, ~ykn
be independent with uncertainty distributions ~Yk1,⋯, ~Ykj,
~Πk1,⋯, ~Πkn , and let random variables xk1,⋯, xki, yk1,⋯,
ykm be independent with probability distributions Φk1,⋯,

Φki, Ψk1,⋯,Ψkm, k = 1, 2,⋯, r , respectively. Then, the new
uncertain random DEAmodel for DRS ((30)) can be indicated
as follows:

max
~u,u,~v,v,w

ϑDRS =
ð
R+

m+i

ð1
0

∑m
p=1vpzop +∑n

t=1~vt ~Π
−1
ot αð Þ −w

∑i
q=1uqhoq +∑j

s=1~us~Y
−1
os 1 − αð Þ

dαdΦo hoð ÞdΨo zoð Þ

subject to :ð
R+

m+i

ð1
0

∑m
p=1vpzkp +∑n

t=1~vt ~Π
−1
kt αð Þ −w

∑i
q=1uqhkq +∑j

s=1~us~Y
−1
ks 1 − αð Þ

dαdΦk hkð ÞdΨk zkð Þ ≤ 1,

k = 1, 2,⋯, r,
~u = ~u1, ~u2,⋯,~uj

� �
≥ 0,

u = u1, u2,⋯,uið Þ ≥ 0,
~v = ~v1, ~v2,⋯,~vnð Þ ≥ 0,
v = v1, v2,⋯,vmð Þ ≥ 0,
w ≥ 0,

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð31Þ

where

dΦo hoð Þ = dΦo1 ho1ð Þ, dΦo2 ho2ð Þ⋯ dΦoi hoið Þ,
dΨo zoð Þ = dΨo1 zo1ð Þ, dΨo2 zo2ð Þ⋯ dΨom zomð Þ,
dΦk hkð Þ = dΦk1 hk1ð Þ, dΦk2 hk2ð Þ⋯ dΦki hkið Þ,
dΨk zkð Þ = dΨk1 zk1ð Þ, dΨk2 zk2ð Þ⋯ dΨkm hkmð Þ:

ð32Þ

The uncertainty distributions of ~xo1,⋯, ~xoj, ~yo1,⋯, ~yon
are ~Yo1,⋯, ~Yoj and ~Πo1,⋯, ~Πon, and the probability distri-
butions of xo1,⋯, xoi, yo1,⋯, yom are Φo1,⋯,Φoi, Ψo1,⋯,
Ψom, respectively.

Proof. Since the function ðvTyk + ~vT~yk −wÞ/ðuTxk + ~uT~xkÞ is
a measurable function for each k with 1 ≤ k ≤ r, it follows
from Theorem 13 and we can obtain

ς = vTyk + ~vT~yk −w

uTxk + ~uT~xk
ð33Þ

has an expected value

E ς½ � =
ð
R+

m+i

G hk1,⋯, hki, zk1,⋯, zkmð ÞdΦk hkð ÞdΨk zkð Þ

ð34Þ

for k = 1, 2,⋯, r, where

G hk1,⋯, hki, zk1,⋯, zkmð Þ = E
vTzk + ~vT ~yk −w

uThk + ~uT~xk

" #
,

dΦk hkð Þ = dΦk1 hk1ð ÞdΦk2 hk2ð Þ⋯ dΦki hkið Þ,
dΨk zkð Þ = dΨk1 zk1ð ÞdΨk2 zk2ð Þ⋯ dΨkm zkmð Þ,

ð35Þ

k = 1, 2,⋯, r.
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For each k with 1 ≤ k ≤ r, since the function ðvTzk + ~vT

~yk −wÞ/ðuThk + ~uT~xkÞ is strictly increasing with respect to
~yk and strictly decreasing with respect to ~xk, by using Theo-
rem 8, we can get the inverse uncertainty distribution is

R−1
k αð Þ = ∑m

p=1vpzkp +∑n
t=1~vt ~Π

−1
kt αð Þ −w

∑i
q=1uqhkq +∑j

s=1~us~Y
−1
ks 1 − αð Þ

: ð36Þ

Moreover, from Theorem 14, we can obtain

E
vTzk + ~vT~yk −w

uThk + ~uT~xk

" #
=
ð1
0

∑m
p=1vpzkp +∑n

t=1~vt ~Π
−1
kt αð Þ −w

∑i
q=1uqhkq +∑j

s=1~us~Y
−1
ks 1 − αð Þ

dα,

ð37Þ

k = 1, 2,⋯, r. Then, the equivalent form of equation (34) is

E ς½ � =
ð
R+

m+i

ð1
0

∑m
p=1vpzkp +∑n

t=1~vt ~Π
−1
kt αð Þ −w

∑i
q=1uqhkq +∑j

s=1~us~Y
−1
ks 1 − αð Þ

dαΦk hkð ÞdΨk zkð Þ,

ð38Þ

where

dΦk hkð Þ = dΦk1 hk1ð ÞdΦk2 hk2ð Þ⋯ dΦki hkið Þ,
dΨk zkð Þ = dΨk1 zk1ð ÞdΨk2 zk2ð Þ⋯ dΨkm zkmð Þ,

ð39Þ

k = 1, 2,⋯, r. The proof is completed.

5. A Numerical Example

In order to examine the two new uncertain random DEA
models, this section presents fifteen DMUs with three inputs
and three outputs to demonstrate an illustrative example.
Among these inputs and outputs, two inputs and two outputs
are uncertain variables subject to linear uncertainty distribu-
tions represented as Lða, bÞ, and one input and one output
are random variables subject to uniform distributions repre-
sented as Uða, bÞ. The original data of these DMUs are pro-
vided in Table 1.

According to the data in Table 1, we can obtain each
DMU’s IRS efficiency by calculating the optimal value ϑ∗IRS
of model (19) and DRS efficiency by calculating the optimal
value ϑ∗DRS of model (30). In addition, to further clarify the
influence of RTS on efficiency values, we have also examined
two other cases, one for overall efficiency and the other for
technical efficiency. If w = 0, overall efficiencies of DMUs
can be calculated, represented as η∗, and technical efficiencies
of DMUs, represented as φ∗, can be gained under the condi-
tion that w is unconstrained in sign. The results of the four
kinds of efficiencies of each DMU are shown in Table 2.

As shown in Table 2, the second column represents
DMUs’ IRS efficiencies. It is obvious that the five DMUs
are IRS efficient because the optimal values ϑ∗IRS of them reach
up to 1, and the other ten are IRS inefficient. Similarly, four
DMUs are DRS efficient shown in the third column. Among
these efficient DMUs, some like DMU 3, DMU 8, and DMU 9
are IRS efficient but DRS inefficient, while some like DMU 1
and DMU 2 are DRS efficient but IRS inefficient. However,
there are also two DMUs (DMU 12 and DMU 13) that are
both IRS efficient and DRS efficient. Does it mean that these
two DMUs are overall efficient as well?

Table 1: Fifteen DMUs with three inputs and three outputs.

DMU k
Output variables Input variables

~y1 (uncertain) ~y2 (uncertain) y3 (random) ~x1 (uncertain) ~x2 (uncertain) x3 (random)

1 L 51, 65ð Þ L 45, 55ð Þ U 60, 78ð Þ L 8, 13ð Þ L 10, 15ð Þ U 9, 14ð Þ
2 L 64, 71ð Þ L 60, 69ð Þ U 76, 88ð Þ L 17, 20ð Þ L 12, 19ð Þ U 10, 16ð Þ
3 L 55, 60ð Þ L 80, 96ð Þ U 77, 89ð Þ L 10, 19ð Þ L 11, 20ð Þ U 10, 21ð Þ
4 L 47, 55ð Þ L 79, 95ð Þ U 62, 80ð Þ L 15, 24ð Þ L 12, 21ð Þ U 12, 23ð Þ
5 L 49, 62ð Þ L 54, 67ð Þ U 60, 75ð Þ L 10, 16ð Þ L 13, 19ð Þ U 14, 17ð Þ
6 L 46, 52ð Þ L 55, 68ð Þ U 65, 76ð Þ L 11, 19ð Þ L 16, 22ð Þ U 13, 19ð Þ
7 L 52, 60ð Þ L 67, 80ð Þ U 70, 83ð Þ L 13, 21ð Þ L 10, 17ð Þ U 12, 18ð Þ
8 L 54, 67ð Þ L 65, 75ð Þ U 55, 69ð Þ L 11, 16ð Þ L 14, 20ð Þ U 8, 16ð Þ
9 L 45, 55ð Þ L 62, 76ð Þ U 63, 78ð Þ L 10, 15ð Þ L 8, 12ð Þ U 14, 21ð Þ
10 L 48, 57ð Þ L 54, 63ð Þ U 60, 73ð Þ L 11, 17ð Þ L 9, 18ð Þ U 8, 17ð Þ
11 L 56, 69ð Þ L 64, 76ð Þ U 66, 83ð Þ L 8, 12ð Þ L 10, 20ð Þ U 11, 18ð Þ
12 L 60, 78ð Þ L 63, 70ð Þ U 74, 83ð Þ L 6, 13ð Þ L 7, 15ð Þ U 15, 20ð Þ
13 L 58, 66ð Þ L 80, 97ð Þ U 78, 90ð Þ L 5, 11ð Þ L 12, 25ð Þ U 10, 17ð Þ
14 L 47, 58ð Þ L 68, 78ð Þ U 70, 88ð Þ L 12, 19ð Þ L 14, 22ð Þ U 14, 25ð Þ
15 L 44, 53ð Þ L 53, 69ð Þ U 63, 72ð Þ L 14, 20ð Þ L 9, 15ð Þ U 13, 21ð Þ

6 Advances in Mathematical Physics



Overall efficiencies of DMUs are exhibited in the fourth
column of Table 2, represented as η∗. It is clear that only
two DMUs, DMU 12 and DMU 13, can be regarded as overall
efficient among fifteen DMUs. Therefore, it can be inferred
that if a DMU prevails IRS efficiency and DRS efficiency
simultaneously, it prevails overall efficiency as well. The
result is in accordance with the assumption that the efficiency
value is affected by the RTS state.

The last column shows DMUs’ technical efficiencies, rep-
resented as φ∗. There are a total of seven DMUs that can be
considered technical efficient. The number is just the aggre-
gation of DMUs which are both IRS efficient and DRS effi-
cient. This phenomenon demonstrates that the technical
efficiency compounds three kinds of different efficiencies
caused by RTS, although it cannot differ IRS efficiency and
DRS efficiency.

6. Conclusions

In this paper, we introduced two new models, uncertain ran-
dom DEA model for IRS and uncertain random DEA model
for DRS, so as to focus on efficiency evaluation of DMUs
under the uncertain random environment. Meanwhile, we
presented the equivalent forms of the two new models and
provided detailed proof processes. Finally, a numerical exam-
ple was given to demonstrate the evaluation results of these
two models. Considering the situation that uncertain vari-
ables and random variables coexist in the inputs and outputs
of DMUs simultaneously, our work broadens the application
of chance theory in efficiency evaluation in practice. In addi-
tion, this paper is also expected to be applied in the field of
logistics in the future.
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